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Abstract: Since environmental uncertainty is usually inevitable in transportation systems, 

considering its effect on equilibrium patterns is of vital importance to understand travel choice behavior. 

This paper focuses on stochastic bottleneck capacity, one classical environmental uncertainty, in the 

morning commute problem. We conducted a laboratory experiment to investigate the effects of 

stochastic bottleneck capacity on departure time choice behavior based on a variant of Vickrey’s single 
bottleneck model. In the experiment, the bottleneck capacity varied stochastically from round to round, 

and two different scenarios with different information feedback, i.e., feedback on the subjects’ own cost 

only and feedback on costs of all departure times, were investigated. Our experimental results showed 

that the relationship between the mean travel cost and the standard deviation of travel cost on each 

departure time was fitted approximately linearly with a positive slope 𝜆∗, indicating subjects were more 

likely to minimize their travel cost budget rather than their mean travel cost under environmental 

uncertainty. Also, we found that the feedback on costs of all departure times resulted in a smaller 𝜆∗ 
than the feedback on the subjects’ own travel cost only. We propose a reinforcement learning model to 

reproduce the main experimental findings. Finally, it is shown that the parameter 𝜆∗ obtained from the 
experiment is within the rational range. 

Keywords: departure time choice, bottleneck model, stochastic capacity, laboratory experiment, 

reinforcement learning model 

1. Introduction 

Traffic congestion has become a formidable problem in many urban cities, especially during peak 

hours. Commuting behavior and traffic congestion during the morning peak hours can be described by 

the classical single bottleneck model proposed by Vickrey (1969). In the model, a fixed number of 

commuters depart from the same origin (home) to the same destination (workplace) along a single road. 

There is a potential bottleneck with a fixed capacity on the road, and it will be active when the departure 

rate exceeds its capacity. A queue develops when the bottleneck is active, and commuters have the travel 

time cost caused by congestion. Also, commuters are penalized for arriving early or late. Therefore, 

commuters have to make a tradeoff between travel time and schedule delay to minimize their travel costs. 

User equilibrium is reached when no commuter can unilaterally alter the departure time to decrease 
his/her trip costs. 

The proposal of the Vickrey’s model laid a solid foundation for characterizing the departure time 

choice behavior of commuters during the morning commute. Since then, many improved models have 

been proposed to consider more diverse scenarios, such as pricing (Arnott et al., 1990; Laih, 1994, 2004; 

Lindsey et al., 2012; Wang and Sun, 2014), elastic demand (Arnott et al., 1993; Yang and Huang, 1997), 

heterogeneous commuters (Arnott et al., 1994; Lindsey, 2004; van den Berg and Verhoef, 2011 and 
2014; Yao et al., 2012; Qian et al., 2013; Wang and Xu, 2016), integration of morning and evening 

peaks (de Palma and Lindsey, 2002; Zhang et al., 2005; Li et al., 2014), modal split (Tabuchi, 1993; 

Huang, 2002; Lu et al., 2015), rail transit (Hao et al., 2009; Yang and Tang, 2018; Lu et al., 2020), 

consecutive bottlenecks (Kuwahara, 1990; Lago and Daganzo, 2007), tradable credit scheme (Nie and 
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Yin, 2013; Xiao et al., 2013; Tian et al., 2013), car-pooling (Xiao et al., 2016), ride-sharing (Ma and 

Zhang, 2017; Wang et al., 2019), autonomous vehicles (Liu, 2018; Zhang et al., 2019), time dependent 

capacity (Zhang et al., 2010), queue dependent capacity (Chen et al., 2019; Fosgerau and Small, 2013; 

Liu et al., 2015), and parking (Tian et al., 2019; Liu et al., 2016). One can refer to a recent review paper 

by Li et al. (2020) to comprehensively understand the development of the bottleneck model. 

In addition to the literature mentioned above, many studies have investigated commuting behavior 

under stochastic bottleneck capacity caused by unpredictable events, such as traffic accident, adverse 

weather, unannounced lane close, and transportation infrastructure malfunction (Lindsey, 1994; Arnott 

et al., 1999; Xiao et al., 2015; Long et al., 2021; Yu et al., 2021). For example, Lindsey (1994) 

considered a general distribution of bottleneck capacity and studied the properties of no-toll equilibrium 

and system optimum of the commuting system. Arnott et al. (1999) considered the case where the 
demand and capacity are both stochastic and examined the effects of information on the total social cost. 

Xiao et al. (2015) studied the situation that capacity follows a uniform distribution. They analyzed four 

possible departure-time situations: always early + always queuing, early or late + always queuing, 

always late + always queuing, always late + possible queuing. Long et al. (2021) generalized the 

uniform distribution of capacity to general distribution, and two more departure-time situations: always 

early + possible queuing, early or late + possible queuing, was pointed out. Yu et al. (2021) studied the 

value of inaccurate information in the morning commute with binary stochastic bottleneck capacity and 

investigated the effects of commuters’ different actions in response to such inaccurate information. 

To better understand the departure time choice principle of commuters and examine the theoretical 

assumptions, one can use the method of laboratory experiment, which is a powerful tool for studying 

people’s choice behavior and has been widely used to examine equilibrium (Helbing et al., 2002; 

Gabuthy et al., 2006; Daniel et al., 2009; Rapoport et al., 2014), investigate the effect of information 

(van Essen et al., 2019; Qi et al., 2019; Xiao and Lo, 2016; Lu et al. 2011, 2014; Ramadurai and 

Ukkusuri, 2007; Han et al., 2021), study traffic paradoxes (Ramadurai and Ukkusuri, 2007; Morgan et 

al., 2009; Rapoport et al., 2009, 2014) and assess transportation demand management measures 

(Hartman, 2012; Aziz et al., 2015; Rey et al., 2016).     

Although many previous studies have investigated how commuters made departure time choice by 

using laboratory experiments (Schneider and Weimann, 2004; Gabuthy et al., 2006; Ramadurai and 

Ukkusuri, 2007; Daniel et al., 2009; Sun et al., 2017), most of them focused on strategic uncertainty and 

neglected the influence of environmental uncertainty, such as stochastic bottleneck capacity caused by 

unpredictable events. To the best of our knowledge, there is only one experiment reported on the 

departure time choice behavior concerning environmental uncertainty. Rapoport et al. (2010) considered 

the variability of bottleneck capacity when studying batch queue problems. Two ferries with different 
capacity would arrive on any particular round with equal probability. In their experiments, the subjects 

chose whether and when to join the queue. In mixed-strategy equilibrium, the subjects’ expected payoff 

equal to each other. The experimental results showed that subjects’ aggregate behavior diverged from 

mixed-strategy equilibrium in the experiment with stochastic capacity. Subjects were optimistic about 

obtaining high returns under environmental uncertainty. 

Motivated by the fact, this paper conducted a laboratory experiment to study the departure time 

choice behavior of commuters in the morning commuter under environmental uncertainty. The 

environmental uncertainty in the experiment is expressed as stochastic bottleneck capacity varying from 

round to round. We recruited 120 students and assigned them into 6 groups of experiments under two 

different scenarios of feedback information to make departure time-choice decisions. The experimental 

results show that the relationship between the mean cost and the standard deviation of cost can be fitted 

approximately linearly with a positive slope 𝜆∗. This finding indicates that subjects are likely to 

minimize their travel cost budget (TCB) under environmental uncertainty. Finally, a reinforcement 

learning model is proposed to simulate the behavior mechanism of the commuters. 

The rest of the paper is organized as follows. Section 2 reviews the previous theoretical behavioral 

assumptions and their relationships and differences. Section 3 introduces the experimental setup. The 

experimental results are presented in Section 4. In Section 5, a reinforcement learning model is proposed 

and simulation results are presented. Section 6 studies TCB based user equilibrium and discusses 

whether the parameter 𝜆∗ obtained from the experiment is within the rational range. Section 7 gives a 

conclusion. 

2. Literature Review  



3 

 

In most theoretical works of bottleneck model considering uncertainty, it was assumed that 

commuters minimize their expected cost  

 𝐸(𝐶(𝑡)) = 𝐸[𝛼𝑇(𝑡) +max(𝛽(𝑡∗ − 𝑡 − 𝑇(𝑡)), 0) + max(𝛾(𝑡+𝑇(𝑡) − 𝑡∗), 0)],  (1) 

in which 𝐸[ ] is the expectation operator, 𝑡 is departure time, 𝑇(𝑡) is travel time, 𝑡∗ is work start 

time, 𝐶(𝑡) is trip cost, 𝛼, 𝛽, and 𝛾 denote the unit cost of travel time, the unit cost of schedule delay 
early (SDE), and the unit cost of schedule delay late (SDL), respectively. 

Li et al. (2008, 2009a, 2016, 2017) proposed a different departure time choice principle, in which it 

is assumed that commuters minimize 

 𝑢(𝑡) = 𝛼𝐸(𝑇(𝑡)) + max(𝛽 (𝑡∗ − 𝑡 − 𝐸(𝑇(𝑡))) , 0) +max(𝛾(𝑡+𝐸(𝑇(𝑡)) − 𝑡∗), 0) + 𝜀𝜎(𝑇(𝑡)), (2) 

in which 𝜀 is a parameter, and 𝜎(𝑇(𝑡)) is the standard deviation of travel time. 

Note that for commuters always arriving early, the expected travel cost is 

 𝐸(𝐶(𝑡)) = (𝛼 − 𝛽)𝐸(𝑇(𝑡)) + 𝛽(𝑡∗ − 𝑡)  (3) 

For commuters always arriving late,  

 𝐸(𝐶(𝑡)) = (𝛼 + 𝛾)𝐸(𝑇(𝑡)) + 𝛾(𝑡−𝑡∗) (4) 

For commuters arriving either early or late, one can derive (Li et al., 2009a, 2016; Fosgerau, 2010; 

Fosgerau and Karlstrom, 2010) 𝐸(𝐶(𝑡)) = 𝛼𝐸(𝑇(𝑡)) + max(𝛽 (𝑡∗ − 𝑡 − 𝐸(𝑇(𝑡))) , 0) +max(𝛾(𝑡+𝐸(𝑇(𝑡)) − 𝑡∗), 0) + 𝜉𝑡𝜎(𝑇(𝑡)),
 (5) 

where 0 ≤ 𝜉𝑡 ≤ 𝛽+𝛾2  is an attribute-level dependent parameter. Therefore, 

 𝑢(𝑡) = 𝐸(𝐶(𝑡)) + { 𝜀𝜎(𝑇(𝑡)) if commuters always early or late(𝜀 − 𝜉𝑡)𝜎(𝑇(𝑡)) if commuters either early or late . (6) 

In other words, commuters choose their departure times according to both expected travel cost and the 

standard deviation of travel time (Li et al., 2008, 2009a, 2016, 2017). However, the weight coefficient of 

the standard deviation of travel time is situation dependent.  

Note that Li et al. (2009b) proposed another cost function consisting of expected travel cost and 

variability of travel cost  

 �̂�(𝑡) = 𝜒𝐸(𝐶(𝑡)) + 𝜆𝜎(𝐶(𝑡)) (7) 

to model commuters’ choice behavior under uncertainty. Here 𝜎(𝐶(𝑡)) is the standard deviation of 

travel cost. However, they only studied the special case that parameter 𝜆 = 0.   

Jiang and Lo (2016) also studied the stochastic bottleneck model. They assumed that commuters 

had to endure an exogenous random delay Θ(t) = 𝑄(𝑡)𝑠 𝜃, in which 𝜃 is a random variable with uniform 

distribution, 𝑄(𝑡) is queue length for travelers departing at time 𝑡, and 𝑠 is bottleneck capacity. They 

related the influence of travel cost variability on departure time choice and assumed that commuters 

minimize 

 �̅�(𝑡) = 𝐸(𝐶(𝑡)) + 𝜆�̃�(𝑡), (8) 

in which 𝜆 is a parameter, �̃�(𝑡) denotes the variability of travel cost and is defined as 

 �̃�(𝑡) = ∫ |𝐶(𝑡) − 𝐸(𝐶(𝑡))|𝜃𝑚𝑎𝑥𝜃𝑚𝑖𝑛 𝑓(𝜃)𝑑𝜃, (9) 

where 𝑓(𝜃) is probability density function of 𝜃, 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 are its lower and upper bound, 

respectively. 
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3. Experiment Design 

The experiment was carried out in a computer lab in Beijing Jiaotong University. One hundred and 

twenty undergraduate students participated in the computer-controlled laboratory experiment and 

received performance-based monetary compensation. The recruited students were assigned into 6 

independent groups. Each group had 20 subjects and interacted with each other anonymously. There 

were only interactions within one group, and subjects belonged to different groups had no interactions. 

The numbers of male and female subjects were almost equal in each group to avoid the impact of gender 

on experimental results.  

Our experiment was based on a discrete bottleneck model, in which 20 subjects commuted from a 

single origin (e.g., home) to a single destination (e.g., workplace) along a single road. On the road, there 

was a potential bottleneck with capacity 𝑠 , which was constant within day but fluctuated from 

day-to-day (i.e., round-to-round) following a uniform distribution within [𝑠𝑚𝑖𝑛,𝑠𝑚𝑎𝑥]. If the flow rate 

exceeded 𝑠, the bottleneck would be activated, and a queue developed. The subjects were informed the 

distribution of capacity, but they did not know the capacity on each specific day.  

The travel time from home to workplace is 𝑇(𝑡) = 𝑇𝑓 + 𝑇𝑣(𝑡), where 𝑇𝑓 is the free travel time, 𝑇𝑣(𝑡) is the queuing time due to congestion, and 𝑡 is the departure time from home. Without loss of 

generality, we set 𝑇𝑓 = 0 as usual. Let 𝑞(𝑡) be the queue length. Then, a subject’s travel time equals 

the queuing time 𝑇𝑣(𝑡) = 𝑞(𝑡)/𝑠, in which  

 𝑞(𝑡) = max(𝑞(𝑡 − 1) + 𝑛(𝑡) − 𝑠, 0). (10) 

Here 𝑞(𝑡 − 1) is the queue length at previous departure time 𝑡 − 1, 𝑛(𝑡) is the number of subjects 

who depart at departure time 𝑡. 
Given that the working start time is 𝑡∗, according to the bottleneck model, if a subject leaves home 

at departure time 𝑡, his/her travel cost is 

 𝐶(𝑡) = 𝛼𝑇𝑣(𝑡) + 𝛽 ∙ max(𝑡∗ − 𝑡 − 𝑇𝑣(𝑡), 0) + 𝛾 ∙ max(𝑡+𝑇𝑣(𝑡) − 𝑡∗, 0), (11) 

where the first term on the right-hand side is the queuing cost, the second term is the cost for early 

arrival, and the third term is the cost for late arrival. The coefficients 𝛼, 𝛽 and 𝛾 obey 𝛾 > 𝛼 > 𝛽, 

which is in accordance with Small’s empirical results (1982).1 

The primary concern in this experiment was to study the choice behavior of commuters in the 

morning commute under environmental uncertainty. Since information is widely used in both transport 

research and practices, examining the role of information can provide some insights that enable us fully 

understand the travel behavior. Therefore, we conducted 6 groups of experiments under two different 

scenarios with different information feedback (see Table 1). Note that the unit of parameters (𝛼, 𝛽, 𝛾) 

is Yuan/10 min in experiments.2 In scenario A, only information related to subjects’ own travel costs 
was provided, including choice in the previous round, the early/late arrival time and cost, the queuing 
time and cost, travel cost, score in the previous round, and cumulative score in all previous rounds. In 

scenario B, the travel costs of all departure times in the previous round were feedback to the subjects. 

Figure 1 shows the screenshots of the two scenarios used in the experiment. The travel cost was the 

same for the subjects who chose the same departure time in one round, whereas the specific value of the 

travel cost depended on a subject’s own choice and the others’ choices. In each round. every subject was 

given initial points. Here one round corresponds to one day. An individual’s score was computed by 

subtracting travel cost from his/her initial points. 

 

                              

1
 Note that in the discrete bottleneck model they proposed, Otsubo and Rapoport (2008) assumed that ties, which 

refer to the order in which commuters receive service, are broken randomly with equal probability among the 
commuters who arrive at the bottleneck simultaneously. 
2
 In some empirical studies, such as Small (1982), the three parameters were calibrated from the data collected from 

daily commuting behavior. However, in laboratory experiment studies concerning departure time choice, the travel 
cost function involving the values of the three parameters should be given in advance to guarantee the calculation of 

travel costs choosing different departure times. After the subjects in one group submitted their decisions in one round, 
the server would calculate the travel costs on different departure times and provided such information to these 

subjects in the next round. 
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Table 1. Experimental designs in each scenario 

 
Number 

of group 

Parameter 𝛼/𝛽/𝛾/𝑠 
Initial points 

Information 

provided [𝛼 𝛽 𝛾] [𝑠𝑚𝑖𝑛 , 𝑠𝑚𝑎𝑥] 

Scenario A 3 [2 1 5] [1.33, 4.00] 20 Personalized 

Scenario B 3 [2 1 5] [1.33, 4.00] 20 General 

In our experiment, the work start time was set to be 9 a.m., and there were 16 discrete departure 

times available for the subjects to choose from. In each round, each subject was asked to select one 

departure time and then click the ‘submit’ button. After the 20 subjects in one group submitted their 

choices, the server would calculate the travel time cost and early/late arrival cost at each departure time 

according to the cost function and the capacity of that round. 

At the start of the experiment, we took approximately 15 minutes to explain the game to all subjects, 

followed by a Q & A session. The subjects in each group played the game 150 rounds, lasting 

approximately 90 minutes. Although each round was not time-limited, subjects were suggested to submit 

their choices within 20 seconds (there was a 20 second countdown on the screen). The experiment would 

switch to the next round if and only if all subjects in one group have submitted their decisions. 

When a group of experiments was over, the cumulative score of each subject was converted to a 

payoff (in Chinese Yuan) at a ratio of 100: 3.3 The payoff plus 20 Yuan show-up bonus was their total 

income. The mean income of all subjects was 72.99 Chinese Yuan. 

Note that a subject’s payoff on a given round depends on three things: their own choice of 

departure time, other subjects’ departure-time choices, and the realization of capacity. A subject only 

controls the first factor. The second factor creates strategic uncertainty, and the third factor creates 

environmental uncertainty. 

 
(a) 

                              

3
 Here we convert the cumulative score to payoffs to avoid the possible payoff fluctuations with random selections 

caused by environmental uncertainty. Another way of calculating payoffs is to randomly select several rounds and 
convert the score earned in these rounds to payoffs to avoid income effects. We would like to consider this alternative 

in the future work and compare with the present setup.   
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(b) 

Figure 1. Screenshots of (a) Scenario A, (b) Scenario B. Chinese versions were used in the experiment. 

4. Experimental Results 

Taking one group of experiments in Scenario A as an example, Figure 2 presents the number of 

subjects and travel cost at each departure time in each round. As shown in Figure 2(a), most subjects 

departed between 08:00 and 09:00, and only a small number of subjects departed at 07:50 and 09:10. 

Very few departed before 07:50, and no subject chose departure time 07:10, 09:20, and 09:30. The 

number of subjects at each departure time significantly fluctuated throughout the experiment. Figure 2(b) 

shows the travel cost at each departure time. One can see that with departure times closer to the working 

start time of 09:00, the travel cost fluctuation became higher, and the fluctuation persisted until the end.  

Liu and Szeto (2020) investigated stochastic traffic dynamics in a bi-modal transportation system 

theoretically, and their results showed that the traffic patterns in the network approached more similar 

states for consecutive days after a certain period of travelers' learning process. However, convergence 

can hardly be observed in experiments, even if the route/bottleneck capacity is deterministic. For 

example, Rapoport et al. (2009) investigated the empirical relevance of the Braess paradox. They 

showed that the commuting decisions did not converge to the equilibrium after eighty periods. Selten et 

al. (2004) found no convergence to pure-strategy equilibrium either. They also observed considerable 

fluctuations around the means. Gabuthy et al. (2006) conducted the experiment where subjects made 

both departure time choice and route choice. They found that substantial fluctuations persisted until the 

end of the experiment. Selten et al. (2007) reported a laboratory experiment with a two-route choice 

scenario, in which every subject had to choose one route in each round. Each group of experiments 
included 200 rounds and fluctuations persisted until the end of the experiment. These experimental 

results indicate that strategic uncertainty is ubiquitous in travel choice. 

Figure 3 shows the statistical results on the mean number, mean cost and standard deviation of cost, 

for the 3 groups of experiments in Scenario A. One can see that the number of subjects departing at 

around 8:10 was the largest, which also corresponded to the lowest mean travel cost. The standard 
deviation of cost was the largest around 9:00. The late departure times (at and after 09:00) also 

corresponded to large mean travel cost. For early departure times before 7:30, the travel cost equaled to 𝛽(𝑡∗ − 𝑡), since there was always no queue, irrespective of the bottleneck capacity.4 Accordingly, the 

standard deviation of travel cost at these early departure times was zero. Similar results were observed in 

Scenarios B (see Appendix A). 

 

 

                              

4
 Note that in theoretical equilibrium patterns with continuous-time setting (mean value of parameter λ* in the 

experiment is used), no one departs before 7:30. The meaning of λ* will be introduced later in the main text.  
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(a)                                (b) 

Figure 2. Number of subjects (a) and cost (b) at each departure time over 150 rounds in one group of 

experiments in Scenario A. 

 
(a) 

 
(b) 
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(c) 
Figure 3. Statistical results of scenario A. (a) mean number of subjects, (b) mean travel cost, and (c) 
standard deviation of travel cost. An empty bar indicates no subject chose that departure time. 

Figure 4 shows standard deviation of travel cost vs. mean travel cost at each departure time in the 

experiment5. The area of each data point was proportional to the number of times that particular 

departure time was chosen. We made a weighted linear fit of the data, in which weight was set as the 

area of the data point. One can see that in both scenarios, the relationship for each group of experiments 
can be fitted approximately linearly with a positive slope, i.e. 

 𝜎 = 𝐸(𝐶)/𝜆∗ −𝑚, (12) 

where 𝐸(𝐶) is mean travel cost and 𝜎 is standard deviation of the travel cost, and parameters 𝜆∗ > 0 

and 𝑚 > 0. R-squared results indicate that more than fifty percent of the variance in the standard 

deviation of the travel cost can be explained by the mean travel cost. The t-test results shown in Table 2 

rejected the null hypothesis. 

A reformulation thus leads to 

 𝜆∗ ∙ 𝑚 = 𝐸(𝐶) − 𝜆∗ ∙ 𝜎. (13) 

Similar to the definition of travel time budget proposed by Lo et al. (2006), we can define 𝐸(𝐶) −𝜆∗ ∙ 𝜎 as travel cost budget (TCB). Our experiments thus demonstrated that faced with environmental 

uncertainty (in this case uncertain bottleneck capacity), the subjects were likely to choose the departure 

time according to their travel cost budget, and they behaved with 𝜆∗ > 0. 

 

(a) 

                              
5 It should be noted that in the second group of experiments in Scenario B, one subject misunderstood the travel cost 
shown in the interface as payoff. The subject mostly chose very early or very late departure time. Therefore, in the 

data analysis, the data of this subject were removed. 
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(b) 

Figure 4. The standard deviation of travel cost vs. the mean travel cost in (a) Scenario A and (b) 

Scenario B. The data points represent the 16 departure times and the size of the data point was in 
proportion to the number of times that departure time has been chosen. 

Until now, we have presented evidence at the aggregate level to reveal the relationship between the 

mean travel cost and the standard deviation of travel cost. Next, we analyzed such a relationship at the 

individual level. We investigated the mean travel cost and standard deviation of the travel cost 

experienced by each subject. Figure 5 shows three typical results. For type I, the mean travel cost and 

standard deviation of travel cost were positively correlated (P-value<0.001), see panel (a); For type II, 

they were negatively correlated (P-value=0.026), see panel (b); For type III, the linear relationship 

between the mean travel cost and standard deviation of travel cost was not significant (P-value=0.116), see 

panel (c). The number of the three types of relationship was 43, 2 and 15 in Scenario A and 31, 9 and 19 in 

Scenario B, respectively. One can see that most of subjects belonged to type I although subjects were 

heterogeneous. Moreover, Scenario B has more type II subjects and less type I subjects than Scenario A.  

 

(a)                         (b)                         (c) 

Figure 5. Typical diagrams exhibiting the relationship between the standard deviation of travel cost and 

the mean travel cost at the individual level. The data points represent departure times a subject chose and 

the size of the data point was in proportion to the number of times that departure time was chosen by the 
subject. 

We next examined the departure time choice principle in Eq. (2) and Eq. (8). Figure 6 shows 

standard deviation of travel time (i.e., 𝜎(𝑇(𝑡))) vs.  𝑢′(𝑡) = 𝛼𝐸(𝑇(𝑡)) + max(𝛽 (𝑡∗ − 𝑡 − 𝐸(𝑇(𝑡))) , 0) +max(𝛾(𝑡 + 𝐸(𝑇(𝑡))−𝑡∗), 0) 
for each departure time point in the 6 groups of experiments. Obviously, there was no linear relationship 

between these 𝑢′(𝑡) and 𝜎(𝑇(𝑡)), indicating that the subjects in the experiments did not follow the 

choice principle in Eq. (2).  

However, a linear relationship between �̃�(𝑡) and mean travel cost for each departure time point in 

the 6 groups of experiments was found, and such relationship was very similar to Figure 4. P-values 
obtained from the t-test in Table 2 verified the linear correlation. 
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(a) 

 

(b) 

Figure 6. The standard deviation of travel time vs. 𝑢′(𝑡) in (a) Scenario A and (b) Scenario B. 

Table 2. P-values obtained from the t-test.  

P-value 
Standard deviation of cost vs. mean cost 

Group 1      Group 2       Group 3 

�̃�(𝑡) vs. mean cost 

Group 1      Group 2       Group 3 

Scenario A 2.40×10-7 5.45×10-5 1.50×10-4 2.52×10-8 2.17×10-5 7.54×10-5 

Scenario B 4.15×10-5 1.09×10-4 7.66×10-4 2.95×10-5 4.13×10-5 1.06×10-4 

It should be noted that the positive correlation between the mean and standard deviation of travel 

cost might also depend on game dynamics. As shown in Figure 3(b-c), the mean and standard deviation 

of travel cost both increased with departure time after about 8:10. Presumably, subjects who departed 

late were more likely to arrive late, which was heavily penalized by the large unit cost of arriving late. 

They were also exposed to substantial variability in travel times because of the large potential queues 

that could accumulate during the departure period. As mentioned before, the number of commuters in 

each departure time significantly fluctuated throughout the experiment. The positive correlation between 

mean travel cost and the standard deviation of travel cost could also be driven by this inherent property 
of the bottleneck model.  

Based on the above findings, Figure 7 presents the effective travel cost (i.e., travel cost budget) in 

the experiment. One can see that the effective travel costs were roughly equal from 8:00 ~ 9:00, while 

they were larger for earlier or later departure times. 

 

(a) 
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(b) 

Figure 1. The travel cost budget (observed value of parameter λ* in the experiment is used) vs. the 

departure time in (a) Scenario A, (b) Scenario B. The data points represent the 16 departure times and 

the size of the data point is in proportion to the number of times that departure time has been chosen. 

So far, we have comprehensively understood the relationship between the mean travel cost and the 

standard deviation of the travel cost at both collective and individual level. Next, we investigated the 
effect of information feedback on the choice behavior. Table 3 compares the mean travel cost of subjects 

and the value of 𝜆∗ between Scenario A and Scenario B. One can see that providing information of all 

departure times to the subjects slightly decreased the subjects’ mean travel cost compared with only 

providing subjects’ own information. Also, the feedback on costs of all departure times decreased the 

mean of 𝜆∗. One possible reason is that Scenario B has more type II subjects and less type I subjects 

than Scenario A.     

Table 3 A comparison between Scenario A and Scenario B 

 

Scenario A Scenario B 

Group 

1 

Group 

2 

Group 

3 
Average 

Group 

1 

Group 

2 

Group 

3 
Average 

Mean cost of subjects 8.769 7.782 8.721 8.424 8.377 7.784 7.843 8.001 𝜆∗ 0.455 0.333 0.477 0.422 0.281 0.364 0.358 0.334 

Next, we studied the dependence of mean travel cost of all subjects in round 𝑟 on the bottleneck 

capacity of round 𝑟. As shown in Figure 8, the mean travel cost decreased as the bottleneck capacity 

increased. For the deterministic bottleneck model with fixed capacity, it is known that the travel cost of 

each commuter 𝐶′ depends on the bottleneck capacity 𝑠 
 𝐶′ = 𝛽𝛾𝑁(𝛽+𝛾)𝑠, (14) 

where 𝑁 is the total number of commuters. We also plotted Eq. (14) in Figure 8. One can see that under 

both scenarios, when the bottleneck capacity was low, the mean travel cost in the experiment was 

significantly larger than 𝐶′. However, when the bottleneck capacity was large, the mean travel cost was 

slightly smaller than 𝐶′. One possible reason is that subjects under the stochastic bottleneck departed 

earlier and concentrated than under the deterministic bottleneck, resulting in longer queues and higher 

mean travel cost under low bottleneck capacity. However, such a departure pattern under stochastic 
bottleneck might lead shorter queues and lower travel cost when the bottleneck capacity is high.  

The mean travel cost in Scenario A and Scenario B was 8.424 and 8.001, respectively. We 

calculated the mean travel cost of the deterministic bottleneck model as follows: 

 𝐶′̅ = 1𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛 ∫ 𝛽𝛾𝑁(𝛽+𝛾)𝑠𝑠𝑚𝑎𝑥𝑠𝑚𝑖𝑛 𝑑𝑠 = 𝛽𝛾𝑁(𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛 )(𝛽+𝛾) 𝑙𝑛 𝑠𝑚𝑎𝑥𝑠𝑚𝑖𝑛 . (15) 

The value of 𝐶′̅ is 6.973, which is much smaller than that in the stochastic capacity situation. This 

means that if the bottleneck capacity can be predicted and fed back to the commuters in advance, then 

mean travel cost can be reduced.  
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Figure 8. Mean travel cost of all subjects in round 𝑟 vs. bottleneck capacity of round 𝑟 (Black lines) in 

Scenario A (left) and Scenario B (right). The experimental data were averaged over three groups of 

experiments and processed by moving average in each scenario. The red lines were calculated from Eq. 

(14).  

Now we conducted more analysis to reveal the potential dynamics in the experiment. Still taking 

one group of experiments in Scenario A as an example, Figure 9(a) presents the departure time choice of 

each subject and numbers the subjects in ascending order according to their mean travel cost. One can see 

that subjects with low mean travel cost usually chose early departure times. For example, Subject 1 had 

the lowest mean travel cost. He/she mainly chose 8:00, 8:10, 8:20 and 8:30. Subject 2 had the second 

lowest mean travel cost. He/she mainly chose 8:10 and 8:30. In contrast, subjects with high mean travel 

cost usually chose late departure times. For example, Subject 20 had the highest mean travel cost, and 

he/she mainly chose 8:40, 8:50, 9:00 and 9:10. Subject 19 had the second highest mean travel cost, and 

he/she mainly chose 8:50, 9:00 and 9:10. We examined other 5 groups of experiments, and similar results 

were observed. Figure 9(b) shows the relationship between the mean travel cost and the average 

departure time, in which a positive correlation was observed. Also, the mean travel cost in Scenario B is 
more concentrated than that in Scenario A, indicating that providing information of all departure times 
significantly affects the choice of the subjects. 

 

(a) 
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(b) 

Figure 9. (a) Evolution of individual behavior in one group of experiments in Scenario A. (b) Mean travel 

cost vs. the average departure time in Scenario A (left) and Scenario B (right). 

Figure 10 presented the impact of capacity and mean cost in round 𝑟  on the departure time 

changing ratio from round 𝑟 to round 𝑟 + 1. One can see that the departure time changing ratio was 

negatively correlated with the bottleneck capacity and positively correlated with the mean travel cost on 

the previous round. Moreover, there are more subjects shifting their choice in Scenario B than in 
Scenario A. 

In Scenario A, the arrival time information has been fed to the subjects. Therefore, we analyzed the 

relationship between arrival time in round 𝑟 and the departure time changing behavior from round 𝑟 to 

round 𝑟 + 1 in this Scenario. Table 4 shows that after experiencing early arrival in last round (the grey 

rows), most subjects chose to maintain or delay the departure in the next round. Moreover, the closer the 

arrival time is to 9:00, the smaller the proportion of people who delay the departure. On the other hand, 

subjects who were late in the last round tend to depart early. The later the arrival time, the higher the 

proportion of people who leave early.  

 

Figure 10. Departure time changing ratio from round 𝑟 to round 𝑟+1 vs. bottleneck capacity (left) and 

mean travel cost (right) of round 𝑟 in Scenario A and Scenario B. The data were averaged over three 

groups of experiments and processed by moving average.  

Table 4 Departure time changing behavior from round 𝑟 to round 𝑟 + 1 vs. arrival time in round 𝑟 in 

Scenario A. The data were averaged over three groups of experiments. 

Arrival time in round 𝑟 

/total number of commuters 

Ratio of departing 

earlier in round 𝑟 + 1 

Ratio of not changing 

departure time in round 𝑟 + 1 

Ratio of departing 

later in round 𝑟 + 1 

Earlier than 7:30 / 13 15.38% 0.00% 84.62% 

7:30 ~ 7:40 / 31 6.45% 51.61% 41.94% 

7:40 ~ 7:50 / 39 2.56% 33.33% 64.10% 



14 

 

7:50 ~8:00 / 441 1.36% 59.18% 39.46% 

8:00 ~ 8:10/ 876 2.17% 58.45% 39.38% 

8:10 ~ 8:20/ 943 5.62% 65.96% 28.42% 

8:20 ~ 8:30 / 1216 10.44% 61.27% 28.29% 

8:30 ~ 8:40 / 1143 15.40% 57.39% 27.21% 

8:40 ~ 8:50 / 1059 22.00% 54.30% 23.70% 

8:50 ~ 9:00 / 943 24.50% 57.58% 17.92% 

9:00 ~ 9:10 / 864 42.48% 46.64% 10.88% 

9:10 ~ 9:20 / 508 54.33% 31.89% 13.78% 

9:20 ~ 9:30 / 309 61.49% 24.27% 14.24% 

Later than 9:30 / 555 62.52% 21.44% 16.04% 

Many previous studies have investigated the morning commuting behavior under stochastic 

bottleneck capacity through user equilibrium analysis. For example, Xiao et al. (2015) analyzed one 

classical departure pattern under stochastic bottleneck capacity with a uniform distribution. Figure 11 

compares our experimental results with the equilibrium pattern calculated by Xiao et al. (2015). One can 

see that there was a significant difference between experimental observations and the theoretical pattern 

obtained by Xiao et al. (2015). The possible reasons of such difference include (i) Xiao et al. (2015) 

assumed that commuters minimized the mean travel cost, while we observed that the subjects actually 

minimized travel cost budget; (ii) A discrete bottleneck model was used in our experiment while the 

continuous time model was used in Xiao et al. (2015); (iii) The individuals in the experiment were 

heterogeneous while the theoretical studies assumed homogeneous commuters. 

 

(a) 

 

(b) 
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Figure 11. Comparison between our experimental results and the theoretical result in Xiao et al. (2015). 

The blue lines denote the results calculated from Xiao et al. (2015). (a) Scenario A. (b) Scenario B.  

Finally, we compared the travel cost in the experiment with that in theoretical equilibrium patterns 

with continuous-time setting (mean value of parameter λ* in Table 3 is used). In the experiment, the 
mean travel cost of each departure time was 10.238 and 9.7528 in Scenario A and B, respectively. In 

theoretical equilibrium patterns, the mean travel cost of each departure time was 8.6256 and 8.4956 in 

Scenario A and B, respectively. One can see that the mean travel cost in the experiment were higher than 

those in theoretical equilibrium patterns in both Scenario A and B. One possible reason might be that 

time periods were arranged in 10-minute intervals, which was a coarse discretization. In the future, more 

experiments are needed to examine the experimental results by decreasing discrete time intervals. 

5. Reinforcement Learning Model 

Our experiment demonstrated that when the bottleneck capacity was stochastic, commuters were 

likely to choose the departure time to minimize the travel cost budget instead of the expected travel cost6. 

Based on this finding, a reinforcement learning (REL) model is proposed to reproduce commuters’ 
choice behavior under stochastic bottleneck capacity. The REL model has been widely used to model 

travel choice behavior, including route choice (Avineri and Prashker, 2005; Selten et al., 2007; Lu et al., 

2014), departure time choice (Daniel et al., 2009; Sun et al., 2017) and travel mode choice (Yang et al., 

2017). In the REL model, subjects are assumed to have a propensity corresponding to each option of 
choice, and the propensity is influenced by the choices in previous rounds. Then, the propensity is 

converted into a probability that controls the choice of people in the next round. In this way, subjects 

accumulate experience and learn in the decision-making process. The REL model emphasizes that 
subjects tend to repeatedly choose the strategies which have brought higher payoff in previous rounds. 

We propose the REL model as follows 

1. Choice in the initial two rounds: it is assumed that in the first and second rounds, all 
individuals choose each departure time point with equal probability. 

2. Update propensities: The propensity of individual 𝑖 in round 𝑟 + 1 (𝑟 > 1) is updated 

by 𝑞𝑖𝑟+1(𝑡) =

{  
   
   
  𝐸[𝐶𝑖(𝑡)] − 𝜆∗ ∙ 𝜎[𝐶𝑖(𝑡)],                                                  𝑡 ∈ 𝑉𝑖𝑞𝑖𝑟+1(𝑡𝑖𝑘)−𝑞𝑖𝑟+1(𝑡𝑖𝑘−1)𝑡𝑖𝑘−𝑡𝑖𝑘−1 (𝑡 − 𝑡𝑖𝑘−1) + 𝑞𝑖𝑟+1(𝑡𝑖𝑘−1),             𝑡 ∉ 𝑉𝑖  and 𝑡𝑖𝑘−1 < 𝑡 < 𝑡𝑖𝑘𝑞𝑖𝑟+1(𝑡𝑖2)−𝑞𝑖𝑟+1(𝑡𝑖1)𝑡𝑖2−𝑡𝑖1 (𝑡 − 𝑡𝑖1) + 𝑞𝑖𝑟+1(𝑡𝑖1),                           𝑡 = 𝑡𝑖1 − 1𝑞𝑖𝑟+1(𝑡𝑖𝑛)−𝑞𝑖𝑟+1(𝑡𝑖𝑛−1)𝑡𝑖𝑛−𝑡𝑖𝑛−1 (𝑡 − 𝑡𝑖𝑛) + 𝑞𝑖𝑟+1(𝑡𝑖𝑛),                      𝑡 = 𝑡𝑖𝑛 + 1𝑞𝑖𝑟+1(𝑡𝑖1 − 1),                                                                      𝑡 < 𝑡𝑖1 − 1𝑞𝑖𝑟+1(𝑡𝑖𝑛 + 1),                                                                     𝑡 > 𝑡𝑖𝑛 + 1

 (16) 

where 𝑞𝑖𝑟+1(𝑡) is the propensity of individual 𝑖 to choose departure time 𝑡 in the (𝑟 + 1)𝑡ℎ round; 𝑉𝑖 = [𝑡𝑖1, 𝑡𝑖2,⋯ , 𝑡𝑖𝑘 ,⋯ , 𝑡𝑖𝑛−1, 𝑡𝑖𝑛] is the set of departure times that have been chosen by individual 𝑖 
from round 1 to round 𝑟, and 𝑡𝑖1 and 𝑡𝑖𝑛 are the earliest and the latest departure time that have been 

chosen; 𝐸[𝐶𝑖(𝑡)] and 𝜎[𝐶𝑖(𝑡)] are the mean cost and standard deviation of cost at departure time 𝑡 , calculated from the rounds that individual 𝑖 has chosen departure time 𝑡; 𝜆∗ is a parameter.  

                              

6
 Our experiment does not exclude that commuters minimize �̅�(𝑡) = 𝐸(𝐶(𝑡)) + 𝜆�̃�(𝑡). However, since both �̃�(𝑡) 

and 𝜎(𝐶(𝑡)) reflect variability of travel cost, and 𝜎(𝐶(𝑡)) is much more frequently used than �̃�(𝑡), we use travel 

cost budget in the modeling.  
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The basic idea is, for a departure time that has been chosen before, the propensity of individual 𝑖 is set to equal his/her experienced TCB at that departure time; for departure time between 𝑡𝑖1 − 1 

and 𝑡𝑖𝑛 + 1 that has not been chosen before, the propensity is obtained from linear interpolation or 

extrapolation from the propensities of the two nearest chosen departure times; for unchosen 

departure times earlier than 𝑡𝑖1 − 1 (or later than 𝑡𝑖𝑛 + 1), the propensity is set to equal to that on 𝑡𝑖1 − 1 (or 𝑡𝑖𝑛 + 1). 

3. Update probabilities: The probability of choosing departure time 𝑡 in round 𝑟 + 1 is 

calculated by 

 𝑝𝑖𝑟+1(𝑡) =  exp (− η𝜑𝑖∙𝑞𝑖𝑟+1(𝑡))∑ exp (− 𝜂𝜑𝑖∙𝑞𝑖𝑟+1(𝑘))𝑇𝑘=1  (17) 

where 𝜂 > 0 is reinforcement coefficient determining the reinforcement sensitivity, 𝜑𝑖  is mean 

cost of individual 𝑖 from round 1 to round 𝑟, 𝑇 is the number of departure times. Here, it is 
assumed that subjects respond to percentage changes in payoffs rather than absolute amounts. 

As in experiment, each simulation run includes 20 participants and lasts 150 rounds, using the same 

capacity sequence as in the experiment. The value of 𝜆∗ in Scenarios A and B and the reinforcement 

coefficient 𝜂  need to be calibrated. The calibration result is 𝜆∗ =0.2828, 0.2036, respectively, in 

Scenarios A and B and 𝜂 =14.7445, by minimizing sum of the difference of commuter number at each 
departure time between experimental and simulation results. 

Figures 12 and 13 compare the experimental and simulation results in Scenario A. Results in 
Scenario B are shown in Appendix B. As shown in Figure 12, the REL model can capture the general 

trend of mean number of commuters, which increases with departure times, reaches the maximum at 

round 8:00-8:10, and then decreases. However, the REL model cannot perfectly reproduce the results 

observed in the experiment, especially in groups 1 and 3 in Scenario A. One possible reason is that in 

the three groups, the same value of 𝜆∗ was used in the simulation, whereas the observed value of 𝜆∗ 
in the experiment was different.  

Figure 13(a) shows the mean travel cost in each round. One can see that the model can well 

characterize the change of mean travel cost with the round. To further quantify the difference between 

the simulation results and the experimental ones, Figure 13(b) shows the distribution of the relative error. 

One can see that the relative errors are mostly smaller than 20%. Here relative error is defined as 𝑐𝑠𝑖𝑚−𝑐𝑒𝑥𝑝𝑐𝑒𝑥𝑝 , with 𝑐𝑠𝑖𝑚  and 𝑐𝑒𝑥𝑝  denoting mean travel cost in the simulation and in the experiment, 

respectively. For those relative errors larger than 20%, it is usually because 𝑐𝑒𝑥𝑝 is small. For example, 

in round 97 in group 1, the relative error is 65.14%, which corresponds to 𝑐𝑒𝑥𝑝 = 2.5688. 

Table 5 shows the R-squared results between simulation and experimental results. One can see that 
the model can reproduce the collective choice behavior quite well. Moreover, the REL model also 

reproduces the linear relationship between standard deviation of travel cost and the mean travel cost, as 

shown in Figure 14. 

 

Figure 12. Comparison of mean number of commuters at each departure time between the experiment of 

Scenario A and the simulation. The black curve is the experimental result, the red dash line is the result 

of REL model, and the shadow region is the error bar of simulation result. 
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(a) 

 

(b) 

Figure 13. (a) Comparison of the evolution of mean travel cost between the experiment of Scenario A 

and the simulation. The black curve is the experimental result, the red dash line is the mean result of 

REL model, and the shadow region is the error bar. (b) The distribution of the relative error in Scenario 

A.  

Table 5 R-squared results between simulation and experimental results. 

 
Mean number of commuters 

Group 1      Group 2      Group 3 

Average cost 

 Group 1     Group 2       Group 3 

Scenario A 0.9184 0.9826 0.9115 0.9113 0.9078 0.9055 

Scenario B 0.8005 0.9392 0.9082 0.9304 0.9165 0.9058 

 

(a) 
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(b) 

Figure 14. Standard deviation of travel cost vs. mean travel cost at each departure time in the experiment 

and the simulation. The area of each point is proportional to the mean number of commuters of choosing 

the departure time. The red points are the simulation results while the black points represent 

experimental results. The dash line is the fitted curve of the experimental data. (a) and (b) are results of 3 

groups of experiments in Scenario A and B, respectively. 

6. Discussion 

The experimental findings would inspire us to propose a TCB based user equilibrium for bottleneck 

model with stochastic capacity7. We have studied such a problem (Liu et al., 2020), in which the 

bottleneck capacity was constant within a day but changes stochastically from day-to-day between a 

designed value (good condition) with probability 1 − 𝜋  and a degraded one (bad condition) with 

probability 𝜋 . That study revealed that considering variability of travel cost significantly affected 

departure time choice. Specifically, it was shown that minimizing TCB, which was defined as E(C(t)) +𝜆𝜎(𝐶(𝑡)) ,  8  yielded seven possible equilibrium patterns. Closed form solutions to all possible 

equilibrium patterns and their corresponding parameter ranges were derived. Dependence of travel cost 

and the duration of peak hours on the commuters' risk attitude has also been derived in each equilibrium 
pattern. 

The rationality of the patterns has been investigated. A pattern is defined as irrational if the low cost 

of a departure time (that is achieved on good condition) is larger than the high cost of any other departure 

time (that is achieved on bad condition). It is shown that the parameter 𝜆 should be within the range −𝜋√π(1−π) < 𝜆 < 1−𝜋√π(1−π). Otherwise, the pattern would be irrational. Moreover, a region in which no 

equilibrium solution exists is observed. One possible explanation is proposed: the parameter 𝜆  of 
travelers would not be in the region in reality.  

This section examines whether the parameter 𝜆∗ obtained from the experiments was within the 

rational range. However, the closed form solutions cannot be derived under the assumption of a 
uniformly distributed bottleneck capacity. Thus, we use the numerical solutions.  

There are still six situations faced by commuters, as mentioned before in Introduction: always early 

+ always queuing (SDE+AQ); early or late + always queuing (SDE/L+AQ); always late + always 

queuing (SDL+AQ); always early + possible queuing (SDE+PQ); early or late + possible queuing 
(SDE/L+PQ); always late + possible queuing (SDL+PQ). Here, we only show formulation of departure 
rate in one of the six situations. Formulation in other situations is shown in Appendix C.  

Formulation of departure rate in situation SDE+AQ is given as follows. In this situation, no matter 

how the bottleneck capacity varies, all commuters always arrive early and always experience queuing. 
Without loss of generality, the free flow travel time on the highway is set to be zero. Thus, one has 

                              

7 Note that there are several other equilibrium models based on "effective travel time/cost", including the percentile 
user equilibrium model, in which all travelers are assumed to choose routes to minimize their own percentile travel 
time (Nie, 2011); the α-reliable mean excess traffic equilibrium model, in which all travelers are assumed to 
minimize their travel risk measured by the conditional expectation of the excess travel time for a certain travel time 

budget (Chen and Zhou, 2010); and the traffic equilibrium model based on the quadratic disutility function (Yin et al., 
2004). 

8
 Note that 𝜆 and 𝜆∗ have opposite signs.  
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 𝐶(𝑡) = 𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 ) , 𝑠 ∈ [𝜃�̅�, �̅�] (18) 

 𝐸(𝐶(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠)+ 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )]𝑓(𝑠)𝑑𝑠�̅�𝜃�̅�  (19) 

𝐸(𝐶2(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )]2 𝑓(𝑠)𝑑𝑠�̅�𝜃�̅�             (20) 

 𝜎(𝐶(𝑡)) = √𝑣𝑎𝑟(𝐶(𝑡)) = √𝐸(𝐶2(𝑡)) − (𝐸(𝐶(𝑡)))2 = (𝛼 − 𝛽)𝑅(𝑡)√ 1𝜃𝑠2 − (𝑙𝑛𝜃−1𝑠−𝜃𝑠 )2 (21) 

Here 𝑠𝑚𝑎𝑥 = s , 𝑠𝑚𝑖𝑛 = 𝜃s  and 0 < 𝜃 < 1 . 𝑓(𝑠) = 1 (s − θs)⁄  indicates the probability density 

function of the uniform distribution. 𝑅(𝑡) = ∫ 𝑟(𝑡)𝑑𝑡𝑡𝑡𝑠  is the cumulative departure from 𝑡𝑠 to 𝑡. 𝑡𝑠 
and 𝑡∗ are the first departure time and the work start time, respectively. 𝑟(𝑡) is departure rate at time 𝑡. The travel cost budget is still defined as, 

 TCB(t) = 𝐸(𝐶(𝑡)) + 𝜆𝜎(𝐶(𝑡)) (22) 

Substituting Eqs. (19) and (21) into Eq. (22), and using the equilibrium condition 𝑑TCB(𝑡) 𝑑𝑡⁄ = 0, we 

can obtain the equilibrium departure rate of this situation, given as follows,  

 𝑟(𝑡) = 𝛼(𝛼−𝛽)(𝑙𝑛𝜃−1𝑠−𝜃𝑠 +𝜆√ 1𝜃𝑠2−(𝑙𝑛𝜃−1𝑠−𝜃𝑠 )2) (23) 

We would like to mention that except this departure rate and the departure rate in situation SDL+AQ, the 

departure rate in other 4 situations cannot be obtained analytically.  

Having the departure rate in each situation calculated analytically or numerically, we can obtain six 

possible equilibrium departure patterns. Notice that Patterns 1-3 and Patterns 4-6 are the same as Patterns 

1-3 and Patterns 5-7 corresponding to the bivariate capacity (Liu et al., 2020), respectively. But Pattern 4 

corresponding to the bivariate capacity does not exist here.  

Using the parameters in experiment and changing parameters 𝜆 and 𝜃, a diagram exhibiting the six 

equilibrium patterns can be obtained numerically, as shown in Figure 15. Note that different from that 

corresponding to bivariate capacity (Liu et al., 2020), there does not exist the region that has no 

equilibrium solution.  

The two red dashed lines represent rationality thresholds. Patterns beyond the two red dashed lines 

are irrational. Here a pattern is defined as irrational if the lowest cost of a departure time (that is achieved 

on best condition 𝑠 = 𝑠𝑚𝑎𝑥) is larger than the highest cost of any other departure time (that is achieved on 

worst condition 𝑠 = 𝑠𝑚𝑖𝑛). Note that individual’s travel cost depends not only on what he/she does, but 

also on what other commuters do and on environmental uncertainty by nature. Here, it is supposed that 

decisions of the individuals do not change day-to-day, and travel cost changes only due to environmental 

uncertainty. Rationality of the decisions is judged based on the costs on many days. One can see that 

Pattern 6 is always irrational, and Patterns 1-4 are partially irrational. It seems that Pattern 5 is always 

rational. However, unfortunately, we cannot provide rigorous proof due to lack of closed form solutions.  
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In our experiment, 𝜃 = 0.3325, the maximum value of 𝜆∗ is 0.477 and the minimum value of 𝜆∗ is 

0.281 (see Table 3), which correspond to the maximum value 𝜆 = −0.281 and minimum value 𝜆 =−0.477. As indicated by the two dots in Figure 15, the parameter obtained from the experiment is within 

the rational range.  

 

Figure 15. The pattern diagram. Note that the vertical axis is arctan (𝜆). 

7. Conclusion 

Environmental uncertainty is an important feature of traffic systems, and it is one of the most 

important factors affecting commuters’ choice behavior. Although theoretical works concerning 
bottleneck model with stochastic capacity have been reported, the departure time choice behavior has not 
been validated before.  

Laboratory experiments provide us with an efficient way to examine behavior characteristic. This 

method is controllable, repeatable, and low in experimental cost, and thus becomes the preferred method 
to reveal the potential mechanism of decision-making behavior. 

This paper designed and conducted a laboratory experiment to investigate the effects of stochastic 

bottleneck capacity on commuter departure time choice behavior. The most important finding is that the 

relationship between standard deviation of travel cost and mean travel cost can be fitted approximately 

linearly with a positive slope 𝜆∗. The individual behavior has also been studied. It is found that while the 

individuals were heterogeneous, standard deviation of travel cost and mean travel cost exhibited positive 

correlations for most individuals. This suggests that subjects were likely to minimize their travel cost 
budget rather than mean travel cost.  

Other findings include: (i) Providing information of all departure times to the subjects slightly 

decreased the commuters’ travel costs and the slope 𝜆∗  compared with providing subjects’ own 
information only. (ii) The mean travel cost under the stochastic bottleneck capacity was higher than that 

under the deterministic bottleneck capacity. (iii) Subjects with low (high) mean travel cost were more 

likely to choose early (late) departure times. (iv) The departure time changing ratio from round 𝑟 to 

round 𝑟 + 1 was negatively correlated with the capacity and positively correlated with the mean travel 

cost on the previous round. Also, providing information of all departure times increases changing ratio of 
subjects compared with providing subjects’ own information only. 

We have proposed a reinforcement learning model. The main characteristic of the model is that for 

some departure times that have not been chosen before, the propensity is obtained from linear 

interpolation or extrapolation from the propensities of the two nearest chosen departure times. 
Simulation shows that the model can reproduce the main experimental findings. 

Finally, the rationality of the parameter 𝜆∗ obtained from the experiments has been investigated. It 

is shown that six possible equilibrium patterns can be obtained numerically when the capacity is 
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uniformly distributed. The parameter 𝜆∗ in experiment is within the rational range. 

Two insights can be provided for traffic management. Firstly, traffic management departments need 

to have a deep understanding of commuters’ behavior so that peak hour traffic congestion can be better 

managed, since the peak period and the travel cost of commuters depend on their choice behavior. 

Secondly, information plays an important role in shaping commuters’ choice behavior, thus affecting 

their travel costs. In particular, if the bottleneck capacity can be predicted accurately, and commuters 

have timely access to the forecast, their travel costs can be reduced significantly. Thus, traffic 
management departments can utilize information as an effective tool to manage traffic congestion. 

It should be noted that the study has some limitations. Firstly, the free-flow travel time is assumed to 

be zero in the experiment. The free-flow travel time may influence the experimental results by increasing 

the travel cost of subjects. Secondly, a biased sample only involving students and limited number of 

participants in each experimental group may influence the validity of the experimental findings. To 

address the concerns regarding the bias of a specific sample, one needs to use additional samples drawn 

from a different pool to replicate the results (McGrath, 1982). Thirdly, stochastic capacity is assumed to 

follow the uniform distribution in the experiment. However, how capacity changes with uncertain 

environment would be more complex in reality. In the future work, more experiments are needed to 
address these limitations, by considering free flow time, by recruiting different number of subjects with 

different background, and by setting different distributions of the capacity. Fourthly, we assume that 

commuters incur the same travel costs and face the same arrival constraints following the literature about 

departure time choice using laboratory experiments (Schneider and Weimann, 2004; Gabuthy et al., 

2006; Ramadurai and Ukkusuri, 2007; Daniel et al., 2009; Sun et al., 2017). However, some empirical 

studies have found that commuters’ travel costs and arrival constraints were associated with their 
sociodemographic information, such as age, education, and gender (Small, 1982; Li et al., 2010). Many 

studies have investigated departure time choice in consideration of heterogeneous commuters through 

theoretical modeling (Arnott et al., 1987; Li et al., 2020), and these theoretical results considering 

heterogeneous commuters should be verified through further laboratory experiments. Also, our 

experiment can be extended in many ways to investigate the impact of, e.g., staggered working hours, 
ridesharing, and parking management.  
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Appendix A：Experimental Results in Scenario B  

 
(a) 

 
(b) 
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(c) 

Figure A1. (a) mean number of subjects, (b) mean travel cost, and (c) standard deviation of travel cost in 

the three groups of experiments in Scenario B. The histograms in the figure represent three groups of 

experiments in this Scenario. 

Appendix B Simulation results in Scenario B  

 

Figure B1. Mean number of commuters at each departure time point in experiment and simulation in 

Scenario B. The black curve is the experimental result, the red dash line is the result of REL model, and 

the shadow region is the error bar of simulation result. 

 

(a) 
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(b) 

Figure B2. (a) Mean cost in each round in experiment and simulation in Scenario B. The black curve is 

the experimental result, the red dash line is the mean result of REL model, and the shadow region is the 

error bar. (b) The distribution of the relative error in this Scenario.  

 

Appendix C Formulation in other situations  

In Section 5, we have provided derivation of departure rate in situation SDE+AQ. The formulations 

in other 5 situations are provided here. 

(i) Early or late + Always queuing (SDE/L+AQ) 

In this situation, whether commuters arrive at destination early or late depends on the capacity of 

bottleneck, but they always experience queuing. Commuters experience schedule delay early if 
𝑅(𝑡)𝑠 −

(𝑡 − 𝑡𝑠) + 𝑡 ≤ 𝑡∗, i.e., 𝑠 ≥ 𝑅(𝑡)(𝑡∗−𝑡𝑠). Otherwise, they experience schedule delay late. Thus, one has 

 𝐶(𝑡) = {𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗) , 𝑠 ∈ [𝜃�̄�, 𝑅(𝑡)𝑡∗−𝑡𝑠]𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 ) , 𝑠 ∈ ( 𝑅(𝑡)𝑡∗−𝑡𝑠 , �̄�]  (C.1) 

 𝐸(𝐶(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]𝑅(𝑡)𝑡∗−𝑡𝑠𝜃�̄� 𝑓(𝑠)𝑑𝑠 + ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) +�̄�𝑅(𝑡)𝑡∗−𝑡𝑠𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )] 𝑓(𝑠)𝑑𝑠  (C.2) 

𝐸(𝐶2(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]2𝑅(𝑡)𝑡∗−𝑡𝑠𝜃�̄� 𝑓(𝑠)𝑑𝑠 + ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) +�̄�𝑅(𝑡)𝑡∗−𝑡𝑠𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )]2 𝑓(𝑠)𝑑𝑠  (C.3) 

 𝜎(𝐶(𝑡)) = √𝑣𝑎𝑟(𝐶(𝑡)) = √𝐸(𝐶2(𝑡)) − (𝐸(𝐶(𝑡)))2 (C.4) 

In this situation, we can only obtain the departure rate numerically.  

(ii) Always late + Always queuing (SDL+AQ)  

In this situation, no matter how the capacity varies, all commuters experience schedule delay late and 

always queuing. Thus, one has 
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 𝐶(𝑡) = 𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗) , 𝑠 ∈ [𝜃�̄�, �̄�]          (C.5) 

 𝐸(𝐶(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]�̄�𝜃�̄� 𝑓(𝑠)𝑑𝑠   (C.6) 

 𝐸(𝐶2(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]2�̄�𝜃�̄� 𝑓(𝑠)𝑑𝑠   (C.7) 

 𝜎(𝐶(𝑡)) = (𝛼 + 𝛾)𝑅(𝑡)√ 1𝜃𝑠2 − (𝑙𝑛𝜃−1𝑠−𝜃𝑠 )2 (C.8) 

Substituting (C.6) and (C.8) into Eq. (21) and using the equilibrium condition, we can obtain the 

departure rate as follows, 

 𝑟(𝑡) = 𝛼(𝛼+𝛾)(𝑙𝑛𝜃−1𝑠−𝜃𝑠 +𝜆√ 1𝜃𝑠2−(𝑙𝑛𝜃−1𝑠−𝜃𝑠 )2) (C.9) 

(iii) Always late + Possible queuing (SDL+PQ)  

In this situation, commuters arrive at the destination always late, but may experience queuing 

depending on the capacity of bottleneck. Commuters experience queuing if 
𝑅(𝑡)𝑠 − (𝑡 − 𝑡𝑠) > 0, i.e., 𝑠 ≤

𝑅(𝑡)(𝑡−𝑡𝑠). Otherwise, they do not experience queuing. Thus, one has 

 𝐶(𝑡) = {𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗) , 𝑠 ∈ [𝜃�̄�, 𝑅(𝑡)𝑡−𝑡𝑠]𝛾(𝑡 − 𝑡∗),                                                     𝑠 ∈ (𝑅(𝑡)𝑡−𝑡𝑠 , �̄�]   (C.10) 

𝐸(𝐶(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]𝑓(𝑠)𝑅(𝑡)𝑡−𝑡𝑠𝜃�̄� 𝑑𝑠 + ∫ 𝛾(𝑡 − 𝑡∗)𝑓(𝑠)�̄�𝑅(𝑡)𝑡−𝑡𝑠 𝑑𝑠  

 (C.11) 

 𝐸(𝐶2(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]2 𝑓(𝑠)𝑅(𝑡)𝑡−𝑡𝑠𝜃�̄� 𝑑𝑠 + ∫ [𝛾(𝑡 − 𝑡∗)]2𝑓(𝑠)�̄�𝑅(𝑡)𝑡−𝑡𝑠 𝑑𝑠
 (C.12) 

In this situation, we can only obtain the departure rate numerically.  

(iv) Early or late + Possible queuing (SDE/L+PQ) 

In this situation, commuters may experience schedule delay early or late, and may experience 

queuing depending on the capacity of bottleneck. If the capacity 𝑠 ≥ 𝑅(𝑡)(𝑡−𝑡𝑠), commuters arrive at the 

destination early and experience no queuing. If the capacity 𝑠 < 𝑅(𝑡)(𝑡∗−𝑡𝑠), commuters arrive at the 

destination late and always experience queuing. Otherwise, commuters experience schedule delay early 

and experience queuing. Thus, one has 
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 𝐶(𝑡) = {  
  𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗) , 𝑠 ∈ [𝜃�̄�, 𝑅(𝑡)𝑡∗−𝑡𝑠]𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 ) , 𝑠 ∈ ( 𝑅(𝑡)𝑡∗−𝑡𝑠 , 𝑅(𝑡)𝑡−𝑡𝑠]𝛽(𝑡∗ − 𝑡),                                                    𝑠 ∈ (𝑅(𝑡)𝑡−𝑡𝑠 , �̄�]   (C.13) 

 𝐸(𝐶(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]𝑅(𝑡)𝑡∗−𝑡𝑠𝜃�̄� 𝑓(𝑠)𝑑𝑠 + ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) +𝑅(𝑡)𝑡−𝑡𝑠𝑅(𝑡)𝑡∗−𝑡𝑠𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )] 𝑓(𝑠)𝑑𝑠 + ∫ 𝛽(𝑡∗ − 𝑡)𝑓(𝑠)𝑑𝑠�̄�𝑅(𝑡)𝑡−𝑡𝑠              (C.14) 

 𝐸(𝐶2(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛾 (𝑅(𝑡)𝑠 + 𝑡𝑠 − 𝑡∗)]2𝑅(𝑡)𝑡∗−𝑡𝑠𝜃�̄� 𝑓(𝑠)𝑑𝑠 + ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) +𝑅(𝑡)𝑡−𝑡𝑠𝑅(𝑡)𝑡∗−𝑡𝑠𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )]2 𝑓(𝑠)𝑑𝑠 + ∫ [𝛽(𝑡∗ − 𝑡)]2𝑓(𝑠)𝑑𝑠�̄�𝑅(𝑡)𝑡−𝑡𝑠             (C.15) 

In this situation, we can only obtain the departure rate numerically.  

(v) Always early + Possible queuing (SDE+PQ) 

In this situation, commuters always experience schedule delay early, but may experience queuing 

depending on the capacity of bottleneck. Commuters experience queuing if 
𝑅(𝑡)𝑠 − (𝑡 − 𝑡𝑠) ≥ 0, i.e., 𝑠 ≤

𝑅(𝑡)(𝑡−𝑡𝑠). Otherwise, they do not experience queuing. Thus, one has 

 𝐶(𝑡) = {𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 ) , 𝑠 ∈ [𝜃�̄�, 𝑅(𝑡)𝑡−𝑡𝑠]𝛽(𝑡∗ − 𝑡),                                                    𝑠 ∈ (𝑅(𝑡)𝑡−𝑡𝑠 , �̄�]   (C.16) 

 𝐸(𝐶(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )] 𝑓(𝑠)𝑑𝑠𝑅(𝑡)𝑡−𝑡𝑠𝜃�̄� + ∫ 𝛽(𝑡∗ − 𝑡)𝑓(𝑠)�̄�𝑅(𝑡)𝑡−𝑡𝑠 𝑑𝑠 (C.17) 

𝐸(𝐶2(𝑡)) = ∫ [𝛼 (𝑅(𝑡)𝑠 − 𝑡 + 𝑡𝑠) + 𝛽 (𝑡∗ − 𝑡𝑠 − 𝑅(𝑡)𝑠 )]2 𝑓(𝑠)𝑑𝑠𝑅(𝑡)𝑡−𝑡𝑠𝜃�̄� + ∫ [𝛽(𝑡∗ − 𝑡)]2𝑓(𝑠)�̄�𝑅(𝑡)𝑡−𝑡𝑠 𝑑𝑠
 (C.18) 

In this situation, we can only obtain the departure rate numerically.  

 


