
This is a repository copy of Short-term wind speed forecasting using deep reinforcement 
learning with improved multiple error correction approach.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178507/

Version: Accepted Version

Article:

Yang, R, Liu, H, Nikitas, N orcid.org/0000-0002-6243-052X et al. (3 more authors) (2022) 
Short-term wind speed forecasting using deep reinforcement learning with improved 
multiple error correction approach. Energy, 239 (Part B). 122128. ISSN 0360-5442 

https://doi.org/10.1016/j.energy.2021.122128

© 2021 Elsevier Ltd. All rights reserved. This manuscript version is made available under 
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

 1 

Short-term wind speed forecasting using deep 

reinforcement learning with improved multiple 

error correction approach 

Rui Yanga, Hui Liu*a, Nikolaos Nikitasb, Zhu Duana, Yanfei Lic, Ye Lia 

 

a. Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic 
Safety on Track of Ministry of Education, School of Traffic and Transportation 

Engineering, Central South University, Changsha 410075, Hunan, China 

b. School of Civil Engineering, University of Leeds, LS2 9JT, Leeds, UK 

c. School of Mechatronic Engineering, Hunan Agricultural University, Changsha 
410128, Hunan, China 

 

 

 

 

 

 

Abstract 

The safe and stable operation of wind power systems requires the support of wind 
speed prediction. To ensure the controllability and stability of smart grid dispatching, 
a novel hybrid model consisting of data-adaptive decomposition, reinforcement 
learning ensemble, and improved error correction is established for short-term wind 
speed forecasting. In decomposition module, empirical wavelet transform algorithm is 
used to adaptively disassemble and reconstruct the wind speed series. In ensemble 
module, Q-learning is utilized to integrate gated recurrent unit, bidirectional long 
short-term memory, and deep belief network. In error correction module, wavelet 
packet decomposition and outlier-robust extreme learning machine are combined to 
developing predictable components. An appropriate correction shrinkage rate is used 
to obtain the best correction effect. Ljung-Box Q-Test is utilized to judge the 
termination of the error correction iteration. Four real data are utilized to validate 
model performance in the case study. Experimental results show that: (a) The 
proposed hybrid model can accurately capture the changes of wind data. Taking 1-step 
prediction results as an example, the mean absolute errors for site #1, #2, #3, and #4 
are 0.0829m/s, 0.0661m/s, 0.0906m/s, and 0.0803m/s, respectively; (b) Compared 
with several state-of-the-art models, the proposed model has the best prediction 
performance. 
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Highlights  

 A reinforcement learning ensemble strategy is developed to determine the best 
model fusion weights. 

 Three deep learning benchmark predictors suitable for different environments are 
combined to learn the law of wind speed changes. 

 An improved multiple error correction technique based on 
decomposition-prediction is proposed. 

 A correction shrinkage rate is introduced to reduce the risk of overfitting. 
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Abbreviations 

 

AI Artificial Intelligence LSTM Long Short-Term Memory 
ARMA Auto-Regression Moving Averaging LBQ-test Ljung-Box Q-Test 
ARIMA Auto-Regressive Integrated Moving Average MPDQEM Multi-Predictor Deep Q Ensemble Model 
ANN Artificial Neural Network MPDQDEM Multi-Predictor Deep Q Decomposition 

Ensemble Model 
AM-FM Amplitude-Modulation and 

Frequency-Modulation 
MODWPT Maximal Overlap Discrete Wavelet Packet 

Transform 
BiLSTM Bidirectional Long Short-Term Memory MAE Mean Absolute Error 
BPNN Back Propagation Neural Network MAPE Mean Absolute Percentage Error 
BFGS Broyden Fletcher Goldfarb Shanno MOGOA Multi-Objective Grasshopper Optimization 

Algorithm 
BiGRUNNs Bidirectional Gated Recurrent Unit Neural 

Networks 
MOMVO Multi-Objective Multi-Verse Optimization 

BSA Backtracking Search Algorithm MMAdapGA Multiple Mutations Adaptive Genetic 
Algorithm 

CNN Convolutional Neural Network MEC Multiple Error Correction 
CEEMD Complete Ensemble Empirical Mode 

Decomposition 
MDP Markov Decision Processes 

DBN Deep Belief Network NWP Numerical Weather Prediction 
DBM Deep Boltzmann Machine NSGA-II Non-dominated Sorting Genetic Algorithm II 
ELM Extreme Learning Machine NAR Nonlinear Auto Regressive 
EEMD Ensemble Empirical Mode Decomposition ORELM Outlier-Robust Extreme Learning Machine 
EWT Empirical Wavelet Transform PSOGSA Particle Swarm Optimization and 

Gravitational Search Algorithm 
ENN Elman Neural Network PCC Pearson Correlation Coefficient 
FEEMD Fast Ensemble Empirical Mode Decomposition RMSE Root Mean Square Error 
GRNN Generalized Regression Neural Network RELM Regularized Extreme Learning Machine 
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GWO Gray Wolf Optimization  RNN Recurrent Neural Network 
GOA Grasshopper Optimization Algorithm RBMs Restricted Boltzmann Machines 
GA Genetic Algorithm SSA Singular Spectrum Analysis 
GRU Gated Recurrent Unit SSD Singular Spectrum Decomposition 
GWEC Global Wind Energy Council SARSA State Action Reward State Action 
GBoost Gradient Boosting SSAE Stacked Sparse Auto-Encoder 
ISSD Improved Singular Spectrum Decomposition SVM Support Vector Machine 
IMF Intrinsic Mode Function VMD Variational Mode Decomposition 
ICEEMDAN Improved Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise 
WPD Wavelet Packet Decomposition 

IEC Improved Error Correction WNN Wavelet Neural Network 
ICMPDQDEM Improved Corrected Multi-Predictor Deep Q 

Decomposition Ensemble Model 
WOA Whale Optimization Algorithm 
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1 Introduction 

The deterioration of the global environment and the exhaustion of traditional energy 
sources have strengthened people's desire to explore renewable energy [1]. As a green 
and low-carbon energy, wind energy has opened a new door for utilizing new energy 
[2]. Focusing on the sustainable supply characteristics of wind energy, the 
development, and utilization of wind energy has become an important research 
direction for universities and enterprises around the world [3]. The latest report of the 
Global Wind Energy Council (GWEC) in 2019 shows that the global wind power 
industry market will add 355GW of capacity between 2020 and 2024. It is estimated 
that by 2024, the global installed capacity of wind power will be about 71GW per year, 
which shows that the wind power industry has huge industry potential and room for 
development [4].  

Nevertheless, the chaos, instability, randomness, and intermittency of wind energy 
bring great challenges to wind energy utilization [5]. The complexity of the temporal 
and spatial distribution of wind speeds in different regions exacerbates this difficulty. 
The efficient use of wind energy relies heavily on the accurate prediction of wind 
speed [6]. Inaccurate wind speed prediction will reduce the safety factor and power 
generation efficiency of the wind power system, resulting in huge economic losses 
and energy waste. To break through this dilemma, many researchers have invested a 
lot of time in the research of wind speed prediction models [7]. 

1.1 Related works 

Wind speed prediction models can be broadly classified into four categories, namely 
physical model, statistical model, intelligent model, and hybrid model. The most 
common physical model is Numerical Weather Prediction (NWP) [8], which analyzes 
meteorological and geographic information such as temperature, density, speed, and 
spatial distribution to realize wind speed prediction. However, the NWP prediction 
method has very high requirements on data sources and processors. The slow 
updating speed makes it show shortcomings in short-term wind speed forecasting. In 
contrast, the simpler structure of the statistical model gives it a great advantage in 
time consumption. Common statistical models include the Auto-Regression Moving 
Averaging (ARMA) [9], Auto-Regressive Integrated Moving Average (ARIMA) [10], 
persistence model [11], classical Box-Jenkins methodology model [12], and so on. 
Statistical models can directly use historical wind speed data for rapid short-term 
prediction [13]. Unfortunately, statistical models such as ARMA are difficult to 
capture the strong nonlinear characteristics of real wind speed time series. This 
shortcoming makes its prediction accuracy difficult to meet strict engineering 
requirements. The development of Artificial Intelligence (AI) technology has 
promoted the birth of machine learning models that can handle nonlinear 
characteristic time series well [14]. The widely used machine learning models include 
Artificial Neural Network (ANN) [15], Back Propagation Neural Network (BPNN) 
[16], Extreme Learning Machine (ELM) [17], Long Short-Term Memory (LSTM) 
[18], Deep Boltzmann Machine (DBM) [19], Convolutional Neural Network (CNN) 
[20], etc. These models have excellent computing power. Further, to pursue models 
with more universality and higher prediction accuracy, the era of hybrid modeling has 
come [21]. A large number of surveys show that many professionals have devoted 
their efforts to the research of data decomposition methods, ensemble methods, and 
error correction methods. The literature review of these three aspects can be 
summarized as follows:  
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(a) Decomposition methods 

According to research experience, it can be known that the original wind speed time 
series has many noises and unstable characteristics [22]. This makes it hard for 
predictive models to capture the changing law of wind. Directly using the original 
wind speed series to carry out data-driven modeling may lead to larger forecasting 
errors. The data preprocessing method based on decomposition solves this problem to 
a certain extent. Sun et al. use Fast Ensemble Empirical Mode Decomposition 
(FEEMD) to decompose the wind speed series into stationary subseries for 
data-driven modeling [23]. Experimental results show that the decomposition method 
effectively improves prediction accuracy. Moreno et al. utilize the Variational Mode 
Decomposition - Singular Spectrum Analysis (VMD-SSA) method to decompose and 
preprocess the wind speed time series in northeastern Brazil [24]. The combination of 
rough decomposition and fine decomposition makes non-stationary time series easier 
to be learned by ARIMA. Yan et al. improve Singular Spectrum Decomposition (SSD) 
and combine it with Grasshopper Optimization Algorithm (GOA), LSTM, and Deep 
Belief Network (DBN) to build a multi-step wind speed prediction model [25]. 
Improved Singular Spectrum Decomposition (ISSD) has stronger data preprocessing 
capabilities than algorithms such as VMD and Complete Ensemble Empirical Mode 
Decomposition (CEEMD). The decomposition method breaks the original wind speed 
series with high volatility into multiple stable subseries [26]. This idea has been 
proved to be one of the most effective data preprocessing methods [27]. However, for 
the decomposition algorithm, the choice of the decomposition layer has a great 
influence on decomposition efficiency. The previous method is to select the 
appropriate number of decomposition layers by combining the user's prior knowledge, 
but this will inevitably introduce human errors. Therefore, a data preprocessing 
method for adaptively determining the number of decomposition levels needs to be 
studied. 

(b) Ensemble methods 

There are two main factors that affect the effectiveness of the ensemble model, one is 
the benchmark predictor, and the other is the integrated optimization algorithm. The 
focus of different prediction models is different, which also causes the prediction 
performance of a single benchmark model to vary greatly on different data sets. To 
improve the robustness and universality of the model, ensemble methods based on 
meta-heuristic optimization algorithms are explored [28]. Song et al. use Gray Wolf 
Optimization (GWO) algorithm to do a weighted integration of traditional prediction 
models such as BPNN, Elman Neural Network (ENN), Wavelet Neural Network 
(WNN), and Generalized Regression Neural Network (GRNN) [29]. The combined 
model shows better prediction accuracy in multiple datasets. Deep learning models 
have stronger learning capabilities than traditional machine learning models. On this 
basis, Liu et al. use Multiple Mutations Adaptive Genetic Algorithm (MMAdapGA) to 
integrate ELM, Outlier-Robust Extreme Learning Machine (ORELM), and DBN [5]. 
The addition of DBN provides a breakthrough to improve the accuracy limit. More 
hidden layers enable the deep network to learn more wind speed information. It 
verifies the hypothesis that the benchmark predictor has a great influence on the 
prediction effect of the integrated model. In addition, the advantages of 
multi-objective optimization algorithms are reflected in the universality of prediction 
results. Niu et al. used Multi-Objective Grasshopper Optimization Algorithm 
(MOGOA) to ensemble five benchmark models such as BPNN, GRNN, ARIMA, 
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ENN, and ELM [30]. Compared with the single objective optimization algorithm, the 
Pareto surface formed by multiple non-dominated solutions makes the model perform 
well on multiple error indicators. The ensemble strategy integrates the advantages of 
multiple benchmark predictors and complements each other to maximize the 
performance [31]. Compared with common meta-heuristic optimization algorithms, 
reinforcement learning with strong learning ability has demonstrated strong strength 
in many fields [32]. If reinforcement learning can be used to integrate AI models, an 
excellent result may occur. Therefore, an optimized ensemble method that combines 
reinforcement learning and better benchmark predictor is worth investigating. 

(c) Error correction methods 

The randomness and intermittency of wind speed often make the machine learning 
model unable to fully fit its changes. At this time, data post-processing methods come 
in handy. The error correction is performed by calculating the error between the 
forecasting data and the real data to improve the numerical output accuracy of the 
model [33]. Ding et al. developed an NWP model for wind speed forecasting based on 
Bidirectional Gated Recurrent Unit Neural Networks (BiGRUNNs) error correction 
[34]. As a variant of Recurrent Neural Network (RNN), BiGRUNN's model structure 
effectively solves the problem of gradient disappearance. The introduction of the error 
correction system raises the model prediction accuracy to a higher level. Duan et al. 
proposed a decomposition-prediction correction method based on Improved Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) - 
ARIMA [35]. The wind speed error series is decomposed by ICEEMDAN into 
multiple Intrinsic Mode Function (IMF) error subseries, and these error series are 
predicted by ARIMA. Finally, these series are added to the original prediction results 
to obtain a final result with higher accuracy. Liu et al. constructed an error correction 
model combining Empirical Wavelet Transform (EWT) and ORELM [36]. This 
correction method can adaptively determine the number of decomposition levels. The 
addition of the decomposition method reduces the instability of the error series and 
makes it easier to train the correction model. The stronger robustness of ORELM can 
make the model converge quickly.  The prediction result after correcting the error is 
closer to the fluctuation characteristics of wind speed [37]. Unfortunately, one-time 
error correction may lead to the risk of over-fitting. Too many corrections may 
introduce new errors, and too few corrections may not fully utilize the predictable 
components. This process can be controlled by obtaining an appropriate correction 
shrinkage rate. The introduction of correction shrinkage rate can slow down the entire 
fitting process and prevent over-fitting. At the same time, training multiple predictors 
to perform multiple iteration corrections can prevent the validation data from being 
input to the predictor at one time, and avoid the situation where the data used to detect 
predictability is consistent with the data used to train the model. In other words, if the 
data used to train the model is consistent with the data used to test the series 
predictability, the potentially predictable components in the test data may be detected 
as unpredictable. Then the prediction accuracy of the error correction model in the 
validation set will be abnormally higher than its accuracy in the test set. Using 
different parts of the data to train the correction predictor can balance the performance 
of the model on the training data and the testing data, and the predictability of the 
testing data can be developed to the greatest extent. Therefore, an improved adaptive 
multiple error correction method based on decomposition and prediction needs to be 
explored. 
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Reviewing the above decomposition methods, ensemble methods, and error correction 
methods, scholars have made outstanding contributions in the field of wind speed 
time series forecasting. Table 1 summarizes the structure of the models, contributions, 
and the year of publication.
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Table 1 A brief literature review of short-term wind speed prediction methods. 

Author Published 
year 

Models Contributions 

Decomposition methods 
Sun et al. 
[23] 

2019 FEEMD-Backtracking Search 
Algorithm (BSA)-Regularized 
Extreme Learning Machine 
(RELM) 

The FEEMD is used to reduce the non-stationarity of the wind speed time series. 

Moreno et 
al. [24] 

2021 AM-FM-VMD-SSA-ARIMA The Amplitude-Modulation and Frequency-Modulation (AM-FM) modem and 
VMD-SSA are combined into a hybrid decomposition model to suppress 
high-frequency noise, filter low-frequency noise, and remove non-periodic noise. 

Yan et al. 
[25] 

2020 ISSD-LSTM-GOA-DBN The shortcomings of relying on expert experience to select SSD embedding 
dimensions are improved to promote decomposition performance. 

Ensemble methods 
Song et 
al. [29] 

2018 GWO-ICEEMDAN-BPNN/EN
N/WNN/GRNN 

The meta-heuristic GWO is used to integrate multiple benchmark models. 

Liu et al. 
[5] 

2021 Multiple Error Correction 
(MEC)-MMAdapGA-MODWPT
-ELM/ORELM/DBN 

Improved Genetic Algorithm (GA) is utilized to ensemble ELM, ORELM, and 
DBN. 

Niu et al. 
[30] 

2019 MOGOA-CEEMDAN-BPNN/G
RNN/ARIMA/ENN/ELM 

Multi-objective optimization algorithm completes the complementary advantages of 
BPNN, GRNN, ARIMA, ENN, and ELM models. 

Error correction methods 

Ding et 
al. [34] 

2019 NWP-BiGRUNNs The NWP and BiGRUNNs are used to fully explore the statistical characteristics and 
dynamic time behavior of wind speed time series.  

Duan et 
al. [35] 

2021 ICEEMDAN-RNN-ICEEMDA
N-ARIMA 

The decomposition method is applied to the error correction module to improve the 
correction efficiency of the model. 

Liu et al. 
[36] 

2019 SSAE-BiLSTM-Multi-Objective 
Multi-Verse Optimization 
(MOMVO)-EWT-ORELM 

The EWT is used in combination with ORELM to correct the wind speed prediction 
results under the feature extraction of Stacked Sparse Auto-Encoder (SSAE). 
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1.2 The innovations and contributions of this study 

Section 1.1 discusses the existing research contributions and gaps in decomposition 
methods, ensemble methods, and error correction methods. Based on the comments of 
the gaps in the above research works and methods, we develop a novel reinforcement 
learning hybrid model called Improved Corrected Multi-Predictor Deep Q 
Decomposition Ensemble Model (ICMPDQDEM). The hybrid model innovatively 
combines reinforcement learning ensemble strategy and improved multiple error 
correction technique, and applies them to the field of wind speed prediction. After 
verifying the accuracy of the proposed model, we have obtained satisfactory 
prediction results. Experiments show that the proposed model can effectively capture 
the law of wind speed changes. 

The primary innovations and contributions of this study are illustrated below:  

 A reinforcement learning ensemble strategy is developed to determine the best 

model fusion weight. Q-learning is innovatively utilized for the ensemble weight 
calculation of wind speed prediction models. The reward and punishment 
mechanism of reinforcement learning shows excellent talent in weight 
optimization, which allows it to obtain more appropriate weighting coefficients. A 
good theoretical foundation of reinforcement learning ensures the reliability of its 
convergence. 

 Three deep learning benchmark predictors are combined to learn the law of 

wind speed changes. The rich hidden layers in deep learning models Gated 
Recurrent Unit (GRU), Bidirectional Long Short-Term Memory (BiLSTM), and 
DBN give them stronger learning capabilities. This makes them more 
comfortable in dealing with linear and nonlinear sequences. The integrated hybrid 
model contains the advantages of each component, so that it can be competent for 
wind speed prediction tasks under more different conditions. The complementary 
advantages between the models solve the limitations of traditional methods that 
are only suitable for a single condition. 

 A multiple error correction technique based on decomposition-prediction is 

proposed to improve the prediction accuracy of the model. The Wavelet Packet 
Decomposition (WPD) and ORELM are combined to predict residuals. Training 
multiple sub-ORELMs for adaptive iteration can prevent the validation data from 
being input to the model all at once, which balances the performance of the model 
in the validation data and the testing data. The generalization of the model is 
improved. The introduction of error correction shrinkage rate controls the speed 
of the entire correction iteration process. By slowing down the fitting process, 
over-fitting can be prevented effectively. Appropriate correction shrinkage rate 
avoids the additional human error introduced by excessive correction. The 
Ljung-box Q-test (LBQ-Test) is utilized to detect the predictable components of 
the residual series and decide whether the correction process is performed. 
Appropriate corrections develop the predictable components of the residual series 
to the greatest extent. 

The organization of this article is arranged in detail below. Section 2 elaborates the 
design of the proposed deep reinforcement learning ensemble model. Modules I~III 
explain the algorithm and operation mechanism of the proposed model in detail. To 
illustrate the feasibility and effectiveness of the proposed model in more detail, five 
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different comparative experiments in Section 3 are performed. Section 3.1 describes 
the wind speed time series data used in the experiments. Section 3.2 gives the 
calculation method of the model performance evaluation index. Cases I~IV in 
Section 3.3 discusses the role of each module in the proposed model. Case V reflects 
the advancement and superiority of the proposed model by comparing it against other 
state-of-the-art models. Specifically, Section 4 analyzes the real-time property, 
application potentials, and application scenarios. Finally, the conclusions and future 
works are summarized in Section 5. It is worth mentioning that Appendix. 

Supplementary materials list the parameter setting of the proposed model and the 
state-of-the-art models. 

2 Design of the proposed deep reinforcement learning ensemble 

model 

2.1 Structure of the proposed ensemble model 

The proposed ICMPDQDEM model subsumes adaptive data preprocessing method, 
Q-learning optimization ensemble strategy, and Improved Error Correction (IEC) 
technique. The model introduces how the decomposition-ensemble-correction system 
captures the variation law of wind speed time series. Appendix. Table A lists the 
parameter settings of the proposed reinforcement learning model. Figure 1 displays 

the main design method steps of the proposed model.  

 

Figure 1 The proposed reinforcement learning ensemble model. 

2.2 Module I: Decomposition-based benchmark predictors modeling 

2.2.1 Empirical wavelet transform 
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According to the spectrum signal, EWT can realize the adaptive division of frequency 
bands. The EWT is composed of two parts of functions, including empirical scale 
function and empirical wavelet function. Generally, the empirical scale function is 
defined as a filter that filters low-pass signals. Specifically, its mathematical 
expression can be provided as follows [38]:  
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The empirical wavelet function is regarded as a band-pass filter applied to each 
frequency band, and its mathematical expression is provided as follows: 
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Where n  is the boundary between adjacent frequency bands, 0 =0 , =
N

  , and 

the width of the transition phase is controlled by  0,1  . To make sure that the 

EWT     1 1
,

N

n n
t t 



 is a set of orthogonal bases of  2
L R

, the   should be 

limited as: 
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min n n
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2.2.2 Gated recurrent unit 

The internal units of GRU and LSTM are very similar, but the difference is that GRU 
merges the input gate and the forget gate into a single update gate. Finally, there are 
only two gate structures in the GRU, namely the update gate and the reset gate. The 
update gate is used to determine whether to retain the previous state information and 
the degree of retention. The reset gate is used to determine whether to combine the 
information of the current state and the previous state. The mathematical expression 
of the GRU neural network is provided as follows [39]: 
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Where z
W  and W  are the weight matrix of update gate and reset gate respectively, 

t
x  is the input at the current time, 1th   is the output of the hidden layer at 1t  , t

z  

and t
  are the update gate and reset gate respectively, th  is the output candidate 

value after the reset gate processing,   is the nonlinear activation function, h
W  is 

the weight matrix when calculating th ,    represents the connection of 2 vectors,  

represents the multiplication of corresponding elements between the matrices. 

2.2.3 Bidirectional long short-term memory 

BiLSTM enables recursive feedback of past and future hidden layer states through a 
two-way network. This can make the inner connection between current data and 

past-future time data be further explored. The hidden layer state t
  of BiLSTM is a 

combination of three parts, including the previous hidden layer output state 1t   that 

propagates forward along the time axis, and the previous hidden layer output state 

1i   that propagates backward along the time axis, and the input amount t
x  at the 

current moment. Specifically, the combined expression of each level of hidden layer 
state is provided as follows [40]:  
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  (4) 

Where LSTM  represents the operation process of the traditional LSTM network 

[41], t
  is the forward hidden layer state, i

  is the backward hidden layer state, 
a

t
  is the output weight of the hidden layer in the forward propagation unit, b

t
  is 

the output weight of the hidden layer in the backward propagation unit, c

t
  is the 

hidden layer bias optimization parameter at the current moment. 

2.2.4 Deep belief network 

Multiple Restricted Boltzmann Machines (RBMs) and a BP layer constitute the DBN. 
The training process of DBN consists of two parts. One is to train RBMs layer by 
layer in a greedy and unsupervised manner, and the other is to fine-tune the model 
structure parameters by training BPNN in a supervised manner. Specifically, the 
energy function expression of RBMs is given as follows [5]: 

  
1 1 1 1

, |
n m n m

i j iji j i ji j i j
E v u a v b u v w u

   
         (5) 

Where 
iw
 represents the weights of the layer connectors, a  and b  are the bias of 

the visible and the number of hidden layer neurons, m  represents the number of 

DBN layers, ( , )v u  is given randomly, initial weight 
1 2{ , ,..., }nW w w w , and 

 , ,ij i jW a b  . 
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The original series 1 1499 1500[ ,..., , ]X X X  are divided into training data 

1 599 600[ ,..., , ]X X X , validation data 601 1199 1200[ ,..., , ]X X X , and test data 

1201 1499 1500[ ,..., , ]X X X . In the EWT phase [42], the training data 1 599 600[ ,..., , ]X X X  is 

adaptively decomposed into several subseries 1 599 600[ ,..., , ],m m m
X X X m N , m 

represents the subseries decomposed in m-th layer, N represents the number of 
subseries layer.  

After the decomposition is completed, the benchmark models are used for predictive 
modeling. The training data is input to the model and output s-step prediction results 

, , ,ˆ ˆ ˆ,  ,  m s m s m s

GRU BiLSTM DBN
X X X  on the validation set, the S is the prediction step of the 

benchmark predictor. Taking GRU as an example, the predicted results of m layers of 

subseries are superimposed to obtain the predicted results ˆ s

GRUX . Finally, the trained 

benchmark predictors GRU [43], BiLSTM [44], and DBN [5] are obtained. Figure 2 
shows the mechanism of decomposition-prediction modeling. 

 

Figure 2 The mechanism of decomposition-prediction modeling. 

2.3 Module II: Multi-predictor ensemble based on reinforcement learning 

2.3.1 Q-learning 

Reinforcement learning is a method that belongs to the field of machine learning. It 
emphasizes that actions change with the environment, and the purpose is to maximize 
the expected benefits. The algorithm is inspired by behaviorist theories in psychology 
[45]. Stimulated by the rewards and punishments of the external environment, the 
agent will gradually form the expected results of these stimuli in the iterative process, 
and eventually produce habitual behaviors in the direction that can obtain the most 
benefits. Compared with supervised learning and unsupervised learning, 
reinforcement learning directly abandons the need for Markov Decision Processes 
(MDP) [46]. It can find a balance between the unknown world and real-world 
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knowledge from the perspective of online planning to solve the optimal 
decision-making problem. 

Q-learning algorithm belongs to time series differential learning, which can achieve 
model-free learning more efficiently than the Monte Carlo reinforcement learning 
algorithm [47]. This feature makes Q-learning more suitable for solving the 
optimization problem of wind speed time series [32]. Constructing a reasonable 
external environment, state space, action space, and reward function can ingeniously 
transform the above optimization problem into a reinforcement learning problem for 
solving. In this study, the Q-learning algorithm is utilized for models ensemble of 
GRU, BiLSTM, and DBN. The disadvantage of a single deep learning model is that 
its prediction performance is easily affected by data and the external environment, 
which leads to unstable prediction results. The ensemble of multiple deep learning 
models can effectively mitigate this negative impact. In the proposed model, the best 
weight combination is obtained by setting a reasonable reward and punishment 
strategy.  

Step a: Initialize various parameters and states, including reward discounts  , 
0 1  , learning rates  , 0 1  , greedy parameters  , Q tables, states 0S S , 

and strategies  . 

Among them, the Q agent is a value-based reinforcement learning agent. It maintains 
a Q table as critic to estimate the value function. State S and action A are used as the 
input of the critic, and a corresponding long-term return expectation is output after 
training. In addition, the state  1 2 3, ,S w w w  explains the composition of each 

specific state in the learning process, and 1 2 3, ,w w w  are the weight coefficient. 

 
3

1
1 ,  0

i i ii
w w w


      (6) 

Step b: Perform actions  a s
  according to the  -greedy strategy  . The 

mathematical calculation method of the strategy   is provided as follows: 

    largest  value action , probability 1-

randomly  action    , probability 

Q
x

 





 


  (7) 

Where the   is exploration probability, (0,1)  . 

Step c: Obtain instant rewards 
t

r  based on the calculation method of rewards R .  

According to the weight coefficients 1,t tw w   corresponding to the old state t
S  and 

the new state 1tS  , the loss function of the reinforcement learning stage can be solved 

separately, namely the prediction error terror  and 1terror . Rewards can be obtained 

through punishment and reward mechanisms for the agent. When 1t terror error  , 

the penalty 1error   is imposed on the agent. Correspondingly, when 

1t terror error  , the reward 1error   is implemented for the agent. The 

mathematical expressions of the reward and punishment mechanism are presented as 
follows: 
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  (8) 

More specifically, the prediction error is represented by the Mean Square Error (MSE), 
and its expression is given as follows: 

  2

1

1 ˆ
N

i i

iY

error MSE Y Y
N 

     (9) 

Where Ŷ  is the wind speed prediction results, Y  is the real wind speed data, Y
N  

is the number of the real data. 

Step d: Utilize the newly calculated evaluation function Q to update the Q table, and 
set the current state to 

1t t
S S  . The mathematical formula of the update method is 

provided as follows:  

         1 1 1, , max , ,
t t t t t t t t t t t t t

a
Q S a Q S a r Q S a Q S a         (10) 

Where the learning rate is presented as  , 0 1  , the discount factor is presented 
as  , 0 1  . 

Step e: Repeat the above Steps b~d until the iteration termination condition is met. 
Finally, the EWT-Q-GRU-BiLSTM-DBN reinforcement learning ensemble model is 
obtained. 

Figure 3 shows the mechanism of the deep reinforcement learning ensemble strategy.  

 

Figure 3 The mechanism of deep reinforcement learning ensemble strategy. 
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2.4 Module III: Improved error correction based on multiple 

decomposition-prediction 

2.4.1 Wavelet packet decomposition 

WPD is developed on the basis of wavelet decomposition and has the ability to 
process high and low frequency signals at the same time [48]. It is worth mentioning 
that WPD can adaptively match the corresponding frequency band suitable for the 
signal spectrum according to the characteristics and analysis requirements of the 
signal. Specifically, the mathematical expression of WPD is provided as follows: 
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  (11) 

Where ,2j n

l
d  and ,2 1j n

l
d

  are wavelet packet coefficients，  , 1,...,1j i i   is the 

scale parameter, l  and k  is the translation parameter, n  is the frequency 

parameter, 2k l  and 2k l
g   are the low-pass filter bank and the high-pass filter bank 

in the wavelet packet decomposition, respectively. 

2.4.2 Outlier-robust extreme learning machine 

To better deal with outliers and non-Gaussian noise points in the dataset, ORELM is 
proposed to enhance the robustness of outliers [49]. The mathematical expression for 

minimizing the loss function and solving 1l -norm is provided as follows: 
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min e e Τ H

e e Τ H e T H e

  (12) 

Where e  is the training error, C  is the regularization parameter. T  is the output 

of training data and H  is the output results, the output weight is represented as  . 

L  is the augmented Lagrangian function.   is the Lagrange multiplier,   is the 

penalty coefficient, and 
1

2N 
Τ .  

2.4.3 Ljung-Box Q-test 

As a subcategory of the Portmanteau statistical test, Ljung-Box Q-Test is often used to 
detect the autocorrelation of time series data [50]. Generally, if a series passes the 
LBQ-test, the autocorrelation of the residual sample will be reduced below the critical 
value determined by the significance level, and the autocorrelation will be eliminated 
basically. Specifically, the calculation method of LBQ-test is provided as follows 
[51]: 
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  (13) 

Where ka  is the autocorrelation estimate of the residual at lag k; n is the number of 

samples;  is the mathematical modeling residual; m is the appropriate number of 
lags for the autocorrelation of the series samples. 

In this study, an improved error correction technique is adopted to correct residual 
errors. If the residual errors in the prediction results of the first two stages can be 
exploited, the prediction system can better deal with the intermittent and randomness 
of the wind data [52]. The Multi-Predictor Deep Q Decomposition Ensemble Model 
(MPDQDEM) emphasizes the linear and non-linear components of the wind speed 
series, due to the built-in RL, GRU, BiLSTM, and DBN. The ORELM is selected as 
the correction model to grasp the remaining non-linear components, outliers, and 
non-Gaussian noise points. For the remaining predictable components in the residual 
error, its low-frequency interference signal and some unsubdivided high-frequency 
signals are difficult to be fully developed by ORELM. WPD is a time-frequency 
localization analysis method that can perform a multi-level division of frequency 
bands, and its time window and frequency window can be changed. WPD has the 
characteristic of adaptively selecting the frequency band to match with the signal 
spectrum, which makes the combination of WPD and ORELM can achieve better 
residual prediction results. 

Step a: Pre-processing of residual series data. 

Taking into account the sample balance of the divided dataset and the number of 
cross-validation, the validation data is divided into 6 parts to train different ORELM 
models, and the length of each part is 100. Different from directly training ORELM 
with all the validation data, using short data to train multiple ORELM models can 
avoid the data used for LBQ-test [50], and the data used for training the predictor are 
the same group. The forecasting accuracy of the ORELM in detected data will not be 
abnormally higher than the accuracy in testing data. The ORELM model keeps the 
same accuracy level both on the validation data and test data effectively ensuring that 
the method is effective. Therefore, the predictable state of the detected data can 
represent the state of the testing data. In addition, the WPD data processing method is 
incorporated to cooperate with the predictor to achieve a better correction effect. 
Considering the time-consuming problem of decomposition methods in multiple 
sub-ORELM modules, the number of decomposition cannot be set too large. Too few 
decomposition layers may lead to poor decomposition results. To achieve a balance 
between the two, we set the number of the decomposition to 3. In this part, subseries 
#1 of WPD is used as an example to show the method theory more conveniently. 

Step b: Pre-defined parameter variables. 

The prediction residual errors and prediction results of the v-th validation data part in 

the c-th correction are c

v
e  and c

v
p . Correspondingly, the prediction residual errors 

and prediction results of the testing data in the c-th correction are c

T
e  and c

T
p . 
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Step c: Test the predictability of residual series data.  

Theoretically, the automatic correction function determines whether the residual series 
data can be predicted by ORELM. In Step c, the LBQ-test method evaluates the 
predictability of the data according to the automatic correction function. If the 

prediction residual errors c

v
e  are predictable after testing, then the series is used as 

the input of the ORELM model for training. 

Step d: Correct the residual error. 

The prediction residuals 
0 0 0 0 0 0
1 2 3 4 5 6, , , , ,e e e e e e    are obtained from the 

EWT-Q-GRU-BiLSTM-DBN model in the previous stage. During iteration #1, the 
sliding window starts to slide from the first part of the validation data. In the first 

sliding window of iteration #1, the 0
1e  is detected by the LBQ-test. If the detection 

result shows an unpredictable state, the error correction process is directly ended. If 

the detection result shows a predictable state, the data 0
1e  is input into the ORELM 

for training to get ORELM #1-1 in the first sliding window of iteration #1. As the 
sliding window moves, six sub-ORELMs #1-1~6 are obtained to form ORELM #1. 

And then, the prediction results 
1 1 1 1 1 1 1
1 2 3 4 5 6, , , , , ,

T
p p p p p p p    can be obtained through 

the modeling prediction of ORELM #1. The 1
T

p  is the prediction results of ORELM 

#1 in testing data. It is worth mentioning that slowing down the model fitting process 
can prevent overfitting to a certain extent. Here, we introduce an error correction 
shrinkage rate r  to control this process, which is inspired by the learning rate in 
Gradient Boosting (GBoost) [53] machine. At the end of Iteration #1, a prediction 

result  1

1,2,3,4,5,6v v
p r


  based on the error correction shrinkage rate r  will be output. 

The prediction residuals input into iteration #2~6 can be calculated by the following 
expression: 

   1 2,3,4,5c 1

1,2,3,4,5,6
= -

c
c c

v v v v
e e p r






，

  (14) 

When the residual error in the prediction result is detected as an unpredictable state or 
when the number of iterations reaches the maximum, the process of multiple error 
corrections ends.  

Superimposing the residual prediction results  6

1 2 3 4 5 6
1

, , , , , ,c c c c c c c

T
c

p p p p p p p r


    and 

the prediction results of the EWT-Q-GRU-BiLSTM-DBN model can obtain the 
prediction results of the EWT-Q-GRU-BiLSTM-DBN-IEC model in the validation set 
and the test set. The specific calculation method is presented as follows: 

  6

1 2 3 4 5 6 - - - -
1

, , , , , ,c c c c c c c

T EWT Q GRU BiLSTM DBN
c

results p p p p p p p r p


       (15) 

We traverse different correction shrinkage rates by cross validation to find the most 
suitable value. If the correction shrinkage rate is too small, the correction component 
will be too small and the correction will not be in place. If the correction shrinkage 
rate is too large, it will cause ORELM to correct errors excessively. The excessive 
correction has instead introduced new error components.  
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Figure 4 shows the mechanism of the improved decomposition-prediction multiple 
error correction method. 

 

Figure 4 The mechanism of improved decomposition-prediction multiple error 
correction method. 

3 Results and discussion 

3.1 Experimental dataset 

To evaluate the prediction performance of the proposed model, four groups of original 
real wind speed series collected from Xinjiang, China are provided for the case 
studies. The data involved in the experiment is collected by high-sensitivity stationary 
wind measurement base station equipment. To realize the real-time collection of wind 
speed data, the front-end measuring sensor of this equipment adopts dual-channel 
redundancy mode. The sampling interval of wind data is 3 seconds to 10 minutes. The 
measurement range of wind data is 0m/s~70m/s, and the maximum resolution is 
0.1m/s. Most of these wind speed measurement base stations are located in basins and 
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mountains, and the covered altitude ranges from 0m to 5000m. The ambient 
temperature of the equipment for wind measurement is -40℃~+55℃. The datasets 
used in this paper were collected in the summer of 2018. High-resolution data from 
nearly 30 wind measurement stations have been collected through actual 
measurements, with more than 1,500 wind data collected in each group. The time 
interval of the dataset utilized in this study is 1 min (the frequency of wind data 
recording).  

It is worth mentioning that in order to unify the length of the data, the length of each 
data series is 1500. There is no ‘thumb of rule’ for dataset partitioning. In general, it is 
better to divide the training set and test set into a ratio of 0.7:0.3 or 0.8:0.2 for 
predictive modeling [54]. Since the proposed model requires training set to train the 
basic predictors, and validation set for ensemble optimization and multiple error 
corrections (equivalent to another training part), the length of the training data and the 
validation data are set to be the same. The proportion of training data, validation data, 
and testing data is 0.4:0.4:0.2. In general, the data is divided into three parts, including 
training set, validation set, and testing set. In the wind speed series, 1-st~600-th is 
training data, 601-st~1200-th is validation data, and 1201-st~1500-th is testing data. 
Figure 5 shows the exploratory data analysis of wind speed data in four wind farms. 
The exploratory data analysis includes longitude, latitude, minimum, maximum, mean, 
standard deviation, median, and quantile. 

 

Figure 5 The specific statistical information of the studied original datasets. 

According to Figure 5, observations can be summarized as follows. The four wind 
speed data sets used in the experiment all have large wind speed amplitudes. The 
average wind speeds reached 19.57m/s, 14.02m/s, 18.01m/s, 7.01m/s, and the 
maximum wind speed is 26.67m/s, approximately equal to 96km/h, reaching the level 
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of wind scale 10 (whole gale). In addition, these four sets of wind speed data show 
greater volatility and instability. The fluctuation range of the difference between the 
maximum and minimum wind speed data is 8.09m/s~15.49m/s. Combining the 
longitude, latitude, and geographic location of the wind measurement station, it can be 
found that these data sets belong to the high wind environment data in high-altitude 
inland areas. Our research is conducted on the strong non-stationary wind in this 
environment, which contains abundant wind energy resources. 

3.2 Evaluation indicators 

Four mainstream evaluation indicators in the field of time series forecasting are used 
to test the forecasting errors, including Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), Root Mean Square Error (RMSE), and Pearson Correlation 
Coefficient (PCC). 
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Where again Ŷ  is the prediction results, the Y  is the real data, Y
N  is the number 

of the real data, the Ŷ  and Y  is the average of the prediction results and real data, 

respectively. 

3.3 Case study 

Case I compares the performance of 8 benchmark models to screen out 3 deep 
learning models with the best performance in different datasets. Case II compares the 
impact of different ensemble strategies, including Q-learning, State Action Reward 
State Action (SARSA) [55], Non-dominated Sorting Genetic Algorithm II (NSGA-II), 
GWO, Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA), 
Whale Optimization Algorithm (WOA). Case III compares the impact of diverse 
decomposition algorithms, including EWT, Maximal Overlap Discrete Wavelet Packet 
Transform (MODWPT), ICEEMDAN, and Ensemble Empirical Mode Decomposition 
(EEMD). Case IV compares the performance of each stage of the proposed model, it 
is worth mentioning that the improved error correction technique is utilized in this 
subsection. Case V compares the performance of the proposed model and several 
state-of-the-art models. The abbreviations of the proposed model are provided as 
shown in Table 2. 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 

 23 

Table 2 The abbreviations for each stage of the proposed model. 

Experimental 
stage 

Model Abbreviation Full name 

Case II Q-GRU-BiLSTM
-DBN 

MPDQEM Multi-Predictor Deep Q 
Ensemble Model 

Case III EWT-Q-GRU- 
BiLSTM-DBN 

MPDQDEM Multi-Predictor Deep Q 
Decomposition Ensemble Model 

Case IV EWT-Q-GRU- 
BiLSTM-DBN- 
IEC 

ICMPDQDEM 
(Proposed) 

Improved Corrected 
Multi-Predictor Deep Q 
Decomposition Ensemble Model 

3.3.1 Case I: Comparison with different benchmark forecasting models 

Both traditional machine learning models and improved deep learning models can 
show good prediction accuracy in time series forecasting. To find the most suitable 
model from the alternative predictors, we modeled and compared Broyden Fletcher 
Goldfarb Shanno (BFGS), BPNN, Support Vector Machine (SVM), ENN, Nonlinear 
Auto Regressive (NAR), GRU, BiLSTM, and DBN to evaluate their performance. 
Figure 6 shows the 1-step forecasting errors, the fitted curve, the frequency 
distribution graph, and the scatter graph of these benchmark models in site #1. Table 

3 presents the deterministic prediction errors of these benchmark models, where the 
model with the smallest error in each site is marked in bold. 

 

Figure 6 The 1-step prediction results of the benchmark models (Site #1). 
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Table 3 The deterministic forecasting results of the benchmark models. 

Sites Model 
MAE (m/s) MAPE (%) RMSE (m/s) 

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Site #1 BFGS 0.7220 1.2403 1.3654 3.7930 6.5023 7.1871 0.8828 1.5386 1.6951 

 BPNN 0.7183 1.2300 1.3464 3.7928 6.4779 7.1553 0.8706 1.5071 1.6329 

 SVM 0.7208 1.2214 1.3406 3.7888 6.4393 7.1128 0.8696 1.5115 1.6388 

 ENN 0.7161 1.2205 1.3421 3.7730 6.4776 7.1030 0.8684 1.5064 1.6319 

 NAR 0.7477 1.3160 1.4542 3.9523 6.9559 7.7233 0.9411 1.6302 1.7852 

 GRU 0.7134 1.2191 1.3349 3.7562 6.4202 7.0837 0.8657 1.5037 1.6289 

 BiLSTM 0.7306 1.2793 1.4475 3.8660 6.8300 7.8109 0.8851 1.5736 1.7608 

 DBN 0.7172 1.2388 1.3745 3.7879 6.5895 7.3912 0.8711 1.5271 1.6771 

Site #2 BFGS 0.5762 0.9887 1.0364 4.7039 8.0138 8.3814 0.7362 1.2556 1.3181 

 BPNN 0.5608 0.9727 1.0313 4.5609 7.8936 8.3595 0.7226 1.2338 1.3215 

 SVM 0.5766 0.9961 1.0666 4.6904 8.0397 8.5693 0.7448 1.2962 1.3907 

 ENN 0.5654 0.9742 1.0508 4.5631 7.8571 8.5083 0.7205 1.2487 1.3411 

 NAR 0.6569 1.1734 1.3042 5.3614 9.5587 10.6189 0.8567 1.6437 1.8120 

 GRU 0.5616 0.9640 1.0225 4.5534 7.7943 8.2320 0.7184 1.2303 1.3176 

 BiLSTM 0.5599 0.9528 1.0102 4.5285 7.6771 8.1498 0.7145 1.2197 1.3048 

 DBN 0.5689 0.9964 1.0895 4.6253 8.2154 9.0921 0.7328 1.2894 1.4228 

Site #3 BFGS 0.7682 1.3778 1.4868 4.3885 7.9130 8.6176 1.0026 1.7654 1.9376 

 BPNN 0.7522 1.3252 1.4133 4.3014 7.6223 8.1921 0.9629 1.6475 1.7974 

 SVM 0.7497 1.3180 1.4287 4.2816 7.5878 8.2822 0.9507 1.6468 1.8041 

 ENN 0.7578 1.3325 1.4568 4.3412 7.6966 8.4671 0.9587 1.6637 1.8355 

 NAR 0.8456 1.4204 1.4916 4.8214 8.2130 8.6605 1.1384 1.8229 1.9278 

 GRU 0.7298 1.2799 1.3923 4.1725 7.3540 8.0383 0.9351 1.6044 1.7598 

 BiLSTM 0.7654 1.3506 1.5186 4.3734 7.7807 8.7847 0.9692 1.7072 1.9187 

 DBN 0.7282 1.2675 1.3826 4.1489 7.1966 7.8579 0.9342 1.5983 1.7484 

Site #4 BFGS 0.6752 1.1723 1.2233 3.3407 5.8396 6.0996 0.8470 1.4409 1.5103 

 BPNN 0.6873 1.1914 1.2504 3.4250 5.9991 6.3096 0.8464 1.4602 1.5497 

 SVM 0.6615 1.1435 1.1797 3.2789 5.7082 5.8889 0.8232 1.4110 1.4720 

 ENN 0.6609 1.1442 1.1821 3.2744 5.7041 5.9005 0.8264 1.4136 1.4897 

 NAR 0.7921 1.3414 1.4004 3.9759 6.7246 7.0259 0.9899 1.6965 1.7749 

 GRU 0.6603 1.1497 1.1928 3.2751 5.7455 5.9703 0.8256 1.4166 1.4976 

 BiLSTM 0.6587 1.1367 1.1774 3.2628 5.6633 5.8130 0.8145 1.3935 1.4547 

 DBN 0.8009 1.5899 1.9418 4.0374 8.1765 10.0129 1.0052 1.9512 2.3095 
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According to Figure 6 and Table 3, observations can be summarized as follows: 

To find the best benchmark model, we hope that the same alternative models 
perform best in multiple data sets, so that we can choose them without hesitation. 
However, due to the different characteristics of different models, the data 
characteristics that these predictors are good at processing are also different. So 
when there are many experimental comparison models, it may appear that the best 
performance in each group of experimental results is not always those few models 
[56]. Effective integration can often make the performance of the hybrid model 
higher than all benchmark models. The higher the upper limit of the benchmark 
model, the better the effect of the ensemble model [5]. Based on this theoretical 
basis, we adjust the criteria for selecting benchmark models to find the best 
performing model in each set of data sets, and then take the intersection of the 
models selected by multiple experiments to obtain candidate benchmark predictors. 
In the above four experiments, the best performance in each set of experiments is 
one of the three deep learning models: GRU, BiLSTM, and DBN. It can be found 
that if the deep learning model with the best performance in each set of experiments 
is used as the main predictor in the integrated model, and the remaining two deep 
learning models are used as auxiliary predictors, satisfactory phenomena may appear. 
The ensemble optimization algorithm obtains the ensemble ratio of the three 
benchmark predictors in the hybrid model through multiple iterations. Since each 
model is good at processing different data characteristics, it is possible that the 
auxiliary predictor will make up for some of the defects of the main predictor. This 
makes the integrated hybrid model have the characteristics of each sub-predictor and 
can adapt to more complex situations. It is worth mentioning that if all the 
benchmark predictors are integrated, the structure of the hybrid model will be very 
complicated. It seriously affects the computational efficiency of the model, and at 
the same time may produce the risk of overfitting. 

a) The best performer on each dataset is one of the three deep learning models: 
GRU, BiLSTM, and DBN. Taking 1-step prediction results of site #1 as an 
example, the MAEs of BFGS, BPNN, SVM, ENN, NAR, GRU, BiLSTM, and 
DBN are 0.7220m/s, 0.7183m/s, 0.7208m/s, 0.7161m/s, 0.7477m/s, 0.7134m/s, 
0.7306m/s, and 0.7172m/s, respectively. It can be seen that the model with the 
minimum error in site #1 is GRU. In the same comparison way, BiLSTM 
predictor performs better in site #2 and site #4, and DBN predictor performs 
better in site #3. Since the deep learning model has more hidden layers, it can 
more fully analyze the nonlinear characteristics of the wind speed time series. 
The better learning ability of deep networks makes them stand out, so the three 
deep learning models are selected as benchmark predictors for the next module.  

Generally speaking, the stronger learning ability and adaptability of deep learning 
models enable them to obtain satisfactory prediction results. As for why GRU, 
BiLSTM, and DBN do not always perform best in these four sets of wind speed 
prediction experiments, some analyses are given as follows: 

b) Compared with traditional prediction methods, deep learning models do not 
always perform better on all datasets. Taking 1-3 step prediction results of site 
#1 as an example, the MAEs of BPNN and BiLSTM are 0.7183m/s, 1.2300m/s, 
1.3464m/s, 0.7306m/s, 1.2793m/s, and 1.4475m/s, respectively. It can be seen 
from the prediction error-index that the BPNN performs better than the 
BiLSTM at this time. From the fitting curve graph, error distribution graph, and 
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scatter plot, the traditional machine learning model does not lag far behind the 
deep learning model. The possible reason is that the deep learning model puts 
higher requirements on the user's prior knowledge in the hidden layer structure 
and parameter setting. Unreasonable initialization may lead to the risk of 
overfitting. Therefore, a more stable approach needs to be adopted.  

c) The DBN deep learning model did not show the expected excellent performance 
in site #4. Taking the 1-3 step prediction results of site #4 as an example, the 
MAEs of DBN are 0.8009m/s, 1.5899m/s, and 1.9418m/s. The reason for the 
poor performance of deep learning models may be that there are too little 
learnable data, resulting in inadequate model training. The deep learning model 
does not exert all its energy, which may make its prediction performance 
inferior to traditional models. Therefore, a more robust method needs to be 
utilized in subsequent sections. 

3.3.2 Case II: Comparison with models employing different ensemble strategies 

In this subsection, different ensemble strategies are employed to compare the 
optimization performance. The optimization algorithms involved in this sub-section 
include Q-learning, SARSA, NSGA-II, GWO, PSOGSA, and WOA. The single 
objective, multi-objective optimization algorithms, and reinforcement learning 
algorithms all iteratively obtain the best weight combination results by setting 
optimization goals. Appropriate ensemble weights can make benchmark predictors 
complement each other and play a stronger role. Figure 7 shows the 1-step 
forecasting errors, the fitted curve, the frequency distribution graph, and the scatter 
graph of these ensemble models in site #1. Table 4 presents the deterministic 
prediction errors of these ensemble models, where the model with the smallest error 
in each site is marked in bold. Table 5 lists the performance improvement 
percentages of benchmark models by the Q learning ensemble strategy. 

 

Figure 7 The 1-step prediction results of the different ensemble strategies (Site #1). 
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Table 4 The deterministic forecasting results of the ensemble models. 

Sites Model 
MAE (m/s) MAPE (%) RMSE (m/s) 
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Site #1 Q-GRU-BiLSTM-DBN 0.6812  1.1008  1.2478  3.5813  5.7570  6.5429  0.8304  1.3669  1.5406  

 SARSA-GRU-BiLSTM-DBN 0.6871  1.1883  1.2827  3.6025  6.3071  6.8114  0.8496  1.4601  1.5741  
 NSGA-II-GRU-BiLSTM-DBN 0.7026  1.2000  1.3028  3.6826  6.2414  6.8095  0.8539  1.4926  1.6040  
 GWO-GRU-BiLSTM-DBN 0.7119  1.2165  1.3289  3.7522  6.4016  7.0780  0.8591  1.4966  1.6257  
 PSOGSA-GRU-BiLSTM-DBN 0.7123  1.2183  1.3330  3.7536  6.4109  7.0819  0.8618  1.5004  1.6281  
 WOA-GRU-BiLSTM-DBN 0.7121  1.2171  1.3302  3.7528  6.4062  7.0805  0.8606  1.4982  1.6275  
Site #2 Q-GRU-BiLSTM-DBN 0.5327  0.8356  0.9396  4.3050  6.6826  7.5260  0.6827  1.0530  1.1800  

 SARSA-GRU-BiLSTM-DBN 0.5379  0.8683  0.9604  4.3390  6.9740  7.7180  0.6879  1.0990  1.2145  
 NSGA-II-GRU-BiLSTM-DBN 0.5488  0.9307  0.9849  4.4476  7.5553  7.9072  0.7030  1.1895  1.2637  
 GWO-GRU-BiLSTM-DBN 0.5585  0.9520  1.0100  4.5154  7.6500  8.1476  0.7132  1.2148  1.3038  
 PSO-GRU-BiLSTM-DBN 0.5583  0.9518  1.0060  4.5143  7.6441  8.1467  0.7130  1.2139  1.3027  
 WOA-GRU-BiLSTM-DBN 0.5581  0.9513  1.0050  4.5123  7.6371  8.1453  0.7128  1.2123  1.3001  
Site #3 Q-GRU-BiLSTM-DBN 0.6967  1.0495  1.3275  3.9737  5.9699  7.5166  0.8883  1.3172  1.6603  

 SARSA-GRU-BiLSTM-DBN 0.7080  1.1108  1.3729  4.0372  6.3142  7.6210  0.9063  1.4056  1.7124  
 NSGA-II-GRU-BiLSTM-DBN 0.7181  1.2168  1.3741  4.1095  7.1205  7.7708  0.9246  1.5768  1.7214  
 GWO-GRU-BiLSTM-DBN 0.7270  1.2667  1.3708  4.1298  7.1725  7.8351  0.9318  1.5946  1.7478  
 PSO-GRU-BiLSTM-DBN 0.7273  1.2671  1.3807  4.1356  7.1797  7.8455  0.9319  1.5973  1.7469  
 WOA-GRU-BiLSTM-DBN 0.7266  1.2661  1.3701  4.1282  7.1607  7.8282  0.9301  1.5924  1.7441  
Site #4 Q-GRU-BiLSTM-DBN 0.6473  0.9788  1.0864  3.1896  4.7974  5.3300  0.7999  1.2117  1.3499  

 SARSA-GRU-BiLSTM-DBN 0.6507  1.0191  1.1108  3.2081  4.9704  5.4066  0.8073  1.2782  1.3950  
 NSGA-II-GRU-BiLSTM-DBN 0.6566  1.1254  1.1610  3.2362  5.6063  5.7126  0.8101  1.3537  1.4294  
 GWO-GRU-BiLSTM-DBN 0.6581  1.1357  1.1762  3.2515  5.6479  5.8075  0.8124  1.3815  1.4378  
 PSO-GRU-BiLSTM-DBN 0.6582  1.1360  1.1765  3.2532  5.6582  5.8099  0.8139  1.3893  1.4447  
 WOA-GRU-BiLSTM-DBN 0.6578  1.1359  1.1754  3.2510  5.6433  5.8030  0.8127  1.3845  1.4341  
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Table 5 The performance improvement percentages of benchmark models by the Q learning ensemble strategy. 

Model Sites 
PMAE (%) PMAPE (%) PRMSE (%) 
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Q-GRU-BiLSTM-DBN vs. GRU Site #1 4.51  9.71  6.53  4.66  10.33  7.63  4.08  9.09  5.42  
 Site #2 5.15  13.32  8.11  5.46  14.26  8.58  4.97  14.41  10.44  
 Site #3 4.53  18.00  4.65  4.76  18.82  6.49  5.01  17.90  5.66  
 Site #4 1.96  14.86  8.93  2.61  16.50  10.72  3.12  14.46  9.86  
Q-GRU-BiLSTM-DBN vs. BiLSTM Site #1 6.75  13.95  13.80  7.36  15.71  16.23  6.18  13.13  12.50  
 Site #2 4.85  12.30  6.99  4.93  12.95  7.65  4.45  13.66  9.56  
 Site #3 8.97  22.30  12.58  9.14  23.27  14.44  8.35  22.85  13.47  
 Site #4 1.73  13.89  7.73  2.24  15.29  8.31  1.79  13.04  7.20  
Q-GRU-BiLSTM-DBN vs. DBN Site #1 5.01  11.14  9.22  5.45  12.63  11.48  4.67  10.49  8.14  
 Site #2 6.37  16.13  13.76  6.93  18.66  17.22  6.84  18.33  17.06  
 Site #3 4.33  17.20  3.98  4.22  17.05  4.34  4.92  17.59  5.04  
 Site #4 19.18  38.44  44.05  21.00  41.33  46.77  20.42  37.90  41.55  
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According to Figure 7 and Tables 4~5, observations can be summarized as follows: 

a) The ensemble strategy can make the benchmark model complement each other. 
Taking 1-step prediction results of site #1 as an example, the PMAEs (%) 
improvement of Q-GRU-BiLSTM-DBN vs. GRU, vs. BiLSTM, and vs. DBN 
are 4.51%, 6.75%, and 5.01%, respectively. In addition, when a single predictor 
is unexpected, the ensemble method can compensate for the shortcomings and 
improve the robustness. Taking 1-3 step prediction results of site #4 as an 
example, the PMAE (%) of Q-GRU-BiLSTM-DBN vs. DBN are 19.18%, 38.44%, 
and 44.05%. The ensemble strategy gives each benchmark predictor an optimal 
combining weight, so that these models can be integrated organically. 

b) Among the weighted ensemble methods compared, Q-learning has the best 
ensemble effect. Taking 1-step prediction results of site #1 as an example, the 
MAEs of Q/SARSA/NSGA-II/GWO/PSOGSA/WOA-GRU-BiLSTM-DBN are 
0.6812m/s, 0.6871m/s, 0.7026m/s, 0.7119m/s, 0.7123m/s, and 0.7121m/s, 
respectively. Reinforcement learning shows excellent talents in weight 
optimization due to the reward and punishment mechanism. Different from the 
meta-heuristic optimization algorithm, the Q-learning algorithm belongs to time 
difference learning, which has better optimization performance. Comparing with 
the Monte Carlo reinforcement learning algorithm, Q-learning can achieve more 
efficient model-free learning. Comparing the multi-objective optimization 
algorithm and the single objective optimization algorithm, it can be found that 
the Pareto solution set of the multi-objective optimization problem contains 
more effective information. However, the single objective weighted summation 
can only approximate the convex Pareto surface, so NSGA-II is superior in 
performance to single objective algorithms such as GWO, PSOGSA, and WOA. 
The single objective optimization algorithms compared are all based on similar 
bionic theories, so the small differences in their performance are difficult to 
explain theoretically. 

3.3.3 Case III: Comparison with models utilizing diverse decomposition 

algorithms 

The decomposition method can significantly improve the prediction accuracy of the 
model by reducing the instability of the wind speed series. To select the most 
suitable decomposition method, we compare EWT, MODWPT, ICEEMDAN, and 
EEMD based on Case II. Figure 8 shows the 1-step forecasting errors, the fitted 
curve, the frequency distribution graph, and the scatter graph of these 
decomposition-ensemble models in site #1. Table 6 presents the deterministic 
prediction errors of these decomposition-ensemble models, where the model with 
the smallest error in each site is marked in bold. Table 7 lists the performance 
improvement percentages of the ensemble models by the different decomposition 
methods. 
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Figure 8 The 1-step prediction results of the diverse decomposition algorithms (Site 
#1). 
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Table 6 The deterministic forecasting performance of different data preprocessing methods. 

Sites Model 
MAE (m/s) MAPE (%) RMSE (m/s) 

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Site #1 EWT-Q-GRU-BiLSTM-DBN 0.1072  0.1848  0.2854  0.5621  0.9727  1.5040  0.1335  0.2356  0.3614  

 MODWPT-Q-GRU-BiLSTM-DBN 0.1494  0.2233  0.3751  0.7929  1.1837  1.9949  0.1854  0.2750  0.4697  

 ICEEMDAN-Q-GRU-BiLSTM-DBN 0.2571  0.3356  0.5619  1.3430  1.7617  2.9216  0.3204  0.4159  0.7162  

 EEMD-Q-GRU-BiLSTM-DBN 0.2681  0.4781  0.8969  1.4102  2.4540  4.6126  0.3344  0.6024  1.0815  

Site #2 EWT-Q-GRU-BiLSTM-DBN 0.1430  0.1542  0.2020  1.1386  1.2583  1.5964  0.1783  0.1945  0.2517  

 MODWPT-Q-GRU-BiLSTM-DBN 0.1481  0.2344  0.3382  1.2298  1.9485  2.7900  0.1909  0.3039  0.4326  

 ICEEMDAN-Q-GRU-BiLSTM-DBN 0.2443  0.3028  0.4356  2.0092  2.4497  3.5017  0.3136  0.3853  0.5680  

 EEMD-Q-GRU-BiLSTM-DBN 0.6528  0.8819  1.0758  5.2756  7.1889  8.8094  0.8135  1.0910  1.3220  

Site #3 EWT-Q-GRU-BiLSTM-DBN 0.0931  0.2018  0.2935  0.5280  1.1645  1.7053  0.1171  0.2444  0.3530  

 MODWPT-Q-GRU-BiLSTM-DBN 0.1589  0.2125  0.3482  0.9085  1.2013  1.9856  0.2002  0.2640  0.4340  

 ICEEMDAN-Q-GRU-BiLSTM-DBN 0.2993  0.3800  0.6908  1.7159  2.1871  3.9828  0.4128  0.5029  0.8642  

 EEMD-Q-GRU-BiLSTM-DBN 0.3125  0.5234  0.7432  1.7990  2.9436  4.1779  0.4455  0.7131  0.9853  

Site #4 EWT-Q-GRU-BiLSTM-DBN 0.1109  0.1645  0.2212  0.5475  0.8049  1.0686  0.1391  0.2071  0.2873  

 MODWPT-Q-GRU-BiLSTM-DBN 0.1334  0.2176  0.2308  0.6571  1.0579  1.1425  0.1650  0.2600  0.2849  

 ICEEMDAN-Q-GRU-BiLSTM-DBN 0.3340  0.4203  0.7086  1.6780  2.1088  3.5566  0.4272  0.5021  0.8873  

 EEMD-Q-GRU-BiLSTM-DBN 0.4007  0.7720  0.9062  2.0219  3.9755  4.6820  0.4902  0.9699  1.0966  
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Table 7 The performance improvement percentages of the ensemble models by the different decomposition methods. 

Model Sites 
PMAE (%) PMAPE (%) PRMSE (%) 

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

EWT-Q-GRU-BiLSTM-DBN vs. 

Q-GRU-BiLSTM-DBN 
Site #1 84.27  83.21  77.13  84.30  83.10  77.01  83.92  82.77  76.54  

Site #2 73.15  81.54  78.50  73.55  81.17  78.79  73.88  81.53  78.67  

Site #3 86.64  80.77  77.89  86.71  80.49  77.31  86.81  81.44  78.74  

Site #4 82.87  83.20  79.64  82.83  83.22  79.95  82.61  82.91  78.71  

MODWPT-Q-GRU-BiLSTM-DBN vs. 
Q-GRU-BiLSTM-DBN 

Site #1 78.06  79.71  69.94  77.86  79.44  69.51  77.67  79.88  69.51  

Site #2 72.19  71.95  64.01  71.43  70.84  62.93  72.03  71.14  63.34  

Site #3 77.20  79.76  73.77  77.14  79.88  73.58  77.46  79.96  73.86  

Site #4 79.39  77.77  78.76  79.40  77.95  78.57  79.37  78.55  78.89  

ICEEMDAN-Q-GRU-BiLSTM-DBN vs. 
Q-GRU-BiLSTM-DBN 

Site #1 62.26  69.51  54.97  62.50  69.40  55.35  61.42  69.58  53.51  

Site #2 54.14  63.77  53.64  53.33  63.34  53.47  54.06  63.41  51.86  

Site #3 57.04  63.79  47.96  56.82  63.36  47.01  53.53  61.82  47.95  

Site #4 48.40  57.06  34.78  47.39  56.04  33.27  46.59  58.57  34.27  

EEMD-Q-GRU-BiLSTM-DBN vs. 
Q-GRU-BiLSTM-DBN 

Site #1 60.65  56.57  28.12  60.62  57.37  29.50  59.73  55.93  29.80  

Site #2 22.54  5.54  14.50  22.54  7.58  17.05  19.17  3.60  12.03  

Site #3 55.15  50.13  44.02  54.73  50.69  44.42  49.85  45.86  40.66  

Site #4 38.09  21.13  16.59  36.61  17.13  12.16  38.71  19.96  18.77  
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According to Figure 8 and Tables 6~7, observations can be summarized as follows: 

a) The EWT, MODWPT, ICEEMDAN, and EEMD decomposition methods can 
effectively improve the prediction accuracy of the model. Taking 1-step 
prediction results of site #1 as an example, the PMAEs (%) improvement of the 
hybrid model EWT/MODWPT/ICEEMDAN/EEMD-Q-GRU-BiLSTM-DBN vs. 
Q-GRU-BiLSTM-DBN are 84.27%, 78.06%, 62.26%, and 60.65%, respectively. 
The original wind speed series has obvious chaos and volatility, which poses a 
great challenge to modeling. Fortunately, the decomposition method overcomes 
these disadvantages by decomposing the original series into several more stable 
subseries. In short, the decomposition method can make the wind speed series 
easier to predict by reducing the instability. 

b) Among the above-mentioned comparative decomposition methods, the model 
pre-processed by EWT decomposition has the best performance. Taking 1-step 
prediction results of site #1 as an example, the MAEs of the hybrid model 
EWT/MODWPT/ICEEMDAN/EEMD-Q-GRU-BiLSTM-DBN are 0.1072m/s, 
0.1494m/s, 0.2571m/s, and 0.2681m/s, respectively. The possible reason is that 
EWT can adaptively determine the number of decomposition layers, which to a 
certain extent avoids human error. In addition, because MODWPT overcomes the 
problem of phase distortion, it also has a good decomposition effect. Comparing 
with the EEMD, the ICEEMDAN reduces modal effects by adding adaptive noise 
to the time series. Better convergence makes the decomposition of ICEEMDAN 
more efficient. The frequent modal aliasing in EMD-like algorithms exposes the 
shortcomings of the above two EMD-based variant algorithms, so their 
decomposition effect is not as good as EWT and MODWPT. 

3.3.4 Case IV: Comparison with models using an improved error correction 

technique 

The prediction results without post-processing often still have some potential 
predictable components. If these predictable components are developed, the prediction 
performance of the model can be further improved. In this subsection, an improved 
error correction technique is adopted to correct residual errors. Figure 9 shows the 
1-step forecasting errors, the fitted curve, the frequency distribution graph, and the 
scatter graph of GRU, BiLSTM, DBN, MPDQEM, MPDQDEM, and ICMPDQDEM 
in site #1. Table 9 presents the deterministic prediction errors of these models, where 
the model with the smallest error in each site is marked in bold. 

To embody the best error correction shrinkage rates in the module of error correction, 
the last block cross-validation is adopted [57]. After normalization, the range of error 
correction shrinkage rates is set to 0~1. Too small step length of candidate correction 
shrinkage rates will greatly increase the time-consuming process of error correction. 
An excessively large candidate correction shrinkage rates step length may result in 
missed the optimal error correction rate. To balance the two, the correction step length 
is set to 0.1. The main purpose of introducing error correction shrinkage rate is to 
slow down the correction process and reduce the risk of overfitting. Too small error 
correction shrinkage rate may lead to incomplete correction, and there are still 
predictable components remaining. A too large error correction shrinkage rate may 
lead to over-correction, which may introduce new errors and reduce the accuracy of 
the model. Table 8 presents the best correction shrinkage rate when the MAEs are the 
smallest at site #1~#4.  
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Table 8 The optimal correction shrinkage rate under different sites. 

Model 
Sites 

#1 #2 #3 #4 

Proposed model (ICMPDQDEM) 0.5 0.7 0.3 0.4 

 

Figure 9 The 1-step prediction results for each stage of the proposed model (Site #1). 
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Table 9 Performance comparison for each stage of the proposed model. 

Sites Model 
MAE (m/s) MAPE (%) RMSE (m/s) 
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Site #1 GRU 0.7134 1.2191 1.3349 3.7562 6.4202 7.0837 0.8657 1.5037 1.6289 
 BiLSTM 0.7306 1.2793 1.4475 3.8660 6.8300 7.8109 0.8851 1.5736 1.7608 
 DBN 0.7172 1.2388 1.3745 3.7879 6.5895 7.3912 0.8711 1.5271 1.6771 
 MPDQEM 0.6812  1.1008  1.2478  3.5813  5.7570  6.5429  0.8304  1.3669  1.5406  
 MPDQDEM 0.1072  0.1848  0.2854  0.5621  0.9727  1.5040  0.1335  0.2356  0.3614  
 ICMPDQDEM 0.0829 0.1028 0.1425 0.4380 0.5418 0.7507 0.1023 0.1300 0.1797 

Site #2 GRU 0.5616 0.9640 1.0225 4.5534 7.7943 8.2320 0.7184 1.2303 1.3176 
 BiLSTM 0.5599 0.9528 1.0102 4.5285 7.6771 8.1498 0.7145 1.2197 1.3048 
 DBN 0.5689 0.9964 1.0895 4.6253 8.2154 9.0921 0.7328 1.2894 1.4228 
 MPDQEM 0.5327  0.8356  0.9396  4.3050  6.6826  7.5260  0.6827  1.0530  1.1800  
 MPDQDEM 0.1430  0.1542  0.2020  1.1386  1.2583  1.5964  0.1783  0.1945  0.2517  
 ICMPDQDEM 0.0661 0.0890 0.1153 0.5188 0.7013 0.9073 0.0826 0.1094 0.1412 

Site #3 GRU 0.7298 1.2799 1.3923 4.1725 7.3540 8.0383 0.9351 1.6044 1.7598 
 BiLSTM 0.7654 1.3506 1.5186 4.3734 7.7807 8.7847 0.9692 1.7072 1.9187 
 DBN 0.7282 1.2675 1.3826 4.1489 7.1966 7.8579 0.9342 1.5983 1.7484 
 MPDQEM 0.6967  1.0495  1.3275  3.9737  5.9699  7.5166  0.8883  1.3172  1.6603  
 MPDQDEM 0.0931  0.2018  0.2935  0.5280  1.1645  1.7053  0.1171  0.2444  0.3530  
 ICMPDQDEM 0.0906 0.1235 0.1643 0.5130 0.6987 0.9304 0.1138 0.1540 0.2051 

Site #4 GRU 0.6603 1.1497 1.1928 3.2751 5.7455 5.9703 0.8256 1.4166 1.4976 
 BiLSTM 0.6587 1.1367 1.1774 3.2628 5.6633 5.8130 0.8145 1.3935 1.4547 
 DBN 0.8009 1.5899 1.9418 4.0374 8.1765 10.0129 1.0052 1.9512 2.3095 
 MPDQEM 0.6473  0.9788  1.0864  3.1896  4.7974  5.3300  0.7999  1.2117  1.3499  
 MPDQDEM 0.1109  0.1645  0.2212  0.5475  0.8049  1.0686  0.1391  0.2071  0.2873  
 ICMPDQDEM 0.0803 0.0985 0.1211 0.3957 0.4840 0.5932 0.0982 0.1205 0.1534 
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According to Figure 9 and Table 9, it can be summarized as follows: 

a) The improved error correction technique can effectively correct the residual 
errors. Taking 1-3 step prediction results of site #1 as an example, the MAEs of 
ICMPDQDEM are 0.0829m/s, 0.1028m/s, and 0.1425m/s, respectively. The 
possible reason is that block cross-validation selects the best correction shrinkage 
rate. An appropriate correction rate can ensure that the correction model can mine 
predictable components as much as possible while avoiding the mixing of 
redundant errors. In addition, the WPD can finely decompose high-frequency and 
low-frequency data. The ORELM has strong robustness. These two advantages 
make its prediction accuracy satisfactory. 

b) The proposed error correction method has a more significant improvement effect 
when the prediction steps are higher. Taking 1-3 step prediction results of site #1 
as an example, the ICMPDQDEM reduces the PMAEs (%) of the MPDQDEM with 
22.67%, 44.37%, and 50.07%, respectively. It can be seen that the model 
performance is improved to a greater extent in the 2-step and 3-step predictions. 
Generally, as the forecasting steps increase, the error will become larger. These 
residuals contain more predictable components. These predictable components 
are detected by the LBQ-test, and multiple iterations are performed to correct the 
errors. Then, the autocorrelation component of the correction results almost 
disappears. This shows that the predictable components in the prediction residuals 
are basically eliminated. 

c) Each module of the proposed model has a positive effect on the improvement of 
prediction accuracy. The ICMPDQDEM performed best in the comparison 
experiment. Taking 1-step prediction results of site #1 as an example, the MAEs 
of GRU, BiLSTM, DBN, MPDQEM, MPDQDEM, and ICMPDQDEM are 
0.7134m/s, 0.7306m/s, 0.7172m/s, 0.6812m/s, 0.1072m/s, and 0.0829m/s, 
respectively. The deep reinforcement learning ensemble in the MPDQEM makes 
the benchmark predictors complementary to each other through the optimal 
weight combination. It avoids the performance limitations of a single predictor 
and the prediction bias caused by accidental errors. By decomposing the original 
wind speed series into several more stable subseries, the decomposition algorithm 
in the MPDQDEM makes the chaotic series orderly. The ICMPDQDEM corrects 
the residual errors based on the previous two-stage model, so that the 
performance of the hybrid model reaches the best. The complementarity of each 
module makes the proposed model satisfactory. 

3.3.5 Case V: Comparison with state-of-the-art models 

To objectively verify the superiority of the proposed model, we selected four 
state-of-the-art models published in 2018~2021 for experimental comparison. 
Appendix. Table B shows the structure of the four state-of-the-art models. 

Liu et al. [5] constructed a deep learning framework including data prediction, 
multi-learner ensemble, and adaptive multiple error correction processing. Compared 
with Liu's method, we have made further improvements to each module. In terms of 
predictors, more deep learning models are chosen. As for the decomposition method, 
the EWT which adaptively determines the number of decomposition layers is selected. 
For ensemble optimization, a novel reinforcement learning algorithm is used. In the 
correction strategy, a decomposition idea is added. 
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Deng et al. [58] proposed a decomposition-correction hybrid model. In error 
correction module, the VMD-ARIMA method based on quasi-real-time is utilized to 
repair the error series. Unfortunately, one-time error repair often fails to develop all 
predictable components. The remaining predictable components can actually give the 
model more room for improvement. We designed a multiple error correction model 
based on LBQ-test and decomposition-prediction. The appropriate error correction 
shrinkage rate ensures that the model does not introduce additional residuals while 
developing predictable components to the greatest extent. 

Niu et al. [30] used MOGOA to perform a weighted ensemble of BPNN, GRNN, 
ARIMA, ENN, and ELM. Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (CEEMDAN) is used for data denoising preprocessing. The 
innovative aspect of the proposed model in our research is to use Q-learning for 
iterative search. Reinforcement learning breaks the stereotyped thinking of traditional 
learning from the perspectives of strategies, value functions, and models. The 
advantages in strategy search and decision making make the reinforcement learning 
model perform well in weight optimization. 

Song et al. [29] employed the GWO to complete the optimization fusion of the 
benchmark models. However, the defect of the ICEEMDAN in determining the 
number of decomposition layers limits its performance improvement. We use an 
adaptive decomposition tool EWT to reduce the generation of human error, and the 
optimal number of decomposition layers helps the model achieve satisfactory results. 

In the process of model reproduction, we continued the parameters used in the 
original author's article as much as possible. Appendix. Tables C~F list the parameter 
settings of the state-of-the-art models. Figure 10 shows the 1-step forecasting errors, 
the fitted curve, the frequency distribution graph, and the scatter graph of these 
comparison models in site #1. Figure 11 lists the error indicators of each prediction 
site. Table 10 presents the deterministic prediction errors of the proposed model and 
above state-of-the-art models, where the model with the smallest error in each site is 
marked in bold. 
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Figure 10 The 1-step prediction results of the proposed model and several 
state-of-the-art models (Site #1). 

 

Figure 11 Stacked graph of error indicators for each comparison model. 
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Table 10 The deterministic forecasting performance of the proposed model and existing models. 

Sites Model 
MAE (m/s) MAPE (%) RMSE (m/s) 
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Site #1 BPNN 0.7183  1.2300  1.3464  3.7928  6.4779  7.1553  0.8706  1.5071  1.6329  
 Liu’s model  0.0843  0.1380  0.1573  0.4439  0.7260  0.8322  0.1047  0.1737  0.2022  
 Deng’s model  0.0869  0.1395  0.1940  0.4583  0.7308  1.0199  0.1085  0.1788  0.2466  
 Niu’s model  0.0972  0.1788  0.3142  0.5091  0.9380  1.6341  0.1198  0.2221  0.3898  
 Song’s model  0.1284  0.2859  0.4303  0.6776  1.5229  2.2923  0.1620  0.3515  0.5319  
 Proposed 0.0829 0.1028 0.1425 0.4380 0.5418 0.7507 0.1023 0.1300 0.1797 

Site #2 BPNN 0.5608  0.9727  1.0313  4.5609  7.8936  8.3595  0.7226  1.2338  1.3215  
 Liu’s model  0.0722  0.1303  0.1383  0.5699  1.0504  1.0886  0.0905  0.1673  0.1775  
 Deng’s model  0.1123  0.1903  0.3049  0.9025  1.5049  2.4103  0.1456  0.2424  0.3776  
 Niu’s model  0.0890  0.1831  0.2965  0.6956  1.4246  2.3121  0.1152  0.2360  0.3875  
 Song’s model  0.1137  0.2085  0.3279  0.9037  1.6542  2.6179  0.1478  0.2700  0.4253  
 Proposed 0.0661 0.0890 0.1153 0.5188 0.7013 0.9073 0.0826 0.1094 0.1412 

Site #3 BPNN 0.7522  1.3252  1.4133  4.3014  7.6223  8.1921  0.9629  1.6475  1.7974  
 Liu’s model  0.0961  0.2014  0.2322  0.5431  1.1597  1.3406  0.1203  0.2508  0.2931  
 Deng’s model  0.1195  0.2280  0.3104  0.6749  1.3196  1.7871  0.1475  0.2936  0.4051  
 Niu’s model  0.1046  0.2481  0.3707  0.5883  1.4137  2.1038  0.1307  0.3087  0.4592  
 Song’s model  0.1561  0.3077  0.4490  0.8906  1.7623  2.5725  0.2028  0.3884  0.5734  
 Proposed 0.0906 0.1235 0.1643 0.5130 0.6987 0.9304 0.1138 0.1540 0.2051 

Site #4 BPNN 0.6873  1.1914  1.2504  3.4250  5.9991  6.3096  0.8464  1.4602  1.5497  
 Liu’s model  0.0937  0.1376  0.1520  0.4607  0.6775  0.7466  0.1176  0.1730  0.1898  
 Deng’s model  0.1008  0.1863  0.3109  0.4960  0.9178  1.5460  0.1267  0.2310  0.3762  
 Niu’s model  0.0849  0.1751  0.2800  0.4140  0.8504  1.3787  0.1113  0.2278  0.3544  
 Song’s model  0.1203  0.2499  0.4277  0.5942  1.2323  2.1217  0.1479  0.3072  0.5224  
 Proposed 0.0803 0.0985 0.1211 0.3957 0.4840 0.5932 0.0982 0.1205 0.1534 
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According to Figures 10~11 and Table 10, observations can be summarized as 
follows: 

a) Comparing the experimental results of Case V, the state-of-the-art models have 
excellent prediction performance. Taking 1-step prediction results of site #1 as an 
example, the MAEs of BPNN, Liu’s model, Deng’s model, Niu’s model, Song’s 
model and proposed model are 0.7183m/s, 0.0843m/s, 0.0869m/s, 0.0972m/s, 
0.1284m/s, and 0.0829m/s, respectively. After years of hard work by researchers, 
the hybrid model has greatly improved in terms of data pre-processing, 
post-processing, and mechanism upgrades. It can be seen from the results, the 
classic BPNN model is obviously insufficient when compared with these 
state-of-the-art models. This proves that the decomposition strategies, the 
ensemble methods, and the error correction algorithms are all very effective in 
wind speed prediction. 

b) With the support of deep learning benchmark predictors, EWT decomposition, 
Q-learning weight optimization, multiple error correction strategies based on 
LBQ-test, and optimal error correction shrinkage rate, the proposed 
ICMPDQDEM model shows satisfactory robustness and prediction accuracy. 
Taking 1-3 step prediction results of site #1 as an example, the MAEs, MAPEs, 
and RMSEs of the proposed model are 0.0829 m/s, 0.1028m/s, 0.1425m/s, 
0.4380%, 0.5418%, 0.7507%, 0.1023m/s, 0.1300m/s, and 0.1797m/s, respectively. 
Comparing the prediction error results of classic BPNN and four state-of-the-art 
models, the proposed model has the best prediction performance. The 
improvement and combination of multiple modules help the proposed model to 
capture the changes of wind speed from a deeper level. The proposed hybrid 
model has a more reasonable structure. 

4 Application analysis  

4.1 Real-time property 

The proposed ICMPDQDEM model is based on deep learning and reinforcement 
learning. These two parts consume a lot of time, so experiments are needed to prove 
the feasibility of the model in terms of time consumption. All experiments in this 
article are performed on a laptop computer with Windows 10, 2.30 GHz AMD Ryzen 
7 3750H with Radeon Vega Mobile Gfx CPU and GTX 1050. Table 11 shows the 
computation times of the proposed deep reinforcement learning model. The content of 
the table shows that the training time with four different wind speed data sets is in the 
range of [187.49s, 247.62s]. It can be seen that the longest training time is 247.62s 
(about 4.127 minutes). Compared with the 300 sample points (that is, 300 minutes) 
output from modeling, this time consumption is feasible. The update of the model will 
not affect forecasting continuity. In addition, the time taken by the trained model to 
predict a wind speed series is in the range of [1.76s, 2.11s]. It can be seen that the 
longest forecasting time is 2.11s, which is much smaller than the time interval of the 
model (1minute). This shows that the update of the model will not cause conflicts 
between the prediction process and the prediction results, and then lead to the loss of 
prediction sample points. Due to the complex structure of the proposed model, the 
computation time is longer than the single methods, but in general, the proposed deep 
reinforcement learning model can meet the feasibility of time consumption. 
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Table 11 The computation times of the proposed deep reinforcement learning model. 

Time 
Sites 

Site #1 Site #2 Site #3 Site #4 

Training time 213.55s 247.62s 226.88s 187.49s 

Forecasting time 2.11s 1.98s 1.76s 1.85s 

Computation time 215.66s 249.60s 228.64s 189.34s 

It is worth mentioning that if the proposed model is embedded in MapReduce [59], 
Apache Spark [60], Apache Hadoop [61], and other big data platforms, its computing 
speed can be greatly improved. Faster modeling can better adapt to engineering needs. 

4.2 Application potentials 

The proposed model uses wind speed data with a time interval of 1 min for modeling. 
If the research results are applied to engineering practice, the requirement for wind 
speed time history is that the data points need to be sampled continuously at equal 
intervals. Different from the 10-minute average wind speed standard in China, the 
1-minute wind data used in the proposed model belongs to high-resolution data. For 
high-resolution data, although the acquisition process may be troublesome, the 
application is very flexible. Commonly, high-resolution data can be converted into 
10-min, 30-min, or even 60-min low-resolution data through the classic averaging 
method [62]. In addition, some feature extraction methods can also convert 
high-resolution data into low-resolution data while preserving the key information of 
wind speed data to the greatest extent [44]. As more and more power electronic 
equipment and facilities are applied to traditional wind power systems, the 
construction of high-resolution wind forecasting systems has become particularly 
important. More specifically, the application potentials of high-resolution data are 
summarized as follows: 

 High-resolution wind speed prediction is helpful for the timely scheduling and 
dispatching of the wind power system. The minute-level short-term wind speed 
prediction provides a guarantee for the daily safe operation of large-scale wind 
farms, including avoiding tripping and power failure caused by load information 
errors in the microgrid [63], and reducing the impact of instantaneous voltage 
fluctuations on system equipment [64]. 

 High-resolution wind speed prediction provides more detailed results, which can 
save equipment costs for enterprises Precise wind speed prediction provides more 
guidance for the safety margin setting of the wind power system network. A 
reasonable load safety margin reservation adjustment can avoid waste of 
electricity, thereby reducing enterprise operating expenses. 

4.3 Application scenarios  

Wind conditions at different sites are rather complex and random. Section 3.1 
discusses the characteristics of the studied wind field, and the proposed model is 
suitable for wind speed prediction in high-altitude windy environments of inland areas. 
Different from the wind in inland areas, the sea-land breeze in coastal areas is also a 
typical common wind. The application of inland breeze and sea-land breeze is very 
important, and their respective characteristics are summarized as follows: 
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Xinjiang areas (inland breeze): Xinjiang is located in the northern temperate zone, 
deep inland and far from the sea, with scarce precipitation and arid climate. Xinjiang’s 
topography is dominated by plains, basins, mountains, and Gobi deserts. The minimal 
ground shelter is very conducive to the generation of high-speed winds. Affected by 
mountains, high-altitude convective wind disturbances, and wind vortices can also 
cause near-surface winds. Different from coastal areas, the pressure fluctuations 
caused by the significant daily temperature difference in Xinjiang will also promote 
the formation of wind. Combining these geographical conditions, the wind speed in 
Xinjiang can usually reach the level of wind scale 10 (whole gale). 

Coastal areas (sea-land breeze): Sea-land breeze occurs in offshore and coastal areas. 
The sea-land breeze is usually caused by the temperature difference between the sea 
and the land during the day-night cycle. The temperature difference causes the density 
and pressure difference of the atmosphere near the surface in coastal areas. The 
pressure gradient forces the airflow to move from high-pressure areas to low-pressure 
areas. Among them, the airflow blowing from the ocean to the land during the day is 
called the sea breeze, and the airflow blowing from the land to the ocean at night is 
called the land breeze. Taking the sea-land breeze in the tropics as an example, the 
wind speed of the sea breeze is about 7m/s, and the wind speed of the land breeze is 
about 1m/s~2m/s. 

The differences in generation mechanism, location, and wind speed amplitude make 
the wind conditions of the above two types of winds vary greatly. For different wind 
conditions, it usually requires in-depth and specific experimental research to obtain 
satisfactory modeling results. A model compatible with wind speed prediction tasks in 
inland and coastal areas is expected to be studied. It is worth mentioning that due to 
data-driven characteristics, machine learning models are sensitive to the size of 
training samples [44]. Under normal circumstances, the prediction performance of a 
machine learning model will increase as the number of training samples increases. 
When the training sample is too small, it is difficult for the model to be trained, and 
the performance cannot be exerted fully. 

5 Conclusions and future works 

In this research, a deep reinforcement learning hybrid ensemble model is proposed for 
wind speed forecasting. After repeated experimental verification and case studies, the 
main findings are listed as follows: (a) The adopted adaptive data decomposition 
method can avoid the human error caused by a lack of prior knowledge. Choosing a 
more suitable decomposition layer can improve decomposition efficiency. (b) To 
determine the best model fusion weights, reinforcement learning integration strategies 
are developed for applications in the field of wind speed prediction. The model after 
the best weight combination has better robustness. (c) The WPD-ORELM multiple 
error correction technology combined with LBQ-test and the best correction shrinkage 
rate can effectively mine the predictable components. (d) The proposed model is 
better than the four state-of-the-art models in the comparative experiment. In general, 
the proposed model can contribute to the dispatch and management of wind power 
systems. 

In future research work, more reinforcement learning mechanisms can be applied to 
wind speed prediction modeling, including: (a) the influence of reinforcement 
learning for the parameters optimization of machine learning model; (b) the effect of 
reinforcement learning for the features selection of wind speed time series; (c) the 
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performance of reinforcement learning in dynamic ensemble coefficient optimization. 
In addition, it is worth discussing more modeling application scenarios in future 
works. Finding a compatible model that is suitable for both inland large-scale wind 
fields and coastal sea wind fields will provide more help for wind energy 
development. 
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Appendix: Supplementary materials  

Table A The parameter settings of the proposed reinforcement learning model. 

Parameter Value 
EWT 

Detection method scalespace 
Degree for the polynomial 
interpolation 

6 

Maximum number of bands 25 
Sampling rate 1 
Filter width 10 
DBN 

MaxEpochs 100 
Batch size 1 
Activation function sigm 
Momentum factor 0.0 
Learning rate 0.01 
GRU 
MaxEpochs 100 
MiniBatchSize 16 
LearnRateSchedule piecewise 
L2Regularization 0.001 
Learning rate 0.01 
BiLSTM 
MaxEpochs 100 
GradientThreshold 1 
L2Regularization 0 
BiLSTM-Layer 3 
Learning rate 0.01 
WPD 
Level of decomposition 3 
Mother wavelet db10 
ORELM 
Number of the hidden neurons Selected by cross validation 
Q-learning 

Maximum iteration 100 
Learning rate 0.3 
Discount factor 0.95 

Table B The brief analysis and summary of the state-of-the-art models. 

Author Published year Model structure 

Liu’s model [5] 2021 MEC-MMAdapGA-MODWPT-ELM/ORELM/DBN 

Deng’s model [58] 2020 EWT-ENN-VMD-ARIMA 

Niu’s model [30] 2019 MOGOA-CEEMDAN-BPNN/GRNN/ARIMA/ENN/ELM 

Song’s model [29] 2018 GWO-ICEEMDAN- BPNN/ENN/WNN/GRNN 
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Table C The parameter settings of Liu’s model. 

Model Algorithm Parameter Value 

Liu’s 
model [5] 

MODWPT Level of decomposition 3 

  Mother wavelet Daubechies wavelet 
 DBN Size of input units 10 
  Size of hidden units 15 
  Size of output units 1 
  Momentum factor 0.0 
  Learning rate 0.01 
 ELM Number of the hidden neurons Selected by cross validation 
 ORELM Number of the hidden neurons Selected by cross validation 
 MMAdapGA Size of population 50 
  Maximum iteration 100 
  Independent Discrete Precision 0.1 
 ARMA Auto-regressive degree Selected by Bayesian information criterion 
  Moving average degree Selected by Bayesian information criterion 

 

Table D The parameter settings of Deng’s model. 

Model Algorithm Parameter Value 

Deng’s 
model [58] 

EWT Degree for the polynomial 
interpolation  

6 

  Detection method scalespace 

  Maximum number of bands 25 
  Sampling rate 1 
  Filter width 10 
 ENN Number of hidden neurons Selected by cross validation 

 VMD Number of modes 3 

  Moderate bandwidth constraint 1000 

 ARIMA Auto-Regressive/Integrated/Moving 
Average 

Selected by Bayesian information criterion 
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Table E The parameter settings of Niu’s model. 

Model Algorithm Parameter Value 

Niu’s 
model [30] 

CEEMDAN Ensemble size 500 

  Noise level 0.2 

 MOGOA The maximum number of iterations 100 
  Population size 50 
  The number of grasshoppers 100 
  The number of dims 5 
  The distance between the two 

individuals 
[1,4] 

  f and l 0.5,1.5 
  

min  and max   0.00004,1 

 BPNN Number of hidden neurons Selected by cross validation 
 GRNN Number of pattern neurons Selected by cross validation 
  Number of summation neurons Selected by cross validation 
 ARIMA Auto-Regressive/Integrated/Moving 

Average 
Selected by Bayesian information criterion 

 ENN Number of hidden neurons Selected by cross validation 
 ELM Number of hidden neurons Selected by cross validation 

 

Table F The parameter settings of Song’s model. 

Model Algorithm Parameter Value 

Song’s 
model [29] 

ICEEMDAN Ensemble size 500 

  Noise level 0.2 

 GRNN Number of pattern neurons Selected by cross validation 
  Number of summation neurons Selected by cross validation 
 BPNN Number of hidden neurons Selected by cross validation 
 ENN Number of hidden neurons Selected by cross validation 
 WNN Number of hidden neurons Selected by cross validation 
 GWO Population size 50 
  Maximum iterations 100 
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