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REGULARIZATION OF THE BACKWARD STOCHASTIC HEAT CONDUCTION

PROBLEM

NGUYEN HUY TUAN, DANIEL LESNIC, TRAN NGOC THACH, AND TRAN BAO NGOC

Abstract. In this paper, we study the backward problem for the stochastic parabolic heat equation

driven by a Wiener process. We show that the problem is ill-posed by violating the continuous depen-
dence on the input data. In order to restore stability, we apply a filter regularization method which
is completely new in the stochastic setting. Convergence rates are established under different a priori

assumptions on the sought solution.

Keywords: Stochastic parabolic equations; Backward problems; Regularization; Error estimates.
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1. Introduction

Ever since the first-time award of the Fields prize to Applied Mathematics in 2014, the study of
stochastic PDEs has considerably increased in interest. While the subject is not at all new as far as direct
problems are concerned, inverse problems for stochastic PDEs are in the early stages of development.
Since in nature any physical phenomenon contains some elements of randomness, a model based on
stochastic PDEs would be more realistic than a deterministic PDE model. The price to pay is that
in this more realistic stochastic model, the noisy variables cannot be differentiated, and furthermore,
the usual compactness embedding results do not hold for the solution belonging to appropriate spaces
characteristic to stochastic PDEs, [14].

In this paper, we consider a backward problem for the stochastic parabolic heat equation, as follows:




ut(x, t)− ν(t)∆u(x, t) = g(x, t) + f(t)Ẇ, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, T ) = ξ(x), x ∈ Ω.

(1)

Here, ν : (0, T ) → R is the diffusivity function satisfying the uniform ellipticity condition 0 < ν− ≤ ν(t) ≤
ν+ < ∞, where ν− and ν+ are two positive constants, and the noisy term (g(x, t) + f(t)Ẇ) represents
a stochastic heat source. Typical examples of stochastic noise are standard Brownian motion, fractional
Brownian motion, Poisson and Levy. In this paper, for simplicity, the standard Brownian motion W is
considered, serving as guide for other more complicated types of noise. The stochastic nature of the first
equation in (1) is of importance in modelling random perturbations coming from uncontrollable sources.
The operator −∆ : D(−∆) := H1

0 (Ω) ∩ H2(Ω) → L2(Ω) is the negative Laplacian with respect to the
variable x, Ω is a C2 bounded open set of Rm, m ≥ 1, and {W(x, t)}t≥0 is a L2(Ω)-Wiener process
defined on a complete probability space (Ω,F , {Ft}t≥0,P) with normal filtration {Ft}t≥0 satisfying that

all P-null sets of F belong to F0. The formal time derivative Ẇ := ∂W/∂t is called a white noise. Let
E denote the expectation (with respect to P). The final data ξ is a F0-measurable random variable and
belongs to L2(Ω). Our inverse problem here is to determine u(x, t) from the input data ξ, g and f .

Now, we give some introduction to the history of Problem (1). The deterministic model of Problem

(1), i.e., when f(t)Ẇ is omitted, commonly known as the backward heat conduction problem (BHCP) has
been extensively studied in the literature over the last few decades, see e.g. [2, 3, 4, 5, 9, 12, 13, 15, 16]
to mention only a few. The BHCP arises in several practical areas such as heat transfer and image
processing, [1, 9]. The problem is well-known to be severely ill-posed in the sense that a solution
corresponding to the data ξ does not always exist, and in the case of existence, it does not depend
continuously on the given data. In fact, from small noise in ξ, the corresponding solution at t = 0 will
have large errors. Hence, one has to resort to regularization in order to restore stability.

To the best of our knowledge, there seems to be only a few works on inverse problems for the stochastic
heat equation; here we can mention the inverse source problem, [10, 11, 14, 17], and the backward
problem, [14, 17]. Continuing from [14] where only the uniqueness of solution has been investigated, in
this paper we first study the ill-posedness of Problem (1). Then, we construct a regularized solution to
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Problem (1) when the given data ξ, g and f are noisy. The rest of the paper is organized as follows.
In Section 2, we introduce notation, present some preliminary results on Wiener processes and give the
solution to Problem (1). In section 3, we give an example which shows the ill-posedness of our problem
in stochastic setting. In section 4, we establish a filter regularization method for obtaining a stable
approximate solution to our problem. Two examples of filters are proposed. Moreover, we obtain the
convergence rate of the regularized solution towards the true solution, as the noise level tends to zero.
Finally, section 5 presents and discusses numerical results.

2. Preliminaries

It is well-known that the eigenvalues λj of the negative Laplacian with Dirichlet boundary conditions
satisfy that 0 < λj ≤ λj+1 and limj→∞ λj = ∞, [6]. The corresponding eigenfunctions ϕj satisfy
−∆φj = λjφj and form an orthonormal basis of H := L2(Ω). Unlike the deterministic case in which u
is regarded as a function of space and time, in the stochastic case we view u as an H−valued stochastic
process. We denote by Ḣs, s > 0, the Hilbert scale space equipped with the norm ‖ · ‖Ḣs as follows:

Ḣs := {g ∈ H : ‖g‖Ḣs := ‖(−∆)sg‖H < ∞} ,

where (−∆)sg :=
∑∞

j=1 λ
s
j〈g, ϕj〉ϕj , and 〈·, ·〉 is the usual inner product in H. Let (Ω,F ,P, {Ft}t≥0) be a

compete filtered probability space which satisfies that all P-null sets of F belong to F0. We consider the
Wiener process {W(·, t)}t≥0 on (Ω,F ,P, {Ft}t≥0) with a linear bounded covariance operator Q such that
Trace(Q) < ∞. Denoting by (β2

j )j∈N∗ the eigenvalues of Q, the Wiener process has the Karhunen-Loeve
expansion, [8],

W(x, t) = Q1/2
∞∑

j=1

γj(t)ϕj(x) =

∞∑

j=1

βjγj(t)ϕj(x), t ≥ 0, (2)

where {γj(t)}j∈N∗ is a sequence of one-dimensional Brownian motions.
Now, let us recall some well-known functional spaces. For r ≥ 1, we denote by Lr(Ω, H) the space of

all H-valued random variables X on Ω equipped with the norm ‖X‖Lr(Ω,H) := (E ‖X‖rH)
1/r

< ∞, where

E ‖X‖rH is the expectation of ‖X‖rH . Let V1, V2 be two Hilbert spaces and let HS(U1, U2) be the space of

all Hilbert-Schmidt operators Ψ : V1 → V2 endowed with the norm ‖Ψ‖2HS(U1,U2)
:=
∑∞

j=1 ‖Ψej‖2V2
< ∞,

where {ej}j∈N∗ is an orthonormal basis of the space V1. Denote by L2
0(V1, V2) the space of all linear

bounded operators f : V1 → V2 with the corresponding norm ‖f‖L2
0
(V1,V2)

=
∥∥fQ1/2

∥∥
HS(V1,V2)

. In the

case of V1 ≡ V2 ≡ V , we set L2
0(V ) := L2

0(V, V ) for the sake of convenience. For a Banach space B and
a given number p ≥ 1, recall that

Lp(0, T ;B) :=



χ : (0, T ) → B s.t. ‖χ‖Lp(0,T ;B) :=

(∫ T

0

‖χ(t)‖p
B
dt

)1/p

< ∞



 .

Next, we aim to find a representation for the solution in the form u(x, t) =
∑∞

j=1 uj(t)ϕj(x), where

uj(t) := 〈u(·, t), ϕj〉. Setting gj(t) := 〈g(·, t), ϕj〉 and ξj := 〈ξ, ϕj〉. It follows from Problem (1) that





duj

dt
(t) + 2λjν(t)uj(t) = gj(t) + βjf(t)

dγj
dt

(t), t ∈ (0, T ),

〈uj(T ), ϕj〉 = ξj .

By solving this, we obtain that the mild solution of Problem (1), which is an adapted H-valued stochastic
process u(x, t), is given by

u(x, t) = A(t, T )ξ(x)−
∫ T

t

A(t, s)g(x, s)ds−
∫ T

t

A(t, s)f(s)dW(x, s), (3)

where A(t1, t2)h(x) :=
∑∞

j=1 exp
(
λj

∫ t2
t1

ν(τ)dτ
)
〈h, ϕj〉ϕj(x) for t1, t2 ∈ [0, T ]. Note that the last

integral with respect to the Brownian motion is a so-called Itô’s integral.
2



3. The ill-posedness of stochastic problem

This section is aimed to illustrate the instability of the solution to Problem (1), which leads to its
ill-posedness. Supposing that ξ ≡ 0, g ≡ 0 and f ≡ 0, it is obvious that the solution is u ≡ 0. Next, we
will give concrete sequences {ξk}k≥1, {gk}k≥1 and {fk}k≥1 such that

lim
k→∞

∥∥ξk − ξ
∥∥
L2(Ω,H)

= lim
k→∞

∥∥gk(·, t)− g(·, t)
∥∥
L2(Ω,H)

= lim
k→∞

∥∥fk(t)− f(t)
∥∥
L2

0
(H)

= 0, (4)

and ‖uk(·, t)− u(·, t)‖L2(Ω,H) does not tend to zero as k → ∞, where uk is defined by

uk(x, t) = A(t, T )ξk(x)−
∫ T

t

A(t, s)gk(x, s)ds−
∫ T

t

A(t, s)fk(s)dW(x, s)

=: uk
1(x, t)− uk

2(x, t)− uk
3(x, t). (5)

This means that the errors in the solution (output data) are very large whereas the errors in the input
data are not significant. For clarity, let us present the following illustration:

Lemma 3.1. Let the input data ξk(x), gk(x, t) and fk(t) for k ∈ N
∗, be given by

ξk(x) = e−ν+λkT ςϕk(x), gk(x, t) = e−ν+λkTσ(t)ϕk(x), fk(t)h(x) =
t

βk
4
√
λk

〈h, ϕk〉ϕk(x), (6)

where ς is a random variable drawn from the standard normal distribution and σ(t) is a Brownian motion.

Then,

a)
∥∥ξk
∥∥
L2(Ω,H)

= e−ν+λkT ,
∥∥gk(·, t)

∥∥
L2(Ω,H)

=
√
te−ν+λkT and

∥∥fk(t)
∥∥
L2

0
(H)

= tλ
−1/4
k ;

b)
∥∥uk(·, t)

∥∥
L2(Ω,H)

≥
(

3T 4−4T 3t+t4

6 ν−
)1/2

λ
1/4
k − 2

3

(
T 3/2 − t3/2

)
− 1.

Remark 3.1. Lemma 3.1 gives us a simple example showing that (4) holds, but
∥∥uk(·, t)− u(·, t)

∥∥
L2(Ω,H)

tends to infinity as k → ∞, implying that the solution is not stable.

Proof. a) By using the properties of the random variable ς and the Brownian motion σ(t), one obtains∥∥ξk
∥∥2
L2(Ω,H)

= e−2ν+λkTEς2 ‖ϕk‖2L2(Ω,H) = e−2ν+λkT and
∥∥gk(·, t)

∥∥2
L2(Ω,H)

= te−2ν+λkT . For the third

term, using that

fk(t)ϕj(x) =
t

βk
4
√
λk

〈ϕj , ϕk〉ϕk(x) =

{
t

βk
4
√
λk

ϕk(x), j = k,

0, j 6= k,
(7)

and Q1/2ϕk(x) = βkϕk(x), one obtains

∥∥fk(t)
∥∥2
L2

0
(H)

=
∞∑

j=1

∥∥∥Q1/2fk(t)ϕj

∥∥∥
2

H
=

t2

β2
k

√
λk

∥∥∥Q1/2ϕk

∥∥∥
2

H
=

t2√
λk

.

b) The following is obtained by using the Itô’s isometry

∥∥uk
3(·, t)

∥∥2
L2(Ω,H)

=

∥∥∥∥∥

∫ T

t

A(t, s)fk(s)dW(·, s)
∥∥∥∥∥

2

L2(Ω,H)

=

∫ T

t

∞∑

j=1

∥∥∥Q1/2A(t, s)fk(s)ϕj

∥∥∥
2

H
ds. (8)

On the other hand, from (7) and Q1/2A(t, s)ϕk(x) = exp
(
λk

∫ s

t
ν(τ)dτ

)
βkϕk(x), we get

∥∥∥Q1/2A(t, s)fk(s)ϕj

∥∥∥
2

H
=

{
s2√
λk

exp
(
2λk

∫ s

t
ν(τ)dτ

)
, j = k,

0, j 6= k.
(9)

Combining (8) and (9), we deduce that

∥∥uk
3(·, t)

∥∥2
L2(Ω,H)

= λ
−1/2
k

∫ T

t

s2 exp

(
2λk

∫ s

t

ν(τ)dτ

)
ds ≥ 2λ

1/2
k

∫ T

t

s2
(∫ s

t

ν(τ)dτ

)
ds

≥ 2ν−λ
1/2
k

∫ T

t

s2(s− t)ds =
3T 4 − 4T 3t+ t4

6
ν−λ

1/2
k . (10)

The term
∥∥uk

1(·, t)
∥∥
L2(Ω,H)

can be estimated as follows:

∥∥uk
1(·, t)

∥∥2
L2(Ω,H)

=
∞∑

j=1

exp

(
2λj

∫ T

t

ν(τ)dτ

)
E〈ξk, ϕj〉2 = exp

(
2λk

∫ T

t

ν(τ)dτ

)
e−2ν+λkT ≤ 1, (11)
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where we have used that E〈ξk, ϕj〉2 = 0 if j 6= k and E〈ξk, ϕj〉2 = e−2ν+λkT if j = k. Similarly, one can
check that

∥∥uk
2(·, t)

∥∥
L2(Ω,H)

≤
∫ T

t

∥∥A(t, s)gk(·, s)
∥∥
L2(Ω,H)

ds ≤
∫ T

t

√
s ds =

2

3

(
T 3/2 − t3/2

)
. (12)

Combining (5), (10)–(12) and
∥∥uk(·, t)

∥∥
L2(Ω,H)

≥
∥∥uk

3(·, t)
∥∥
L2(Ω,H)

−
∥∥uk

1(·, t)
∥∥
L2(Ω,H)

−
∥∥uk

2(·, t)
∥∥
L2(Ω,H)

,

we complete the proof of b). �

4. Regularization and error analysis

In reality, the exact data is not available and we only have measured data containing errors (denoted
by ξδ, gδ and fδ). For this reason, henceforth, we suppose that

∥∥ξδ − ξ
∥∥
L2(Ω,H)

+
∥∥gδ − g

∥∥
L1(0,T ;L2(Ω,H))

+
∥∥fδ − f

∥∥
L2(0,T ;L2

0
(H))

≤ δ, (13)

where δ ≥ 0 represents the noise level.
In this section, we propose a regularized solution and then give the convergence analysis. We will

use a regularization method called the “filter method”. The idea can be explained as follows. Since the
exponential value exp

(
λj

∫ s

t
ν(τ)dτ

)
tends to infinity rapidly as j → ∞, one can see that the operator

A(t, s) appearing in (3) is unbounded in L2(D) if t < s, and this makes the solution unstable. Therefore,
our strategy is to use a new operator Bδ

αA(t, s) to approximate A(t, s), where α = α(δ) > 0 is a
regularization parameter. Here, the operator Bδ

α is defined as follows:

Bδ
αh(x) :=

∞∑

j=1

B
δ
α;j〈h, ϕj〉ϕj(x), (14)

where the function B
δ
α;j is called a filter kernel (and will be defined later) satisfying

• for the given parameters δ and α, the operator Bδ
α is bounded in L2(D);

• if δ tends to zero then the kernel Bδ
α;j tends to 1 for all j ∈ N

∗.

According to the above explanations, we propose the regularized solution wδ
α(x, t) = Bδ

αu
δ(x, t), where

uδ(x, t) := A(t, T )ξδ(x)−
∫ T

t

A(t, s)gδ(x, s)ds−
∫ T

t

A(t, s)fδ(s)dW(x, s). (15)

Next, we state the main results of our paper in Subsection 4.1 and then prove it in Subsection 4.2.

4.1. The main results. The following property of Bδ
α is needed to evaluate the error estimate.

Lemma 4.1. For α > 0 and j ∈ N
∗, assume that there exists a positive constant Lα such that∣∣Bδ

α;j

∣∣ exp
(
λj

∫ s

t
ν(τ)dτ

)
≤ Lα for 0 ≤ t < s ≤ T . Then, for h ∈ L2(Ω, H), it holds that
∥∥Bδ

αA(t, s)h
∥∥
L2(Ω,H)

≤ Lα ‖h‖L2(Ω,H) , 0 ≤ t < s ≤ T.

Theorem 4.2 (Convergence analysis). Assume that u(·, t) ∈ L2(Ω, Ḣθ) for t ∈ [0, T ], with some θ > 0.
For α > 0, assume that there exists a positive constant Lα ≥

∣∣Bδ
α;j

∣∣ exp
(
λj

∫ s

t
ν(τ)dτ

)
for 0 ≤ t < s ≤ T .

Assume also that there exists a positive constant L∗
α such that

∣∣Bδ
α;j − 1

∣∣ ≤ L∗
αλ

θ
j for all j ∈ N

∗. Then,

the following error estimate holds:
∥∥wδ

α(·, t)− u(·, t)
∥∥
L2(Ω,H)

≤ Lαδ + L∗
α ‖u(·, t)‖L2(Ω,Ḣθ) , ∀t ∈ [0, T ]. (16)

If the constants Lα and L∗
α satisfy limδ→0+ Lαδ = limδ→0+ L∗

α = 0, then from (16) it follows that the
regularized solution wδ

α(·, t) converges to the true solution u(·, t) in L2(Ω, H) for all t ∈ [0, T ].
Next, we present two examples of Bδ

α, which plays the role of regularization filter in our method.

Corollary 4.3. Assume that u(·, t) ∈ L2(Ω, Ḣθ) for t ∈ [0, T ], with some θ > 0. Choosing the truncation

filter operator as

Bδ
αh(x) =

∞∑

j=1

B
δ
α;j〈h, ϕj〉ϕj(x), where B

δ
α;j =

{
1, if λj ≤ α,

0, otherwise,
(17)

then, the following inequalities hold for all j ∈ N
∗:

i)
∣∣Bδ

α;j

∣∣ exp
(
λj

∫ s

t
ν(τ)dτ

)
≤ exp (ν+αT ), 0 ≤ t < s ≤ T ,

ii)
∣∣Bδ

α;j − 1
∣∣ ≤ α−θλθ

j .

4



Consequently,
∥∥wδ

α(·, t)− u(·, t)
∥∥
L2(Ω,H)

≤ exp
(
ν+αT

)
δ + α−θ ‖u(·, t)‖L2(Ω,Ḣθ) , ∀t ∈ [0, T ]. (18)

If we choose the regularization parameter α = α(δ) so as to satisfy that lim
δ→0+

α = ∞ and lim
δ→0+

exp (ν+αT ) δ =

0, then from (18) it follows that the regularized solution wδ
α(·, t) converges to the true solution u(·, t) in

L2(Ω, H) for all t ∈ [0, T ].

Remark 4.1. If we choose α = ⌊ log(δ−η)
ν+T ⌋, with some η ∈ (0, 1), where ⌊r⌋ is the integer part of the real

number r, then
∥∥wδ

α(·, t)− u(·, t)
∥∥
L2(Ω,H)

is of order log−θ(δ−η), which implies that this error tends to

zero as δ tends to zero.

Corollary 4.4. Assume that u(·, t) ∈ L2(Ω, Ḣ1) for t ∈ [0, T ]. Choosing the following filter operator:

Bδ
αh(x) =

∑

j≥1

B
δ
α;j〈h, ϕj〉ϕj(x), where B

δ
α;j =

[
1 + αλj exp(ν

+λjT )
]−1

, (19)

then the following inequalities hold for all j ∈ N
∗:

i)
∣∣Bδ

α;j

∣∣ exp
(
λj

∫ s

t
ν(τ)dτ

)
≤ ν+T/α

log(ν+T/α) , 0 ≤ t < s ≤ T ,

ii)
∣∣Bδ

α;j − 1
∣∣ ≤ ν+T

log(ν+T/α)λj.

Consequently, the following error estimate holds:

∥∥wδ
α(·, t)− u(·, t)

∥∥
L2(Ω,H)

≤ ν+T/α

log (ν+T/α)
δ +

ν+T

log (ν+T/α)
‖u(·, t)‖L2(Ω,Ḣ1) . (20)

If we choose the regularization parameter α = α(δ) so as to satisfy that 0 < α < ν+T and limδ→0+ α =
limδ→0+

δ
α = 0, then from (20) it follows that the regularized solution wδ

α(·, t) converges to the true

solution u(·, t) in L2(Ω, H) for all t ∈ [0, T ].

Remark 4.2. If we choose α = δη, with some η ∈ (0, 1), then
∥∥wδ

α(·, t)− u(·, t)
∥∥
L2(Ω,H)

is of order

log−1 (ν+Tδ−η), which implies that this error tends to zero as δ tends to zero.

Remark 4.3. For the deterministic problem obtained by omitting the stochastic term f(t)Ẇ, namely,





ut(x, t)− ν(t)∆u(x, t) = g(x, t), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, T ) = ξ(x), x ∈ Ω,

(21)

a similar regularized solution for Problem (21) can be constructed as

w̃δ(x, t) := Bδ
αA(t, T )ξδ(x)−

∫ T

t

Bδ
αA(t, s)gδ(x, s)ds. (22)

Then, due to the fact that

∥∥wδ(·, t)− w̃δ(·, t)
∥∥2
L2(Ω,H)

=

∫ T

t

∥∥Bδ
αA(t, s)fδ(s)

∥∥2
L2

0
(H)

ds ≤ L2
α

∫ T

t

∥∥fδ(s)
∥∥2
L2

0
(H)

ds,

it can be seen that the regularized solution wδ(·, t) of (1) tends the regularized solution w̃δ(·, t) of (21)
when the observation fδ(t) → 0, i.e. ‖fδ‖L2(0,T ;L2

0
(H)) → 0.

4.2. Proof of the main results. Now, we begin to prove the results stated in the previous subsection.

Proof of Lemma 4.1. For h ∈ L2(Ω, H), it follows from the definition of A, equation (14) and the hy-
pothesis on that Lα that

∥∥Bδ
αA(t, s)h

∥∥2
L2(Ω,H)

=

∞∑

j=1

∣∣∣∣B
δ
α;j exp

(
λj

∫ s

t

ν(τ)dτ

)∣∣∣∣
2

E〈h, ϕj〉2 ≤ L2
α ‖h‖2L2(Ω,H) .

Lemma 4.1 has been proved. �
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Proof of Theorem 4.2. Denote E1(t) :=
∥∥Bδ

αu
δ(·, t)− Bδ

αu(·, t)
∥∥
L2(Ω,H)

and E2(t) :=
∥∥Bδ

αu(·, t)− u(·, t)
∥∥
L2(Ω,H)

.

From (3) and (15), we have

E1(t) ≤
∥∥∥Bδ

αA(t, T )
[
ξδ − ξ

]∥∥∥
L2(Ω,H)

+

∥∥∥∥∥

∫ T

t

Bδ
αA(t, s)

[
gδ(·, s)− g(·, s)

]
ds

∥∥∥∥∥
L2(Ω,H)

+

∥∥∥∥∥

∫ T

t

Bδ
αA(t, s)

[
fδ(s)− f(s)

]
dW(·, s)

∥∥∥∥∥
L2(Ω,H)

=: E1;1(t) + E1;2(t) + E1;3(t).

By using Lemma 4.1, one obtains E1;1(t) ≤ Lα

∥∥ξδ − ξ
∥∥
L2(Ω,H)

. For the next term, it is clear that

E1;2(t) ≤
∫ T

t

∥∥∥Bδ
αA(t, s)

[
gδ(·, s)− g(·, s)

]∥∥∥
L2(Ω,H)

ds. Using Lemma 4.1 one more time, one arrives at

E1;2(t) ≤ Lα

∫ T

t

∥∥gδ(·, s)− g(·, s)
∥∥
L2(Ω,H)

ds ≤ Lα

∥∥gδ − g
∥∥
L1(0,T ;L2(Ω,H))

.

Next, by the Itô’s isometry and the fact that
∥∥Bδ

αA(t, s)h
∥∥
H

≤ Lα ‖h‖H , we deduce that

E2
1;3(t) =

∫ T

t

∥∥Bδ
αA(t, s)

[
fδ(s)− f(s)

]∥∥2
L2

0
(H)

ds ≤ L2
α

∫ T

t

∥∥fδ(s)− f(s)
∥∥2
L2

0
(H)

ds,

which implies that E1;3(t) ≤ Lα

∥∥fδ − f
∥∥
L2(0,T ;L2

0
(H))

. By the above arguments and using (13), we obtain

that E1(t) ≤ Lαδ. It follows from the condition
∣∣Bδ

α,j − 1
∣∣ ≤ L∗

αλ
θ
j that

E2
2 (t) =

∞∑

j=1

∣∣Bδ
α,j − 1

∣∣2E |uj(t)|2 ≤ |L∗
α|2

∞∑

j=1

λ2θ
j E |uj(t)|2 = |L∗

α|2 ‖u(·, t)‖2L2(Ω,Ḣθ) . (23)

The latter estimate together with E1(t) ≤ Lαδ imply the desired result (16). �

Proof of Corollary 4.3. By choosing the operator Bδ
α as in (17), one can see that

∣∣Bδ
α;j

∣∣ exp
(
λj

∫ s

t

ν(τ)dτ

)
≤ exp

(
α

∫ s

t

ν(τ)dτ

)
≤ exp

(
ν+αT

)
.

For λj ≤ α = α(δ), it is easy to see that
∣∣Bδ

α;j − 1
∣∣ = 0 ≤ α−θλθ

j . For λj > α = α(δ), we also have∣∣Bδ
α;j − 1

∣∣ = 1 = λ−θ
j λθ

j ≤ α−θλθ
j . Now, applying Theorem 4.2 for Lα = exp (ν+αT ) and L∗

α = α−θ, we

obtain the estimate (18). �

Proof of Corollary 4.4. Using the inequality [exp(−aλ) + bλ]
−1 ≤ a/b

log(a/b) for 0 < b < a and λ > 0, one
gets

∣∣Bδ
α;j

∣∣ exp
(
λj

∫ s

t

ν(τ)dτ

)
≤ exp (ν+λjT )

1 + αλj exp(ν+λjT )
=
[
exp(−λjν

+T ) + αλj

]−1 ≤ ν+T/α

log (ν+T/α)
.

Furthermore, one has
∣∣Bδ

α;j − 1
∣∣ = αλj [exp(−λjν

+T ) + αλj ]
−1 ≤ λj

ν+T
log(ν+T/α) . Applying Theorem 4.2

for Lα = ν+T/α
log(ν+T/α) and L∗

α = ν+T
log(ν+T/α) , we obtain the estimate (20). �

5. Numerical results and discussion

In this section, we present a numerical example to illustrate the stability of the regularization fiter (19)
(or (17)) in retriving the solution u(x, t) backwards in time for various levels of noise δ. Let Ω = (0, 1)
and focus on the backward problem for the stochastic parabolic heat equation given by





ut(x, t)− ν(t)uxx(x, t) = g(x, t) + f(t)Ẇ, (x, t) ∈ (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0, t ∈ (0, T ),

u(x, T ) = ξ(x), x ∈ (0, 1).

(24)

We denote by λj be the eigenvalues of the negative Laplace operator −∆ and ϕj is the complete
orthonormal system of eigenfunctions forming an orthogonal basis of L2(Ω) such that

−∆ϕj = λjϕj and ϕj |∂Ω = 0 for j ∈ N
∗,

where λj = j2π2, ϕj(x) =
√
2 sin(jπx).
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Let W(t) be an L2(0, 1)-valued Q-Wiener process, where Q = −∆−1. Then, Qϕj = Qλ−1
j (−∆)ϕj =

λ−1
j ϕj . It follows that {λ−1

j }∞n=1 and {ϕj}∞j=1 are the eigenvalues and eigenfunctions of Q, respectively.
Moreover, we have

Tr(Q) =

∞∑

j=1

λ−1
j =

∞∑

j=1

1

j2π2
=

1

6
and βj =

1

j2π2
.

The solution of Problem (24) is given by expression (3). Let us take V = L2(0, 1) and the operator
f : L2(0, 1) −→ L2(0, 1) be defined by

t 7−→ f(t)(·) :=
∞∑

k=1

t

λk
〈·, ϕk〉ϕk, (25)

where the scalar product is in L2(0, 1), and its noisy correspondent fδ : L2(0, 1) −→ L2(0, 1) given by

t 7−→ fδ(t)(·) :=
∞∑

k=1

t

λk
〈·+ δ, ϕk〉ϕk. (26)

Then,
∫ T

t

A(t, s)f(s)dW(x, s)

=

∞∑

j=1

ϕj(x)

[∫ T

t

exp

(
λj

∫ s

t

ν(τ)dτ

) ∞∑

k=1

s

λk

〈
dW(·, s), ϕk

〉
ϕk

]

=

∞∑

j=1

ϕj(x) exp

(
λj

∫ s

t

ν(τ)dτ

)
sβj

λj
dγj(s), (27)

and the solution (3) can be rewritten by

u(x, t) =

∞∑

j=1

ϕj(x)

[
exp

(
λj

∫ T

t

ν(τ)dτ

)∫ 1

0

ξ(z)ϕj(z)dz

−
∫ T

t

exp

(
λj

∫ s

t

ν(τ)dτ

)(∫ 1

0

g(z, s)ϕj(z)dz

)
ds

−
∫ T

t

exp

(
λj

∫ s

t

ν(τ)dτ

)
sβj

λj
dγj(s)

]
. (28)

Next, let t = τ0 < τ1 < ... < τn = T be a partition of the interval [t, T ] and by using a stochastic
explicit single step method, we consider the increments ∆γj(τi) = γj(τi+1)− γj(τi) and ∆τi = τi+1 − τi
for i = 0, ..., n− 1, where ∆γj(τi) are independent N (0,∆τi) normally distributed random variables. A
typical Brownian motion γj for a fixed j, for n = 1000 is shown in Figure 1.

We can formally calculate, by the definition of Stratonovich integral,
∫ T

t

Φ(t, s) ◦ dW(s) = lim
∆τi→0

n−1∑

i=0

Φ

(
t,
τi + τi+1

2

)
∆γj(τi). (29)

Finally, we use the finite difference method (FDM) with the following partitions of temporal and
spatial variables. For x ∈ [0, 1] and t ∈ [0, T ], let us consider the partition ΩX × ΩT , where

ΩX :=

{
xp = (p− 1)εx, for p = 1, 2, ...,Nx,Nx + 1 and εx =

1

Nx

}
,

ΩT :=

{
tq = (q − 1)εt, for q = Nt + 1,Nt, ..., 1 and εt =

T

Nt

}
.

Let us take T = 1 and ν = 1. Then, equation (28) simplifies as

u(xp, tq) ≈
∞∑

j=1

[
exp

(
j2π2(1− tq)

) ∫ 1

0

ξ(z)ϕj(z)dz −
∫ 1

tq

exp
(
j2π2(s− tq)

)(∫ 1

0

g(z, s)ϕj(z)dz

)
ds

−
n−1∑

i=0

exp
(
j2π2(τi − tq)

) τi
j4π4

∆γj(τi)

]
ϕj(xp). (30)
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0.4

0.6

Figure 1. Example of a typical Brownian motion γj(τ), as a function of τ , for a fixed
j, for n = 1000.

Next step, based on (13) and the filter kernel Bδ
α,j = B

δ
α;j = [1 + αλj exp(λj)]

−1
in (19), we have the

following regularized solution:

wδ
α(xp, tq) = Bδ

αu
δ(xp, tq) =

∞∑

j=1

[
exp

(
j2π2(1− tq)

)

1 + αj2π2exp(j2π2)

∫ 1

0

ξδ(z)ϕj(z)dz

−
∫ 1

tq

exp
(
j2π2(s− tq)

)

1 + αj2π2exp(j2π2)

(∫ 1

0

gδ(z, s)ϕj(z)dz

)
ds

−
n−1∑

i=0

exp
(
j2π2(τi − tq)

)

1 + αj2π2exp(j2π2)

τi
j4π4

∆γδ
j (τi)

]
ϕj(xp), (31)

where ∆γδ
j (τi) = γδ

j (τi+1)− γδ
j (τi) and γδ

j (τi) = γj(δ + τi)− γj(τi). Note that (31) becomes the same as
(30) for exact data, i.e. δ = 0, in which case α = 0. Similarly, for the filter (17), we have the following
regularized solution:

wδ
α(xp, tq) = Bδ

αu
δ(xp, tq) =

J∑

j=1

[
exp

(
j2π2(1− tq)

) ∫ 1

0

ξδ(z)ϕj(z)dz

−
∫ 1

tq

exp
(
j2π2(s− tq)

)(∫ 1

0

gδ(z, s)ϕj(z)dz

)
ds

−
n−1∑

i=0

exp
(
j2π2(τi − tq)

) τi
j4π4

∆γδ
j (τi)

]
ϕj(xp), (32)

where, according to (17), J = J(α) is taken as the maximum positive integer for which λJ ≤ α.
By fixing t = tobs, we define the mean square error values between the solutions (30) and (31) (or

(32)), as follows:

Eδ(tobs) = E|uδ(·, tobs)− u(·, tobs)|2

≈ 1

Nx + 1

Nx+1∑

p=1

∣∣∣Sδ(xp, tobs)− S(xp, tobs)− E|Pδ(xp, tobs)− P(xp, tobs)|
∣∣∣
2

, (33)
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where

S(xp, tq) =

∞∑

j=1

[
exp

(
j2π2(1− tq)

) ∫ 1

0

ξ(z)ϕj(z)dz

−
∫ 1

tq

exp
(
j2π2(s− tq)

)(∫ 1

0

g(z, s)ϕj(z)dz

)
ds

]
ϕj(xp),

Sδ(xp, tq) =

∞∑

j=1

[
exp

(
j2π2(1− tq)

) ∫ 1

0

ξδ(z)ϕj(z)dz

−
∫ 1

tq

exp
(
j2π2(s− tq)

)(∫ 1

0

gδ(z, s)ϕj(z)dz

)
ds

]
ϕj(xp),

P(xp, tq) =

∞∑

j=1

[
n−1∑

i=0

exp
(
j2π2(τi − tq)

)

1 + αj2π2exp(j2π2)

τi
j4π4

∆γj(τi)

]
ϕj(xp),

Pδ(xp, tq) =
∞∑

j=1

[
n−1∑

i=0

exp
(
j2π2(τi − tq)

)

1 + αj2π2exp(j2π2)

τi
j4π4

∆γδ
j (τi)

]
ϕj(xp),

E|Pδ(xp, tq)− P(xp, tq)| =
1

n

∞∑

j=1

[
n−1∑

i=0

exp
(
j2π2(τi − tq)

)

1 + αj2π2exp(j2π2)

τi
j4π4

(
γj(τi + δ)− γj(τi)

)
]
ϕj(xp) (34)

for (31), and

P(xp, tq) =

J∑

j=1

[
n−1∑

i=0

exp
(
j2π2(τi − tq)

) τi
j4π4

∆γj(τi)

]
ϕj(xp),

Pδ(xp, tq) =

J∑

j=1

[
n−1∑

i=0

exp
(
j2π2(τi − tq)

) τi
j4π4

∆γδ
j (τi)

]
ϕj(xp),

E|Pδ(xp, tq)− P(xp, tq)| =
1

n

J∑

j=1

[
n−1∑

i=0

exp
(
j2π2(τi − tq)

) τi
j4π4

(
γj(τi + δ)− γj(τi)

)
]
ϕj(xp)

for (32).
We choose the input data:

g(x, t) = 2π2exp(t− 1) sin(πx) +
n−1∑

i=0

exp(π2(t− 1))
τi
(
γ(τi+1)− γ(τi)

)

π4
, (x, t) ∈ (0, 1)× (0, 1),

ξ(x) = sin(πx), x ∈ (0, 1)

and its noisy perturbations given by

gδ(x, t) = 2π2exp(t− 1) sin(πx) +
δ randn(·)

π2

+

n−1∑

i=0

exp(π2(t− 1))
τi
(
γ(τi+1)− γ(τi)

)

π4
, (x, t) ∈ (0, 1)× (0, 1),

ξδ(x) = sin(πx) +
δ randn(·)

π2
, x ∈ (0, 1).

Numerical results are presented for Nx = Nt = 50. We also take ten terms in the series (30), (31)
and (34). Various levels of noise δ ∈∈ {0.001, 0.005, 0.01} are tested. Numerical results are illustrated
only for the filter (19) since for (17) the truncation filter is simply zero (hence, it has an oversmoothing
effect) for the considered levels of noise δ if α is chosen according to the Remark 4.1.

Table 1 and Figure 2 illustrate the numerical results for the filter (19) with the regularization parameter
α = δ1/2 chosen according to the Remark 4.2 with η = 1/2. Details are as follows: the errors Eδ(tobs)
at tobs ∈ {0.1, 0.5, 0.9} between the solution (30) and the regularized solution (31) are shown in Table 1
and the behaviours of the numerical solutions are presented in Figure 2. Overall, we can conclude that
the smaller the noise δ, the smaller the error Eδ(tobs), which confirms the stability of the filter (19).
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Table 1. The mean square error values Eδ(tobs) for δ ∈ {0.001, 0.005, 0.01} and tobs ∈
{0.1, 0.5, 0.9} for the filter (19) with α = δ1/2.

δ = 0.001 δ = 0.005 δ = 0.01
tobs = 0.1 0.1889 0.4990 0.7449
tobs = 0.5 0.0110 0.0292 0.0436
tobs = 0.9 0.0010 0.0027 0.0041
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0

(a) The solution u at t = 0.1
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t
t
=

0
.5

-0.35
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0

(b) The solution u at t = 0.5

x
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0
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0

(c) The solution u at t = 0.9

Figure 2. Graphs of the solution u at t ∈ {0.1, 0.5, 0.9} for various levels of noise δ = 0
(−◦−), δ = 0.001 (−+−), δ = 0.005, (− ⊲−) and δ = 0.01 (− ⋆−), obtained using the
filter (19) with α = δ1/2.
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