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ABSTRACT

Labeling audio material to train classifiers comes with a large amount

of human labor. In this paper, we propose an active learning method for

sound event classification, where a human annotator is asked to manually

label sound segments up to a certain labeling budget. The sound event

classifier is incrementally re-trained on pseudo-labeled sound segments

and manually labeled segments. The segments to be labeled during the

active learning process are selected based on the model uncertainty of

the classifier, which we propose to estimate using Monte Carlo dropout, a

technique for Bayesian inference in neural networks. Evaluation results on

the UrbanSound8K dataset show that the proposed active learning method,

which uses pre-trained audio neural network (PANN) embeddings as input

features, outperforms two baseline methods based on medoid clustering,

especially for low labeling budgets.

Index Terms— sound event classification, active learning, Monte

Carlo dropout, self-training, transfer learning

1. INTRODUCTION

Sound event classification, being an important part of machine audition [1],

aims at differentiating between situations or events based on their

acoustic properties [2–4]. Some of its applications include acoustic

scene classification [5], environmental noise classification [6], traffic

surveillance [7], monitoring of patient health [8], wildlife sound

classification [9] and music genre classification [10]. To train a sound

event classifier, a corpus of labeled recordings is required. While recording

a sufficiently large audio corpus can be time-consuming by itself, the

subsequent manual labeling of the recordings typically requires even more

effort and is usually the bottleneck in the data preparation process.

In active learning (AL) [11,12], a human annotator is queried to man-

ually label unlabeled data during the training process. AL is usually

formulated as a process that iterates between re-training the classifier upon

receiving new labels from the annotator, and selecting unlabeled data to be

manually labeled next. For a given labeling budget, i.e. the maximum num-

ber of labels a human annotator is asked to provide within the AL process,

the aim is to maximize the accuracy of the classifier. Hence, algorithms are

typically designed to maximize the informativeness of the received labels.

In the context of sound event classification, AL has been applied to train

∗This work was partially funded by the German Ministry of Science and
Education (BMBF) in the project KI-MUSIK4.0 - Universal microelectronic-based
sensor interface for industry 4.0.

support vector machine (SVM) classifiers [13,14], a random forest [15],

and a combination of an SVM and a nearest-neighbor classifier [16].

Rather than fitting a single or a handful of classifiers, one can

instead model a Bayesian distribution over hypotheses, e.g., using neural

networks [17–21]. In [17] it was shown that variational Bayesian inference

can be performed by training a neural network in which a dropout

layer precedes every weight layer. This technique, known as Monte

Carlo (MC) dropout, allows to sample hypotheses from an approximate

Bayesian posterior by means of sampling dropout masks. Although MC

dropout has been successfully employed to improve informativeness

estimates in AL [22, 23], to the best of our knowledge it has not yet

been applied to sound event classification. Our proposed method, MC

dropout active learning (DAL), combines AL, self-training by generating

pseudo-labels for unlabeled sound segments, and transfer learning by

using pre-trained audio neural network (PANN) embeddings [24] as input

features. Evaluation results on the UrbanSound8k dataset [25] show that

the proposed DAL method yields a larger classification accuracy than

two baseline methods, especially for low labeling budgets.

In Section 2, we formalize the underlying active learning problem. Base-

line AL methods based on medoid clustering are described in Section 3.

Section 4 describes the proposed MC dropout AL method. In Section 5,

the evaluation procedure and the experimental results are presented.

2. PROBLEM DEFINITION

Given is a labeling budget N , a set of sound event classes C, and a

partially labeled set of sound segments, where each segment contains

sound events from exactly one class c in C. The ith segment is represented

by its corresponding feature vector xi. We define the unlabeled set

SU = {xi}, containing feature vectors xi of unlabeled segments, and

the (manually) labeled set SL={(xi,li)}, containing tuples of feature

vectors xi and labels li of labeled segments. Each label corresponds to

exactly one class in C. In the following, we use the term “segment” to

refer to the feature vector corresponding to a segment.

The goal is to fit a classifier that predicts the class label l̂ of any segment

x as accurately as possible. To train the classifier, we have access to the

sets SU and SL, and we are allowed to request labels for up to N−|SL|
unlabeled segments, with |SL| the cardinality of SL. The choice of the

unlabeled segments that are labeled within the AL process may have a

large impact on the resulting classifier’s accuracy.
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3. BASELINE METHODS

In this section we briefly review the medoid active learning (MAL)

method for sound event classification proposed in [14] and a modified

version using PANN embeddings [24], referred to as MAL-PANN.

In MAL, a fully unlabeled set of segments is first split into small

clusters using k-medoid clustering. The inter-segment distance metric used

for clustering is based on segment-wide statistics of mel frequency cepstral

coefficients (MFCCs) and their first- and second-order time derivatives.

Specifically, for each MFCC and each time derivative, a normal distribu-

tion is fitted, and the distance between segments is computed based on the

Kullback-Leibler divergence between the respective normal distributions.

Starting from the largest cluster, medoids are then selected for labeling,

where a medoid’s label is propagated to other segments in the respective

cluster. Once the number of labeled medoids matches the labeling budget

N , an SVM classifier is fitted on both manually assigned as well as prop-

agated labels. Acoustic features used for training the SVM are minimum,

maximum, median, mean, variance, skewness, kurtosis of MFCCs as

well as mean and variance of the first- and second-order time derivatives.

MAL-PANN is our modification of the MAL method, where we

replace the MFCC-based features with the recently proposed PANN em-

beddings [24], i.e. the activations in the penultimate layer of the CNN-14

model that was trained on the AudioSet dataset [26]. Employing these

pre-trained features instead of the original arbitrarily chosen features makes

for a more fair benchmark to compare the DAL method (see Section 4)

against. The inter-segment distance metric s(x1,x2) in MAL-PANN is

based on the cosine similarity between PANN embeddings x1 and x2, i.e.

s(x1,x2)=1−
x
T
1 x2

||x1||·||x2||
, (1)

where (·)T denotes transpose, and ||·|| denotes the L2-norm of a vector.

4. MONTE-CARLO DROPOUT ACTIVE LEARNING (DAL)

Instead of only fitting the classifier once the labeling budget is depleted

(as in MAL), in the proposed DAL method the classifier is incrementally

re-trained during the AL process. To enhance the training process, self-

training is applied to generate pseudo-labels for unlabeled segments, which

act as additional training targets for the classifier. Furthermore, the selec-

tion of segments to be manually labeled is based on a so-called acquisition

function, which estimates the informativeness of labeling a segment. The

acquisition function employed is based on model uncertainty, i.e. on the dis-

agreement between individual hypotheses in a Bayesian posterior. To draw

hypotheses from the posterior, and to measure the disagreement between

their predictions, we propose to employ Monte Carlo dropout. To this end,

the classifier is designed as a neural network that contains a dropout layer

followed by a dense layer. Section 4.1 describes the architecture of the neu-

ral network classifier. In Section 4.2 the proposed iterative AL algorithm is

presented, where the classifier is incrementally re-trained on each iteration.

4.1. Classifier

Figure 1 depicts the architecture of the neural network classifier, which

maps a 2048-dimensional PANN embedding x of a sound segment to the

respective class. The neural network consists of a dense layer preceded by

a dropout layer with 50% dropout probability, and followed by a softmax

layer. The dropout layer is kept in stochastic mode both during training

and during inference.

A single forward pass through the network results in the class probabil-

ity distribution P(c|x,d) where d is the randomly sampled dropout mask.

This output can be interpreted as the prediction of a hypothesis about the

2048-dimensional PANN embedding x

dropout (0.5 probability), mask d

dense (2048→ |C|)

softmax

class probability distribution P(c|x,d)

Figure 1: Neural network used in DAL for sound segment classification.

class distribution associated with the segment x. The posterior distribution

over classes P(c|x) can be computed via a Monte Carlo estimate by sam-

pling multiple dropout masks and averaging the individual outputs [17], i.e.

P(c|x)=
1

|D|

X

d∈D

P(c|x,d), (2)

where D denotes the set of sampled dropout masks. The number of

sampled dropout masks |D| is a parameter of DAL.

The classifier’s predicted label for segment x corresponds to the class

with the highest predicted probability, i.e.

l̂(x)=argmax
c∈C

P(c|x). (3)

4.2. Iterative active learning algorithm

In addition to the unlabeled set SU and the (manually) labeled set SL,

DAL maintains a set SP of pseudo-labeled [27] sound segments, which

act as additional training targets for the classifier. The AL process starts

with an initialization stage, and then iterates between stage I and stage II

until the labeling budget N is depleted.

4.2.1. Initialization stage

DAL requires an initial set of labeled segments, on which the classifier is

trained by minimizing the cross-entropy loss for a fixed number of gradient

descent steps. The initial labeled set counts toward the labeling budget N .

4.2.2. Stage I: scanning SU and generating SP

For each unlabeled sound segment x∈SU , the confidence of the classifier

is defined as as the highest class probability P (̂l(x)|x). If the confidence

is larger than a certain threshold Θ, the tuple (x,̂l(x)) is copied into the

pseudo-labeled set

SP ={(x,̂l(x))|x∈SU ;P (̂l(x)|x)>Θ}, (4)

whereby the confidence threshold Θ is a parameter of DAL. Setting Θ=1
corresponds to turning off pseudo-labeling, whereas Θ=0 corresponds

to assigning pseudo-labels to all unlabeled segments. It should be noted

that SP is generated anew in each iteration.

In addition, to estimate the informativeness of labeling a segment, for

each unlabeled segment x ∈ SU we compute the acquisition function

value [22,28]. For that, each hypothesis sampled via MC dropout produces

a single vote in favor of one class, resulting in the so-called vote distribution

P̃(c|x)=
1

|D|

X

d∈D

δc,vote(x,d), (5)
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with δ the Kronecker-delta and

vote(x,d)=argmax
c∈C

P(c|x,d) (6)

the class with the highest predicted probability when using the dropout

mask d. As acquisition function we use the vote entropy [29], i.e. the

entropy of the vote distribution P̃(c|x), i.e.

HP̃ (x)=−

X

c∈C

P̃(c|x)·logP̃(c|x). (7)

The acquisition function thus captures the model uncertainty, i.e. the degree

of disagreement between predictions of the individual hypotheses. The

unlabeled segment with the highest vote entropy HP̃ is then presented to

the annotator, removed from the unlabeled set SU and added to the labeled

set SL along with the corresponding label. Each acquired label counts

toward the labeling budget. It should be noted that in the first T0 iterations

no manual labels are requested, enabling the classifier to train on labeled

and pseudo-labeled segments, without consuming the labeling budget.

4.2.3. Stage II: re-training the classifier

The classifier is re-trained on labeled segments in SL and pseudo-labeled

segments in SP by minimizing the cross-entropy loss. Segments are sam-

pled into minibatches such that a minibatch contains the same number B

of segments for each class. It is well known that unconstrained training on

pseudo-labeled data degrades model performance due to self-amplifying

classification errors in the training dataset [30]. Hence, to reduce the

impact of pseudo-labeled segments, for each class c we draw BL,c

labeled and BP,c pseudo-labeled segments into a minibatch such that

BP,c=

�

αB
|SP,c|

|SL,c|+α|SP,c|

⌫

, (8)

BL,c=B−BP,c, (9)

where |SL,c| and |SP,c| denote the number of labeled and pseudo-labeled

segments belonging to class c, and α is a parameter of DAL. This

effectively makes the chance of a pseudo-labeled segment to be drawn into

the minibatch α
−1 times smaller than the chance of a labeled segment.

Setting α=0 prevents pseudo-labeled segments to be used for training,

whereas for α=1 pseudo-labeled and labeled segments attain the same

weight. Minibatch sampling and gradient descent are repeated a fixed

number of times.

5. EVALUATION

In this section we evaluate the performance of the proposed DAL method

and compare it with the baseline methods (MAL, MAL-PANN).

After presenting the used dataset and the performance metrics in

Section 5.1, the default parameter values for DAL are discussed in

Section 5.2. The experimental results are presented in Section 5.3.

5.1. Dataset and performance metrics

The performance of the considered AL methods is evaluated on the

UrbanSound8K dataset [25], an environmental dataset containing 8732

short sound segments (up to 4 seconds). Each segment is weakly labeled

with one of the following 10 classes: air conditioner, car horn, children

playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren,

and street music.

In the experiments, DAL is initialized with a labeled set SL (see

Section 4.2.1) which contains 3 randomly chosen segments for every

class, i.e. 30 labeled segments in total. Manual labeling is simulated by

revealing the ground truth label to an AL algorithm.

We assess the performance of an AL algorithm by means of the

classification accuracy for different labeling budgets evaluated on the test

split via 10-fold cross-validation. The accuracy is evaluated as the macro-

averaged recall [31], which computes the percentage of correctly predicted

ground-truth labels for each class, and averages these percentages over

all classes. Depending on the computational cost of an experiment, we

either conducted one or 10 experimental trials, i.e. repeated the experiment

10 times. For each experiment, 80% confidence intervals for the macro-

averaged recall were computed using the bootstrap method. For the case of

one experimental trial we treated each fold in the 10-fold cross-validation

as an individual experiment when computing confidence intervals.

5.2. Default parameters

Table 1 summarizes default parameter values of the DAL method that

were used in the experiments described in Section 5.3.

parameter value

pseudo-labeling

confidence threshold Θ in (4) 0.5

sampling weight α in (8)

of pseudo-labeled segments
0.01

number T0 of initial iterations

without new acquisition
3

Monte Carlo dropout

number of sampled dropout

masks |D| in (2) and (5)
128

optimization

per-class minibatch size B in (8) 256

number of gradient

descents per iteration
40 (1600 at initialization)

optimizer Adam

learning rate 1e−3
weight decay 1e−3

Table 1: Parameter values for the DAL method.

5.3. Results

In Sections 5.3.1 and 5.3.2 we investigate the performance of the proposed

DAL method while variating two important parameters: the confidence

threshold Θ and the sampling weight α. It is worth noting that whenever

one parameter was variated, the other was set to its default value (cf. Ta-

ble 1). For the default values of all parameters as in Table 1, we then com-

pare the performance of DAL with the baseline methods in Section 5.3.3.

5.3.1. DAL performance sensitivity to Θ

As discussed in Section 4.2, using pseudo-labels to train the classifier is an

important aspect of DAL. Since the assignment of an unlabeled segment

in the pseudo-labeled set SP depends on the confidence threshold Θ

in (4), it is important to understand the impact of this parameter on the

overall performance.

Figure 2 depicts the performance of DAL for different values of the

confidence thresholdΘ for labeling budgets between 30 and 130. Studying

and optimizing the performance for low labeling budgets is especially

relevant for real-world applications. Results suggest that the best perfor-

mance is achieved for a moderate value around Θ=0.5. As discussed

in Section 4.2.2, setting Θ = 1 corresponds to effectively turning off
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Figure 2: Macro-recall R over labeling budget N for different values

of the confidence threshold Θ for assigning pseudo-labels in DAL.

Confidence intervals are computed from 10 experimental trials.

Figure 3: Macro-recall R over labeling budget N for different values of

the sampling weight α of pseudo-labeled segments in DAL. Confidence

intervals are computed from 10 experimental trials.

pseudo-labeling, resulting in worse performance, since DAL cannot benefit

from unlabeled segments in this case. On the other hand, pseudo-labeling

all unlabeled segments (Θ = 0) also yields suboptimal performance,

because segments are more likely to be assigned an incorrect pseudo-label.

5.3.2. DAL performance sensitivity to α

The impact of pseudo-labeled segments on the training depends on the

value of α in (8), which regulates the amount of pseudo-labeled segments

in a minibatch. Figure 3 depicts the performance of DAL for different

values of α for labeling budget is between 30 and 130. It is evident that

setting α= 0 results in a suboptimal performance, since this prevents

pseudo-labeled segments from appearing in a minibatch, as discussed

in Section 4.2.3. In the case α=1 pseudo-labeled segments attain the

same weight as labeled segments, which is known to degrade model

accuracy due to mislabeled segments in the training dataset [23, 30].

In our experiments the value α=0.01 seemed to perform well, i.e. a

pseudo-labeled segment is 100 times less likely to be drawn into a

minibatch than a labeled segment with the same label. Given the large

imbalance of data in favor of unlabeled segments it is reasonable that the

sampling weight α of pseudo-labeled segments should be chosen small.

Figure 4: Macro-recall R over labeling budget N for baseline methods

(MAL, MAL-PANN) and the proposed method (DAL). The confidence

intervals for DAL are computed from 1 experimental trial whereby each

cross-validation split is treated as an individual experiment. MAL and

MAL-PANN are deterministic algorithms and their performance can be

computed exactly.

5.3.3. Performance of DAL vs baseline methods

Using Θ=0.5 and α=0.01 determined in the previous experiments,

Figure 4 depicts the performance of DAL against the labeling budget,

now ranging from 30 to 7000. This figure also depicts the performance

of the baseline methods (MAL, MAL-PANN).

First, it can be observed that simply switching from MFCC-based fea-

tures as originally proposed in [14] to PANN embeddings greatly improves

MAL performance, increasing the macro-recall for N=7000 labels from

about 65% (MAL) to about 85% (MAL-PANN). Second, we see that

the proposed DAL method outperforms MAL for all considered labeling

budgets and outperforms MAL-PANN (using the same features as DAL)

for low labeling budgets (below 300), which is most relevant in practice.

6. CONCLUSION

In this paper, we proposed an active learning method for classifying sound

segments that makes an efficient use of manual labels. The label-efficiency

is established by a combination of active learning, self-training on pseudo-

labels and transfer learning by means of using pre-trained embeddings.

The self-training aspect of DAL has a considerable influence on the

classifier’s accuracy. This is reflected in the performance sensitivity of

DAL to the parameters controlling the pseudo-labeling policy and the

pseudo-label weighting.

We have shown that the performance of the benchmark method, MAL,

considerably improves when employing the same pre-trained PANN

embeddings as in DAL, leading to a similar classification accuracy for

larger labeling budgets. This indicates the importance of transfer learning

that was applied in DAL.

In the experiments, the proposed method, DAL, outperforms

benchmark methods especially for low labeling budgets.

In principle, DAL could be extended to the problem of multi-tagging,

where a sound segment may have multiple class labels; this is a potential

subject of future research. Furhtermore, a more complex strategy for

assigning pseudo-labels could use adaptive confidence thresholds for each

class to account for class imbalance.

The ability to perform approximate Bayesian inference via Monte Carlo

dropout enables us to leverage model uncertainty and incorporate it into

the AL process. Whether or not the employed acquisition function, vote

entropy, is the best way of doing so, remains yet another open question.
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