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Historically air constituents have been assumed to be well mixed in indoor environments,
with single point measurements and box modeling representing a room or a house. Here we
demonstrate that this fundamental assumption needs to be revisited through advanced
model simulations and extensive measurements of bleach cleaning. We show that inorganic
chlorinated products, such as hypochlorous acid and chloramines generated via multiphase
reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived -OH
radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor
constituents are modulated by rates of chemical reactions, surface interactions and building
ventilation, providing critical insights for better assessments of human exposure to hazardous
pollutants, as well as the transport of indoor chemicals outdoors.
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longer especially in their homes during the current COVID-

19 pandemic. Concentrations of indoor gaseous com-
pounds and aerosol particles are often much higher compared to
outdoors owing to indoor emission sources including human
activities such as cleaning and cooking!2. Hypochlorite bleach is
an effective disinfectant that kills a wide variety of microorgan-
isms and is increasingly used to control infectious disease spread
in various indoor locations including schools, hospitals, and
residential buildings3*. Following bleach use, a number of
chlorinated compounds including hypochlorous acid (HOCI) and
molecular chlorine gas (Cl,) can be released™®, which are
hazardous by causing skin lipid oxidation” and cytotoxic injury in
the respiratory tract*. The House Observations of Microbial and
Environmental Chemistry (HOMEChem) campaign® has
revealed that a series of multiphase reactions involving nitrite
(NO, ™) and ammonia (NHj3) in the applied bleach onto a floor
can lead to the formation of nitryl chloride (CINO,) and chlor-
amines (e.g., NCl3)?, which have strong irritation effects with the
potential to damage tissues*. Bleach cleaning chemistry also
produces several toxic compounds including isocyanates, cyano-
gen chloride, and chlorocarbons®. As such, bleach can pose an
increased risk of respiratory infections and symptoms such as
wheezing and asthma310,

Historically indoor air constituents have been assumed to
become well mixed and homogeneously distributed after being
introduced into ventilated indoor environments!!. Hence, indoor
measurements are mostly conducted at a single location in a
room and at a fixed height and there have been only a few
measurements of spatial and vertical distributions of gas pollu-
tants and particulate matter!2!3. While computational fluid
dynamics (CFD) simulations have been applied to resolve indoor
air flows and spatial distributions of non-reactive indoor
species'4, indoor chemistry models often employ a box model
with the concept of deposition velocity assuming that there is a
well-mixed core region separated from indoor surfaces by
boundary layers!'!. However, this assumption may not be war-
ranted for reactive and short-lived species such as radicals and
bleach cleaning products. To better quantify human exposure to
indoor pollutants, it is essential to evaluate spatial distributions
and temporal scales of emitted compounds, which are currently
poorly understood.

To elucidate the spatial and temporal scales of variability of
indoor air pollutants, in this paper we go far beyond earlier
studies by integrating multiple indoor models including gas-
phase chemistry modeling, multiphase kinetic modeling, and
computational fluid dynamics (CFD) simulations!® to simulate
extensive measurements of a bleach cleaning event from
HOMEChem. We show that -OH radicals and bleach cleaning
products exhibit spatial and vertical concentration gradients in a
room as modulated by rates of chemical reactions, surface
interactions, and ventilation.

P eople spend on average 90% of their time indoors and even

Results

Integrated modeling for HOMEChem measurements. We
developed a multiphase kinetic model to treat formation and loss
of bleach products to simulate gas-phase measurements per-
formed during HOMEChem (Fig. 1a)°. It treats outdoor-indoor
air exchange, gas-phase reactions, photolysis, wall loss, hetero-
geneous reactions at indoor surfaces and particles, and aqueous
reactions in the aqueous bleach, while assuming that species
would be mixed homogeneously in the room where the bleach
was applied® (see Supplementary Methods). Transport of semi-
volatile species between the gas phase and the bleach requires
transport through a boundary layer adjacent to the bleach surface,

which is resolved explicitly in the model!®. In addition, a detailed
photochemical box model, the INdoor Detailed Chemical Model
(INDCM) with the Master Chemical Mechanism, was used to
quantify the radical production rates and refine the predicted
radical concentrations!” (see Supplementary Methods). Most
measurements were conducted at one location (P2) in the
kitchen, while -OH was measured in the sunlit zone next to the
window at P7 (see Fig. 1b and Supplementary Fig. 1).

As shown in Fig. 1c, the results from these well-mixed models
can be directly compared with the measurements. The INDCM
model successfully captures -OH radical concentrations and the
multiphase kinetic model reproduces the measured temporal
variation of HOCI, NCls, and NH3. These results, however, do not
reflect the potential heterogeneous distribution of reactive species
in an indoor space; a CFD model is necessary to resolve this.
While the gas-phase chemistry model and multiphase kinetic
model treat comprehensive and detailed chemistry, it is
computationally too expensive and unfeasible to treat all of these
gas and multiphase reactions in the CFD. To circumvent this
hurdle, we constrained the CFD with key inputs from the detailed
models: the INDCM provided production rates and reactivity of
-OH radicals, while the multiphase kinetic model provided HOCI,
CINO,, NCl;, and NH; concentrations right above the bleach
surface over time as controlled by aqueous reactions in the bleach.
These models also identified critical gas-phase reactions as well as
specific photolysis rates, rate coefficients, and uptake coefficients
to surfaces to be included in the CFD (Supplementary Methods
and Supplementary Table 1).

By resolving spatial heterogeneity, the CFD model reproduces
the dynamic concentration changes at the sampling points
remarkably well (Fig. 1c). After the bleach containing NaOCI is
applied to the floor for 10 min, HOCI is formed in the aqueous
bleach and volatilized to the gas phase. HOCl undergoes
heterogeneous reactions on acidic particles or indoor surfaces,
leading to the formation of Cl,. In the aqueous bleach, HOCI
reacts with nitrite (NO,™) that is largely present on indoor
surfaces as a reservoir of HONO!3, to generate CINO, which can
partition into the gas phase. NHj, emitted by human occupants
and off-gassing from building materials and indoor surfaces!®,
partitions into the aqueous bleach to participate in a series of
reactions with HOCI to generate NCl;°, leading to an increase of
NCI; and a decrease of NHj; in the gas phase. Afterwards, the
bleach products decayed faster than the air exchange rate, which
is also captured very well by accounting for deposition to indoor
surfaces.

Model simulations reveal that the observed enhancement of
-OH radicals during the bleach cleaning event can be mainly
explained by a cascade of reactions initiated via Cl, photolysis: the
formed Cl radicals react with volatile organic compounds (VOCs)
to generate peroxy and alkoxy radicals, which propagate to HO,
and then -OH through reactions involving NO. Gas-phase model
simulations indicate that this process accounts for >90% of -OH
production, while -OH radicals can also be generated via
photolysis of HOCl and HONO?. The generated -OH radicals
react rapidly with a number of indoor gas-phase species including
NO, and VOCs with an estimated -OH reactivity of 65 s~! during
the cleaning event (see Supplementary Methods). The remarkable
level of agreement between measurements and simulations for
radicals and reaction products has been made possible by
effectively resolving complex physical and chemical processes as
well as indoor air flow and spatial heterogeneity.

Horizontal and vertical distributions in Fig. 2 show that high
concentrations of -OH radicals are confined only to the solar
radiation zone where they are generated via photolysis, while
their concentration is low in the dark zone due to depletion
through loss reactions. However, the products of -OH radical
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Fig. 1 Integrated modeling of bleach cleaning events. a A schematic of the kinetic model to simulate a cleaning event at the HOMEChem campaign. b The
floor plan of the test house and computational fluid dynamics modeling geometry (Win: window, AHU: air handling unit, EA: exhaust air, OA: outside air).
The yellow marks are solar radiation zones and blue marks are cleaning area. Nine points (P1-P9) at 1.5 m above the cleaning floor surface are the
calculation points in CFD simulations. The vertical red line represents the cross-section used for the vertical maps presented in Fig. 2. ¢ Temporal evolution
of (i) OH, (ii) HOCI, ii) NClz, and (iv) NH3 as measured (red) and simulated by the CFD (dark blue), the INDCM (open markers in ¢ (i)), and the
multiphase kinetic model (open markers in ¢ (ii-iv)). The error bars in (¢) represent the 1o precision of the OH measurements and are separate from the

calibration accuracy (£18%, 1o).

reactions such as HCHO and OVOCs in these zones will have
longer lifetimes, thus increasing the effective spatial impact of
-OH radical production. HOCI, CINO,, and NCl; are emitted
from the cleaning surface, resulting in vertical concentration
gradients and higher concentrations in the living room compared
to other rooms. Note that although the air handling unit
circulates a fairly large amount of indoor air in the whole house
at a mixing rate of 8 h~! with all room doors open, the cleaning

products are primarily concentrated in the living room. Even in
the living room, these products are confined to the area near the
corner (P1) because of the non-uniform indoor airflow, showing
30-50% higher concentrations than at other points. Cl, also
exhibits similar spatial distributions (Supplementary Fig. 2),
reflecting that Cl, is mainly produced where HOCI is more
concentrated. NHj is relatively homogeneously distributed, with a
few ppb lower mixing ratio in the cleaning area compared to
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Fig. 2 Spatial distributions of bleach products. Horizontal and vertical spatial distributions of (a) OH, (b) HOCI, (¢) NCls, and (d) NHs at 18 min after the
beginning of the cleaning. Horizontal maps represent 1.5 m above the floor and vertical maps represent sections with the red line in Fig. 1b.

other rooms due to uptake into the bleach followed by aqueous
reactions.

Spatial and temporal variations of indoor species. Similar to the
atmosphere?{, indoor air can be regarded as a highly dynamic
chemical reactor. A variety of chemical species is introduced and
removed over a wide range of spatial and temporal scales,
depending on rates of ventilation, photolysis, chemical reactions,
and deposition as well as room and building sizes!:>. We estimate
half-lives of representative indoor chemical species by considering a
typical air exchange rate of 0.5h™! and reaction rates with typical
indoor concentration levels of -OH (3 x 10° cm—3), O (4 ppb), NO,,
(7 ppb), and VOCs (100 ppb) as well as typical photolysis and
surface deposition rates (see Supplementary Table 2). Then, spatial
scales or the average distance traveled can be estimated by con-
sidering a typical indoor air flow velocity of 0.03ms~!, corre-
sponding to an air exchange rate?! of 0.5h~1. The results of this
analysis are depicted in Fig. 3, in which three distinct scales
emerged:

1. Microscale: Processes occurring on the spatial scale of

<~0.1m and affecting phenomena only in proximity to
emission sources or locations where compounds are
generated in tiny eddies of a centimeter or less. Near the
emission sources, short-lived radical species (with lifetimes
up to ~10s) such as Cl, NO3, and RO, (=-OH + HO,- +
RO,-) exhibit sharp spatial gradients and their temporal
scales are determined mainly by reaction rates, and only
marginally affected by deposition and ventilation rates
(see Supplementary Methods).

Room scale: Processes that exceed the microscale but still
occur within a room (~0.1-10 m). Moderately long-lived
species (with time scales of ~10s-10 min) such as NHj,
NO, Cl,, and O; would exhibit spatial gradients within a
room. The temporal and spatial distributions of these
species are controlled by both chemical processes and
indoor air flow conditions. For NH; and semi-volatile
organic compounds (SVOCs) that may undergo reversible
partitioning to indoor surface reservoirs!$, the true spatial
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Fig. 3 Spatial and temporal scales of variability for indoor species. Spatial
and temporal scales of gas-phase species and particulate matter with
different particle diameters indoors with an air exchange rate of 0.5h=",

gradients are likely reduced from the model predictions due
to surface emissions.

3. Building scale: Phenomena occurring in a plume on scales
larger than a room (>~10m), possibly affecting other
rooms and the entire building by circulation and even being
transported outdoors. Long-lived species such as VOCs,
NO,, and CO, are mostly well mixed within the indoor
space. Their temporal scales are mainly controlled by
ventilation rates. During HOMEChem, HONO was mea-
sured in two different locations (P2 and P7), showing very
similar concentrations (see Supplementary Fig. 4)22,

A Dbetter understanding of spatial distributions of indoor
species is highly critical for accurate assessments of human
exposure to indoor oxidants and SVOCs including toxic
chlorinated and nitrogenated VOCs®23. The widely applied
concept of deposition velocity, which expresses the species flux
density to the surface divided by its concentration in the
uniformly mixed core region, may need to be revisited!! for
simulating short-lived and moderately long-lived species. Note
that this analysis of temporal and spatial scales implicitly assumes
that spatial gradients are driven by a perturbation such as
cleaning, cooking, and other activities at steady-state conditions;
there will not be the same gradients in the absence of a
perturbation. Spatial heterogeneity in photon fluxes also leads to
spatial gradients of photoactive species. Resolving mass transport
and chemical reactions in the boundary layer!® and on indoor
surfaces would be required for an accurate description of
deposition processes?4.

The spatial scale indoors is several orders of magnitude smaller
than for species in the ambient atmosphere?V. Because of
relatively low air exchange rates in residences, non-reactive gas-
phase species remain indoors for 3-4 h. At higher air exchange
rates that are often deployed in industrial buildings with
mechanical ventilation, the temporal and spatial scales of
moderately long-lived and long-lived species would both decrease
as the species are transported to the ambient atmosphere at a
faster rate (see Supplementary Fig. 3). A recent study has found
that the use of volatile chemical products (VCPs, including

pesticides, coatings, adhesives, cleaning agents, and personal care
products) constitutes half of fossil-fuel VOC emissions in
industrialized cities?>. VCPs are mostly emitted indoors; however,
they are transported outdoors, significantly affecting air quality
through the formation of ozone and secondary organic
aerosols2>26. The analysis in Fig. 3 implies that SVOCs may also
be generated indoors and emitted to the ambient atmosphere
depending on their reactivity and the ventilation conditions.

Figure 3 also includes spatial and temporal variations of
particulate matter (PM) with different particle diameters of 3 nm,
10 nm, 1 pm, 10 pum, and 100 um, which determine the particle
deposition  velocity and residence time in indoor
environments!427 (see Supplementary Table 2). For larger
particles with a diameter of 100 pm, they settle to the floor in
less than few seconds and within 1 m, mainly due to gravitational
settling. Ultrafine particles (1-10 nm) are also relatively short-
lived because of particle losses via Brownian and turbulent
diffusion. Due to their high mobility, they readily stick to indoor
surfaces or are scavenged by bigger particles. On the other hand,
1-10 um particles are much more persistent in indoor environ-
ments with average residence times exceeding minutes and up to
1 h. Their residence times are comparable to the time scale of
ventilation rates, so these particles can be transported to other
people’s breathing zone in indoor environments and can play a
critical role as an airborne carrier of infectious pathogens such as
SARS-COV22829 a5 well as for exposure to thirdhand smoke
species that have partitioned into indoor particles3?.

Conclusions

In summary, we demonstrate that heterogeneous distributions of
indoor air pollutants can exist for short-lived and moderately long-
lived compounds, in contrast to the traditional assumption of
homogeneous mixing. The spatial and temporal scales are controlled
by gas-phase and multiphase reactions, deposition as well as indoor
air flow and outdoor-indoor air exchange. Among these factors,
surface interactions may be least characterized and quantified, despite
their importance becoming increasingly clear?»31. Different surface
and environmental conditions including temperature, humidity, light,
and surface pH would be critical for heterogeneous reactions at
indoor surfaces?*3! as well as surface stability of SARS-COV232. In
addition, the presence of organic films on indoor surfaces can impact
thermodynamics and kinetics of SVOC partitioning>334. Further
elucidation of these aspects will improve assessments on indoor air
quality, human exposure to indoor pollutants, and indoor-outdoor
transport of chemical compounds.

Methods

HOMEChem campaign. The House Observations of Microbial and Environmental
Chemistry (HOMEChem) campaign and the bleach experiments that occurred
during the campaign have previously been described in detail>3°. The campaign
took place in a 111 m? 3-bedroom, 2-bathroom test house in Austin, Texas in June
2018. In this work we focus only on the bleaching experiment that occurred on the
8th June as part of a ‘layered” experiment, meaning that cooking had happened
prior to bleaching. A bleach solution was applied to the kitchen and living room
floor, which had a combined surface area of 40 m?, at 17:35. Measurements of gas-
phase species concentrations were made prior to and during the experiment using a
variety of instruments including a time-of-flight chemical ionization mass spec-
trometer (TOF-CIMS), a cavity ring-down spectrometer and a laser-induced
fluorescence using the fluorescence assay with gas expansion technique instrument
(LIF-FAGE). Two separate TOF-CIMS instruments were deployed to sample air
from the kitchen (P2): one with utilizing iodide chemical ionization to measure
HOCI, Cl,, CINO,, and NCl; and another utilizing acetate chemical ionization to
measure HONO. The cavity ring-down measured NH; sampled in the kitchen,
while the LIF-FAGE instrument measured -OH, HO,-, and HONO next to the
living room window. Spectrally resolved solar irradiance was measured with a
hand-held spectrometer collocated with the LIF-FAGE instrument. The air
exchange rate during the period of the bleaching experiment on the 8th June was
controlled by a heating ventilation and air conditioning (HVAC) system and was
measured as ~0.7 h~L.
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Modeling. The multiphase kinetic model treats various processes including air
exchange, uptake to particulate matter and indoor surfaces, photolysis, gas-phase
reactions and reactions in the aqueous bleach, and transport of semi-volatile
species through a boundary layer above the floor (Fig. la and Supplementary
Methods). The kinetic model provided inputs to the CFD model including the
concentrations of HOCI, CINO,, chloramines, and NHj; directly above the bleach
surface at different times. The CFD model geometry was designed by mimicking air
flow and emission conditions of the bleach products observed in the measurement
campaign. The CFD model resolves a total of 11 chemical reactions (Supplemen-
tary Table 1), solar radiation through windows, surface uptake, and the turbulent
indoor air flow (Supplementary Methods). Modeling of -OH concentrations was
carried out using the INDCM (INdoor Detailed Chemical Model)!7, a near-explicit
photochemical box model constructed based on a comprehensive chemical
mechanism. INDCM also treats exchange with outdoors, internal emissions,

20.

21.

22.

23.

Ampollini, L. et al. Observations and contributions of real-time indoor
ammonia concentrations during HOMEChem. Environ. Sci. Technol. 53,
8591-8598 (2019).

Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change (John Wiley & Sons, 2016).

Won, Y., Waring, M. S. & Rim, D. Understanding the spatial heterogeneity of
indoor OH due to photolysis of HONO using computational fluid dynamics
(CFD) simulation. Environ. Sci. Technol. 53, 14470-14478 (2019).

Wang, C. et al. Cooking, bleach cleaning, and air conditioning strongly
impact levels of HONO in a house.Environ. Sci. Technol. 54, 13488-13497
(2020).

Eichler, C. M. A. et al. Assessing human exposure to SVOCs in materials,
products, and articles: a modular mechanistic framework. Environ. Sci.

photolysis, and deposition to surfaces (Supplementary Methods).

Data availability
The HOMEChem data is available at the OSF webpage https://osf.io/ykj27/.

Code availability
The codes used to generate the data in the current study are available from the
corresponding author on reasonable request.

Received: 29 April 2021; Accepted: 1 July 2021;
Published online: 12 August 2021

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Gligorovski, S. & Abbatt, J. P. D. An indoor chemical cocktail. Science 359,
632-633 (2018).

Weschler, C. J. & Carslaw, N. Indoor chemistry. Environ. Sci. Technol. 52,
2419-2428 (2018).

Zock, J.-P. et al. Domestic use of hypochlorite bleach, atopic sensitization, and
respiratory symptoms in adults. J. Allergy Clin. Immunol. 124, 731-738.el
(2009) .

Slaughter, R. J., Watts, M., Vale, J. A., Grieve, J. R. & Schep, L. J. The clinical
toxicology of sodium hypochlorite. Clin. Toxicol. 57, 303-311 (2019).
Mattila, J. M. et al. Multiphase chemistry controls inorganic chlorinated and
nitrogenated compounds in indoor air during bleach cleaning. Environ. Sci.
Technol. 54, 1730-1739 (2020).

Wong, J., Carslaw, N., Zhao, R,, Zhou, S. & Abbatt, J. Observations and
impacts of bleach washing on indoor chlorine chemistry. Indoor Air 27,
1082-1090 (2017).

Schwartz-Narbonne, H., Wang, C., Zhou, S., Abbatt, J. P. D. & Faust, J.
Heterogeneous chlorination of squalene and oleic acid. Environ. Sci. Technol.
53, 1217-1224 (2019).

Farmer, D. K. et al. Overview of HOMEChem: house observations of
microbial and environmental chemistry. Environ. Sci. Process. Impacts 21,
1280-1300 (2019).

Mattila, J. M. et al. Dark chemistry during bleach cleaning enhances oxidation
of organics and secondary organic aerosol production indoors. Environ. Sci.
Technol. Lett. 7, 795-801 (2020).

Nazaroff, W. W. & Weschler, C. J. Cleaning products and air fresheners:
exposure to primary and secondary air pollutants. Atmos. Environ. 38,
2841-2865 (2004).

Nazaroff, W. W., Gadgil, A. J. & Weschler, C. J. Modeling of Indoor Air
Quality and Exposure (ASTM International, 1993).

Shen, G. et al. Quantifying source contributions for indoor CO, and gas
pollutants based on the highly resolved sensor data. Environ. Pollut. 267,
115493 (2020).

Qiu, Y. et al. Indoor PM2.5 profiling with a novel side-scatter indoor lidar.
Environ. Sci. Technol. Lett. 6, 612-616 (2019).

Wallace, L., Jeong, S. G. & Rim, D. Dynamic behavior of indoor ultrafine
particles (2.3-64 nm) due to burning candles in a residence. Indoor Air 29,
1018-1027 (2019).

Shiraiwa, M. et al. Modelling Consortium for Chemistry of Indoor
Environments (MOCCIE): integrating chemical processes from molecular to
room scales. Environ. Sci. Process. Impacts 21, 1240-1254 (2019).

Morrison, G., Lakey, P. S., Abbatt, J. & Shiraiwa, M. Indoor boundary layer
chemistry modeling. Indoor Air 29, 956-967 (2019).

Carslaw, N. A new detailed chemical model for indoor air pollution. Atmos.
Environ. 41, 1164-1179 (2007).

Wang, C. et al. Surface reservoirs dominate dynamic gas-surface partitioning
of many indoor air constituents. Sci. Adv. 6, eaay8973 (2020).

Technol. 55, 25-43 (2021).

24. Ault, A. P. et al. Indoor surface chemistry: developing a molecular picture of
reactions on indoor interfaces. Chem 6, 3203-3218 (2020).

25. McDonald, B. C. et al. Volatile chemical products emerging as largest
petrochemical source of urban organic emissions. Science 359, 760 (2018).

26. Shah, R. U. et al. Urban oxidation flow reactor measurements reveal
significant secondary organic aerosol contributions from volatile emissions of
emerging importance. Environ. Sci. Technol. 54, 714-725 (2020).

27. Lai, A. C. K. & Nazaroff, W. W. Supermicron particle deposition from
turbulent chamber flow onto smooth and rough vertical surfaces. Atmos.
Environ. 39, 4893-4900 (2005).

28. Prather, K. A, Wang, C. C. & Schooley, R. T. Reducing transmission of SARS-
CoV-2. Science 368, 1422 (2020).

29. Morawska, L. & Milton, D. K. It is time to address airborne transmission of
coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 71, 2311-2313 (2020).

30. DeCarlo, P. F.,, Avery, A. M. & Waring, M. S. Thirdhand smoke uptake to
aerosol particles in the indoor environment. Sci. Adv. 4, eaap8368 (2018).

31. Liu, Y. et al. Challenges and opportunities in molecular-level indoor surface
chemistry and physics. Cell Rep. Phys. Sci. 1, 100256 (2020).

32. Joonaki, E., Hassanpouryouzband, A., Heldt, C. L. & Areo, O. Surface
chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of
environmental conditions. Chem 6, 2135-2146 (2020).

33. Lakey, P. S. ], Eichler, C. M. A, Wang, C, Little, J. C. & Shiraiwa, M. Kinetic
multi-layer model of film formation, growth, and chemistry (KM-FILM):
boundary layer processes, multi-layer adsorption, bulk diffusion, and
heterogeneous reactions. Indoor Air https://doi.org/10.1111/ina.12854 (2021).

34. Weschler, C. J. & Nazaroff, W. W. Growth of organic films on indoor surfaces.
Indoor Air 27, 1101-1112 (2017).

35. Abbatt, J., Lee, A. & Thornton, J. Quantifying trace gas uptake to tropospheric
aerosol: recent advances and remaining challenges. Chem. Soc. Rev. 41,
6555-6581 (2012).

Acknowledgements

We acknowledge Dr. Paula Olsiewski and Dr. Marina Vance for their leadership and the
entire HOMEChem Science Team for conducting the experiment. This work was funded
by the Alfred P. Sloan Foundation (G-2020-13912; G-2019-12306; G-2019-12442; G-
2017-9944; G-2019-11404; G-2018-11062; G-2018-10083; G-2017-9796).

Author contributions

M.S. and D.R. designed and oversaw the study. P.L. and M.S. conducted multiphase
kinetic modeling. Y.W. and D.R. conducted CFD simulations. D.S., F.0., and N.C.
conducted INDCM modeling. E.R,, C.R., and P.S. conducted MCM modeling. J.M., ER,,
BB, CR,CW, LA, SZ,AN, TK,P.D,JA, P.S., and D.F. conducted HOMEChem
measurements. P.L., YW, D.R,, and M.S. wrote the manuscript with inputs from all
coauthors. All coauthors discussed the results and contributed to manuscript editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42004-021-00548-5.

Correspondence and requests for materials should be addressed to D.R. or M.S.

Peer review information Communications Chemistry thanks the anonymous reviewers
for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

COMMUNICATIONS CHEMISTRY | (2021)4:110 | https://doi.org/10.1038/s42004-021-00548-5 | www.nature.com/commschem


https://osf.io/ykj27/
https://doi.org/10.1111/ina.12854
https://doi.org/10.1038/s42004-021-00548-5
http://www.nature.com/reprints
www.nature.com/commschem

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-021-00548-5

ARTICLE

Open Access This article is licensed under a Creative Commons

L Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS CHEMISTRY | (2021)4:110 | https://doi.org/10.1038/s42004-021-00548-5 | www.nature.com/commschem


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commschem
www.nature.com/commschem

	Spatial and temporal scales of variability for indoor air constituents
	Results
	Integrated modeling for HOMEChem measurements
	Spatial and temporal variations of indoor species

	Conclusions
	Methods
	HOMEChem campaign
	Modeling

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


