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ABSTRACT: Solvent dependent reactivity is a key aspect of synthetic science, which controls 

reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for 

reactivity predictions in different solvents. We herein report excellent machine learning prediction 

of the nucleophilicity parameter N in the four most common solvents for nucleophiles in the 

Mayr’s reactivity parameter database (R2 = 0.93 and 81.6% of predictions within ±2.0 of the 

experimental values with Extra Trees algorithm). A Causal Structure Property Relationship 
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(CSPR) approach was utilized, with focus on the physicochemical relationships between the 

descriptors and the predicted parameters, and on rational improvements of the prediction models. 

The nucleophiles were represented with a series of electronic and steric descriptors and the solvents 

were represented with PCA descriptors based on the ACS Solvent Tool. The models indicated that 

steric factors do not contribute significantly, due to bias in the experimental database. The most 

important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the 

nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors 

for the nucleophiles led to an 8.7-fold decrease in computational time, and approximately 10% 

decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values. 

1. INTRODUCTION 

Predicting reaction selectivity is one of the key cornerstones which underpins synthetic science. 

The majority of reactions in synthetic processes are under kinetic control, and their selectivity can 

be predicted through assessment of competitive reaction rates. While rationalizing and predicting 

stereoselectivity have been consistently demonstrated using molecular modelling of transition 

states in asymmetric catalysis,1–3 prediction of chemoselectivity between dissimilar reactions of 

different kinetic orders remains difficult.4 This is further hindered by the complexity of reaction 

conditions and solvent dependence of reaction outcomes.5–7 On the other hand, selecting the 

correct solvent and reaction conditions can be a powerful tool in manipulating and controlling 

reaction selectivity, as recently demonstrated by Vigo and co-workers in a synthesis of Raltegravir 

(Figure 1).8 
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Figure 1. Exploitation of solvent dependent chemoselectivity in the synthesis of Raltegravir.  

While significant advances have been made in synthetic route prediction using machine learning 

and cheminformatics,9–12 selectivity prediction has not received the same level of attention. Only 

two recent examples can be found in the literature which report the use of machine learning to 

predict Mayr’s nucleophilicity parameter (N) and electrophilicity parameter (E).13,14 These solvent-

dependent parameters and sN (reaction specific constant), when used in Mayr-Patz equation (eq. 

1),15 enable calculation of rate constants between any given pair of nucleophile and electrophile 

and consequently the selectivity between competing reactions. 𝑙𝑜𝑔10 (𝑘20 𝐶0 ) = 𝑠𝑁(𝑁 + 𝐸)    (eq. 1) 

Earlier prediction of Mayr-Patz reactivity parameters were performed using Density Functional 

Theory (DFT) calculations of the transition states, and were limited to small sub-classes of 
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nucleophiles.16,1 Kang and co-workers developed a new model based on neural networks and DFT 

calculations to successfully predict both nucleophilicity and electrophilicity parameters with 

reasonable accuracy (R2 = 0.92, RMSE = 2.28 for E and R2 = 0.81, RMSE = 3.23 for N, with no 

dataset provided for validation and benchmarking).14 Orlandi et. al. achieved even more impressive 

accuracy in predicting nucleophilicity parameters (R2 = 0.94, RMSE = 1.41) employing DFT 

calculations of molecular properties and a much simpler Multivariate Linear Regression model 

(MLR).13 This was accomplished with a small subset of 341 nucleophiles in 7 different solvents 

from the Mayr reactivity database.18 However, these data points did not include many classes of 

nucleophiles, e.g. hydrogen donors, phosphorus nucleophiles, boron-, silicon- and metal-based 

reagents, and their accompanying complex mechanisms and transition states (Figure 2a).  

We report here our development of general prediction models for Mayr’s solvent-dependent 

nucleophilicity parameter which covers all current classes of nucleophiles in the Mayr’s reactivity 

parameter database. We employed our recently formalized Causal Structure Property Relationship 

(CSPR) approach,19 which focuses on interpretable machine learning models based on 

physicochemically guided translation of chemical properties into numerical machine learning 

inputs. Solvent dependence is implemented through the use of principle components developed 

for the ACS Solvent Selection Tool by AstraZeneca.20,21 Thus, a highly accurate prediction model 

for nucleophilicity parameter N in four common solvents was obtained (R2 = 0.94) for the widest 

range of nucleophiles in the Mayr’s reactivity database. This model was rationally improved 

through understanding descriptor importance, resulting in 81.6% of the predicted N parameters 

within the experimental errors of the reported values. 

2. MATERIALS AND METHODS 

2.1. Data curation 
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Data (1227 nucleophiles in 26 solvents and solvent mixtures) were mined from the online Mayr’s 

reactivity database using Beautiful Soup 4 package in Python 3.22  Simplified Molecular-Input 

Line-Entry (SMILES) strings were obtained from Chemical Identifier Resolver (CIRpy).23 

SMILES strings were screened to remove intermediates, salts and complexes. Metal cations, such 

as lithium or magnesium, were removed. Data points with nucleophilicity parameter measured in 

dichloromethane (DCM), acetonitrile (MeCN), dimethylsulfoxide (DMSO) and water (the four 

most common solvents in Mayr’s database) were kept. After curation, a dataset of 904 molecules 

remained with N values from -8.80 to 30.82.  

2.2. Calculation of descriptors 

Solvent Principal Component Analysis (PCA) descriptors were derived from the standard set 

available from ACS Green Chemistry Institute Solvent Selection Tool.20,21 The first 5 principal 

components (sol_PCA1-5) were used to represent the solvent. 

Nucleophile descriptors were calculated from 3D structures, initially generated in CIRpy,24 and 

then optimized in gas and solution phase with Gaussian 09,25 using M06-2x method and Def2svp 

basis set with DFT-D3 dispersion correction.26 Steric descriptors (N_TCA and N_BAD) were 

calculated by manually placing a Li probe at the approximate angle based on the relevant 

mechanism and typical Li-X distance from the nucleophilic atom derived from the Cambridge 

Structure Database (CSD).27 Fukui descriptors were calculated with Gaussian 09 and multiwfn,28 

using the most nucleophilic atom identified from the Li structures. 

2.3 Model building and assessment 

Machine learning was performed in Python 3 using the scikit-learn package,29 with the exception 

of Gaussian Process Regression, which was run using GPy.30 Prior to building models, descriptors 

were scaled to be between 0 and 1. Models were built with 8 machine learning methods and tested 
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using a fixed training:test split (90:10) and 10-fold cross validation. For the fixed training:test split, 

models were built 10 times to get average predictions and metrics (with error bars of 1 standard 

deviation (SD)). For 10-fold cross validation, this was run 10 times, with average predictions (with 

error bars of 1 SD). Metrics came from the average of the 10 folds within 10-fold cross validation 

across a single run. Default parameters were used in most cases, and then subsequently optimized. 

ANN architecture (n_estimators in scikit-learn) was explored for the average of 100 runs with a 

single hidden layer of between 2 and 5000 nodes. SVM parameters were determined via a grid 

search using 10-fold cross validation of the training set. The number of trees in ExtraTrees (ET) 

was optimized for the test sets between 1 and 5000. The radial basis function kernel was used for 

GP and error bars were obtained to 1 SD by obtaining the upper and lower limit which 

encompassed 68% of the prediction distribution. These parameters are summarized in Table S4 in 

the Supporting Information. 

Table 1. Dataset size, standard deviation (of nucleophilic parameter) and train and test set sizes  

Dataset Dataset Size SD Train Set Size Test Set Size 

Full_set 904 7.57 808 96 

Solution_set 896 7.52 802 94 

 

3. RESULTS AND DISCUSSION 

3.1 Data curation and analysis 
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Figure 2. (a) classes of nucleophiles and number of data points in this study and ref. 13; (b) 

Functional groups distribution in the datasets used in this study and ref. 13; (c) MW distribution 

in the dataset used by Orlandi and in this study; (d) solvent distribution in the Mayr’s database. 

The total number of available data points for nucleophilicity in the Mayr’s reactivity parameter 

database is relatively small in machine learning context. Thus, data curation was carried out with 

the intention of preserving as much usable data as possible. In contrast with the work by Orlandi 

and co-workers,13 no class of nucleophile was excluded (Figure 2b and Figure 3). Solvent analysis 

of the database showed 26 solvents and solvents mixtures used in their measurements. However, 

most of the data were collected in four solvents: DCM, MeCN, DMSO and water. These make up 

86% of the available data. Although 7 solvents were included by Orlandi, the 3 additional solvents 

added up to 20 data points out of 341 in that study. The low availability of data in other solvents 

will render validation of predictions in those solvent difficult, particularly with complex non-linear 

machine learning models. Therefore, only data from these four solvents were adopted in our 

dataset, which include 904 data points, 808 in the training set and 96 in the test set. 

Molecular weight (MW) distribution and functional group analysis of the curated dataset showed 

that the nucleophiles occupy a reasonably wide chemical space, with many common functional 

groups present, albeit without highly electrophilic function groups for obvious reasons. Due to the 

inclusion of third-row element nucleophiles and H-donors, this new dataset has a significant 

increase in the number of nucleophiles with MW>200 compared to that of Orlandi (Figure 2c). 

The inclusion of these new classes of nucleophiles means more complex reaction mechanisms will 

need to be included in the model,31,32 with appropriate descriptors to describe them.  
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Figure 3. Examples of different classes of nucleophiles in the Mayr’s database. The positions 

which form the new bonds are shown with light blue circles. 

3.2 Descriptor development 

Previous prediction of nucleophilicity often employed implicit solvation models, as a balance 

between computational cost and accuracy, in their molecular modeling to represent the effect of 

solvents.13,16,17 The impact of these solvation models has been inconclusive. Liu et. al. suggested 

that solvation does not play an important role in the nucleophilicity parameters of -nucleophiles.16 
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On the other hand, solvation energy of the nucleophile, protonated-nucleophile and H+ received a 

high weighing in the MLR model from Orlandi.13 Importantly, Buttar and co-workers suggested 

that the largest error in DFT calculations of activation energy barriers is due to poor performance 

of solvation models, and compensated that with a combined DFT/machine learning approach.6 

One of the major developments in reaction solvent selection in recent years has been the 

development and publication of the ACS Green Chemistry Institute Solvent Selection Tool.19,20 

This model is based on principal component analysis of 70 chemical and physical properties of 

272 solvents and has been successfully applied to guide solvent selection in chemical processes. 

Thus, we decided to build our solvent dependent prediction model based on these PCA descriptors. 

This has an unique potential advantages: simple expansion of the reactivity prediction to modern 

green solvents in synthetic processes by changing the solvent descriptors. Specifically, sol_PCA1-

5 descriptors were used to represent the properties of the solvent and its influence on 

nucleophilicity in our models.  

For steric hindrance, the Sterimol parameters are the established descriptors in Quantitative 

Structure-Activity Relationship (QSAR).33 However, Orlandi and co-workers found that they did 

not have high weighing in the MLR model.13 One of the reasons for this could be that the Sterimol 

parameters were developed for drug design instead of transition state, where interactions over 

longer distances must be considered. Thus, we decided on using two descriptors based on a cone 

angle approach at up to 7 Å, similar to that developed for phosphine ligands in organometallic 

chemistry.34 To obtain these, a probe Li atom was manually inserted at the relevant angle, based 

on consensus mechanistic view of these reactions, to the nucleophilic atom. The distance between 

the nucleophilic atom and Li was standardized as the typical Li-atom bond length, defined as the 

average bond length found in the CSD (Table S1 in the Supporting Information).35 N_TCA is 
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defined as the sum of the three largest 𝑋𝑁𝑢𝐿𝑖̂  angles (where X is another atom within 7 Å distance, 

approximately twice the typical sum of Van der Waal radii of atoms forming a new bond, and Nu 

is the nucleophilic atom, Figure 4b). N_BAD is defined as the single largest maximum 𝑋𝑁𝑢𝐿𝑖̂  

angle. Atoms are represented as spheres using standard Van der Waal radii and their sizes are 

included in the calculation of angles. 

 

Figure 4. Diagram showing (a) examples of Nu-Li structures used in this study; and (b) the 

calculation of N_TCA and N_BAD descriptors. 

The other DFT descriptors (gas phase) with direct relevance to nucleophilicity were HOMO and 

LUMO energies (N_HOMO and N_LUMO), dipole moment (N_DM), electronic basicity (N_EB, 

the most negative Natural Bond Orbital (NBO) partial charge on non-carbon atom), electronic 

acidity descriptors (N_EA and N_EA_nonH, the highest positive NBO partial charge on hydrogen 

atom and non-hydrogen atom).36,37 For these descriptors, the equivalent values based on solution 

structure (e.g. NS_HOMO, NS_EB, etc.) in the specified solvents for nucleophilicity 

measurements were also calculated. Additionally, the solvation energy of the nucleophile was also 
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calculated with PCM solvation model as NS_DeltaG. In addition, we included condensed Fukui 

function (𝑓−) at atom with the most negative Fukui function (N_fukui,), condensed Fukui function 

(𝑓−) at the nucleophilic atom indicated by the Nu-Li structure (N_fukui_Li) and Hirshfeld charge 

at the nucleophilic atom indicated by the Nu-Li structure (N_fukui_charge).38 The Fukui 

descriptors were chosen due to their previous successes in representing local reactivity within 

organic compounds.39,40 Due to the wide range of structures of nucleophile in our dataset, both 

N_fukui and N_fukui_Li were initially deemed necessary, even if they are significantly correlated. 

 

Figure 5. Correlation (R2) analysis of the nucleophile descriptors in (a) GAS_SET_16; (b) 

SOL_SET_17; and (c) between GAS_SET_16 and SOL_SET_17; (d) PCA cumulative variance 

plot for GAS_SET_16; and (e) PCA cumulative variance plot for SOL_SET_17.  
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Correlation maps between descriptors within GAS_SET_16/Full_set and 

SOL_SET_17/Solution_set showed that the majority of them are orthogonal, except for the 

expected correlation between N_fukui and N_fukui_Li (Figure 5a-b). The only exception in 

GAS_SET_16 is moderate correlation between HOMO and LUMO energies, and between N_EB 

and N_EA_nonH. Interestingly, there is little correlation between NS_HOMO and NS_LUMO. 

This can be explained through examination of N_HOMO vs NS_HOMO and N_LUMO vs 

NS_LUMO relationships (Figure 5c). The R2 for these are 0.67 and 0.50, respectively, showing 

the impact of solvent stabilization on the Frontier Molecular Orbital (FMO) energies. The 

orthogonality between descriptors were confirmed by Principal Component Analysis. The 

cumulative variance plot (Figure 5d-e) indicated the need for >12 descriptors (including the 5 

sol_PCA descriptors) to capture more than 95% of the variances. This is one of the key aspects of 

CSPR, which underpins the interpretability of the models. 

3.3 Model optimization and interpretation 

In order to correctly assess the models, it is important to establish the experimental errors in the 

measurement of nucleophilic parameters N. These were obtained by linear fitting log k2 vs 

electrophilic parameter E from reactions with different electrophiles and determining the intercept 

with the x-axis. Evaluation of the experimental errors based on the errors in the slope and intercept 

suggested that the typical experimental error is 1.1 ± 0.9 (Section 8 in the Supporting Information). 

Thus, in addition to the standard metrics Pearson's R2 and RMSE, two new metrics were used to 

assess the models: % of molecules with predicted N within ± 1.0 of experimental value (%N±1.0) 

and % of molecules with predicted N within ± 2.0 of experimental value (%N±2.0). These new 

metrics reflect the level of noise in the training data, and the practical usability of the predictions 
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for reaction selectivity prediction, with predicted reaction rate accuracy within 10±0.8 or 10±1.6 

(𝑠𝑁 ≈ 0.8) times of the observed value. 

The size of the Mayr’s nucleophilicity parameter dataset excludes effective use of complex deep 

learning models. Consequently, 8 machine learning algorithms, i.e. MLR, PLS, ANN, SVM, RF, 

ET, Bag and GP (Table 2, entries 1-8), were applied to a training set of 808 nucleophile/solvent 

combination and a test set of 96 nucleophile/solvent combinations (Full_set, Table 1). Two sets 

of descriptors (GAS_SET_16 and SOL_SET_17) were used, resulting in 16 initial models. A small 

number of failed Gaussian optimizations in solution means led to a reduction of training/test set of 

802 and 94 entries (Solution_set). Model parameters were optimized through iteration and 

evaluation of model metrics to maximize accuracy while avoiding overfitting (Section 5.2 in the 

Supporting Information). The results are summarized in Table 2 and 3. 

Table 2. Metrics for models built with GAS_SET_16 descriptors 

No. Method R2
 RMSE %N±2.0 %N±1.0 

1 MLR (Multivariate Linear Regression)[a]
 0.63 4.74 26.0 12.5 

2 PLS (Partial Least Square)[a]
 0.63 4.73 26.0 12.5 

3 ANN (Artificial Neural Network)[a]
 0.86 2.84 59.4 31.8 

4 SVM (Support Vector Machine)[a]
 0.86 2.82 55.2 34.4 

5 RF (Random Forest)[a]
 0.89 2.53 71.6 49.2 

6 ET (Extra Trees)[a]
 0.92 2.18 70.2 49.6 

7 Bag (Bagging)[a]
 0.89 2.53 72.3 48.1 

8 GP (Gaussian Process)[a]
 0.82 3.19 59.4 33.3 

9 MLR[b] 0.63 4.60 31.4 15.8 

10 PLS[b] 0.63 4.60 31.9 15.3 

11 ANN[b] 0.84 2.99 58.1 34.5 
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12 SVM[b] 0.83 3.16 61.2 37.3 

13 RF[b] 0.89 2.47 69.8 45.5 

14 ET[b] 0.91 2.30 72.4 47.9 

15 Bag[b] 0.89 2.47 69.4 45.9 

16 GP[b] 0.79 3.41 57.9 33.0 

[a]result with training/test split, averaged over 10 runs; [b]results with 10-fold cross validation 

Table 3. Metrics for models built with SOL_SET_17 descriptors 

No. Method R2
 RMSE %N±2.0 %N±1.0 

1 MLR[a]
 0.67 4.24 35.1 13.8 

2 PLS[a]
 0.67 4.24 35.1 13.8 

3 ANN[a]
 0.87 2.76 56.9 32.3 

4 SVM[a]
 0.89 2.33 70.2 44.7 

5 RF[a]
 0.92 2.05 76.1 49.1 

6 ET[a]
 0.94 1.84 79.9 53.5 

7 Bag[a]
 0.92 2.05 76.4 48.7 

8 GP[a]
 0.87 2.63 68.1 42.6 

9 MLR[b] 0.68 4.27 35.8 17.6 

10 PLS[b] 0.68 4.27 35.7 17.1 

11 ANN[b] 0.87 2.67 64.9 36.2 

12 SVM[b] 0.87 2.73 67.9 39.2 

13 RF[b] 0.91 2.29 74.7 47.1 

14 ET[b] 0.92 2.14 75.9 50.9 

15 Bag[b] 0.91 2.29 74.9 46.7 

16 GP[b] 0.85 2.96 66.8 40.7 

[a]result with training/test split, averaged over 10 runs; [b]results with 10-fold cross validation 
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MLR and PLS performed poorly with this much larger set of nucleophiles, despite reported 

success by Orlandi (Figure 2b). The non-linear regression algorithms gave better results. Random-

forest-based models outperformed ANN, SVM and GP, with ET giving the best metrics. ET model 

for GAS_SET_16 gave R2 = 0.92 and RSME = 2.18 (Table 2, entry 6), which is close to the upper 

limit of the estimated experimental error of 1.1 ± 0.9. Importantly, 70.2% of the predicted N values 

were within ±2 to the experimental values and 49.6% were within ±1.0. Similar metrics were 

obtained with 10-fold cross validation, albeit with slightly larger standard deviations due to the 

inclusion of predictions of all data points from 10 separated runs (Table 2, entry 14). The obtained 

results using SOL_SET_17 descriptors showed significant improvements with all metrics, 

compared to those obtained with GAS_SET_16 (Table 3). Specifically, the ET model R2 increased 

from 0.92 to 0.94 (compared R2 = 0.95 value reported by Orlandi),13 RMSE decreased from 2.18 

to 1.84, %N±2.0 and %N±1.0 increased from 70.2 and 49.6 to 79.9 and 53.5, respectively (Table 

3, entry 6). The dependence on solvent of nucleophilicity parameters was reliably reproduced by 

the models, with nucleophilicity increasing in the order of DCM < MeCN < water < DMSO (Figure 

6c). Few outliers were observed with DCM, DMSO and water. This level of reliability is essential 

in applying such predictions models to predict solvent-dependent selectivity of synthetic reactions. 

Similar results were obtained in 10-fold cross validation models, albeit with the expected minor 

decrease in model metrics due to the more complete test sets. 
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Figure 6. Predicted vs experimental nucleophilicity parameters from training/test split models 

using (a) GAS_SET_16; (b) SOL_SET_17 descriptors; and (c) solvent dependent predictions vs 

experimental measurements using SOL_SET_17 for nucleophilicity parameters in water (green 

dots), MeCN (blue dots), dichloromethane (orange dots) and DMSO (red dots). 

The dependence of the ET models on the descriptors is summarized in Figure 7a-f. Direct feature 

importance plot, an option only available with RF based models, showed that the predictions 

depended on both solvent descriptors and nucleophile descriptors. On the other hand, NS_DeltaG, 

the additional descriptor in SOL_SET_17, only had a moderate importance (Figure 7b). Other than 

this, the feature importance plots are strikingly similar for GAS_SET_16 and SOL_SET_17. 

Amongst the nucleophile descriptors, N_HOMO/NS_HOMO and N_fukui_charge were the most 

important. Both are expected from causal relationships between nucleophilicity and molecular and 

local properties of the nucleophile.38,41 As feature importance plots are only available to RF based 

models, the impact of each descriptor is also evaluated by monitoring the model metrics when each 

descriptor is skipped in turn (Figure 7c-d and section 7.3 of the Supporting Information). The 

largest negative impacts were observed when N_HOMO/NS_HOMO is skipped. The impact of 

skipping other descriptors is less conclusive. Consequently, a different test was devised. Every 

combination of 3 descriptors (560 combinations for GAS_SET_16 and 680 for SOL_SET_17) was 
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skipped in turn and their impacts on the model metrics (i.e. %N±2.0) were evaluated. This 

approach would amplify the impact of each missing descriptor. In the ET model built with 

GAS_SET_16, N_HOMO, N_LUMO, N_BAD, N_fukui, N_fukui_Li and N_fukui_charge are 

the descriptors which are absent in 10 or more of the 50 worst performing models (Figure 7e). In 

the ET model built with SOL_SET_17, NS_HOMO, NS_EB, NS_EA_nonH, N_fukui, and 

N_fukui_charge are the descriptors which are most often absent in the worst performing models. 

The 50 worst models using SOL_SET_17 are dominated by NS_HOMO, absent in 48 models 

compared to 11 models for N_HOMO, which renders the importance of other descriptors less 

reliable (Figure 7f). While both N_fukui and N_fukui_charge descriptors are important, N_fukui 

is also ambiguously absent in many of the 50 best performing models with both GAS_SET_16 and 

SOL_SET_17. Finally, the absence of N_DM/NS_DM can be associated with some of the best 

models, particularly when R2 is used as the metric (Figure S59 in the Supporting Information).  

Interestingly, the identified important descriptors above are all related to the electronic properties 

of the nucleophiles. The steric descriptors, N_TCA and N_BAD, did not have large impact on any 

of the models, in spite of our effort to expand the distance of the steric descriptors. This is similar 

to the observation by Orlandi and co-workers in their study.13 A likely explanation is that the 

experimental data in Mayr’s database is self-selecting and biased toward nucleophiles which can 

react effectively enough for kinetic reaction rate measurements. Thus, the majority of the 

nucleophiles in the database did not suffer from significant steric hindrance. In order to accurately 

estimate the influence of steric hindrance on nucleophilicity, additional data on nucleophiles with 

more significant steric hindrance are needed. 

Analysis of the outliers (defined as those with predicted N values outside the experimental N ± 

2.0 range) showed that they are evenly distributed across the range of N values (Figure S45 and 



 19 

S51 in the Supporting Information). The ET model using GAS_SET_16 has outliers in all four 

solvents, with a slightly higher ratio of outlier nucleophiles in MeCN and a lower ratio in DCM. 

However, the ET model using SOL_SET_17 had a significant reduction of number of outliers in 

all solvents, but with much fewer outliers in DMSO, likely due to the high solvation energy of the 

nucleophiles and transition states in this solvent (Figure 7h and 7j). The distribution of outliers by 

classes of nucleophile is also revealing (Figure 7g and 7i). A disproportionate number of outliers 

are in the classes of C-B, H-donor and C-Anion. Two of these are also classes which were absent 

(C-B and H-donor) in the previous MLR model.13 These are nucleophiles which either reacts via 

more complex mechanisms or can be significantly influenced by solvation. In fact, the ET model 

built with SOL_SET_17 resulted in a significant decrease in the number of outliers in C-Anion 

classes. 
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Figure 7. Model analysis for ET models: (a) feature importance for model using GAS_SET_16, 

average of 10 runs; (b) feature importance for model using SOL_SET_17, average of 10 runs; (c) 

impact of taking out one descriptor on the model via %N±1.0 (orange) and %N±2.0 (blue) metrics, 

using GAS_SET_16; (d) impact of taking out one descriptor on the model via %N±1.0 (orange) 

and %N±2.0 (blue), using SOL_SET_17; (e) frequency of descriptors absence in best and worst 

50 models, with 3 descriptors removed, based on %N±2.0 metrics, using GAS_SET_16; (f) 

frequency of descriptors absence in 50 best and worst models, with 3 descriptors removed, based 

on %N±2.0 metrics, using SOL_SET_17; (g) distribution of outliers based on classes of 

nucleophile, using GAS_SET_16; (h) distribution of outliers based on solvent, using 

GAS_SET_16; (i) distribution of outliers based on classes of nucleophile, using SOL_SET_16; 

and (j) distribution of outliers based on solvent, using SOL_SET_17. 

3.4 Model improvement 

The difference between N_fukui and N_fukui_Li is the local atoms for which the condensed 

Fukui functions are calculated. For N_fukui, this is the atom with the most negative Fukui 

function. For N_fukui_Li, this is the atom which forms the new bond with the electrophile, based 

on the nucleophile-Li structures employed for the calculation of steric descriptors. Thus, while 

there is some overlap between these two descriptors, N_fukui_Li is more directly relevant to the 

transition state of the reaction between the nucleophile and any given electrophile and N_fukui 

can some case give the wrong information. This was reflected in the descriptor dependence 

analysis from the ET model, wherein N_fukui has a negative impact on the model (Figure 7e and 

7f). In addition, exclusion of N_DM/NS_DM descriptor resulted in a small increase of %N±2.0 

metrics and a significant increase in %N±1.0 metrics (Figure 7e and 7d). Dipole moment may 

influence solvation energy and nucleophilicity. However, Figure 7c-7d showed that NS_DeltaG is 
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not important in the ET model and the local descriptors, e.g. Fukui functions and charges, have 

much more influences over the nucleophilicity parameter. 

Based on these results, the descriptors N_DM and N_fukui were removed from GAS_SET_16 

and NS_DM and N_fukui was removed from SOL_SET_17, giving GAS_SET_14 and 

SOL_SET_15, respectively. The new ET models using these descriptor sets showed a very minor 

deterioration in the traditional metrics R2 and RMSE (Table 4). However, the metrics %N±2.0 and 

%N±1.0, which account for the experimental errors in the data, showed significant improvement 

in the accuracy of the models. Most impressively, the ET model with SOL_SET_15 achieved 

81.6% of predictions of the test set within ±2.0 and 58.6% of prediction of the test set within ±2.0 

of the experimental N values. On the other hand, the overall impact of leaving out N_DM/NS_DM 

and N_fukui on the 10-fold validation models (Table 4, entries 2, 4, 6 and 8) is negligible with a 

slight increase in RMSE. 

Table 4. Metrics for rationally improved ET models 

No. Descriptor set Modification R2 RMSE %N±2.0 %N±1.0 

1[a] GAS_SET_16 None 0.92 2.18 70.2 49.6 

2[b] GAS_SET_16 None 0.91 2.30 72.4 47.9 

3[a] GAS_SET_14 Removing N_DM and 
N_fukui 0.92 2.21 71.3 51.1 

4[b] GAS_SET_14 Removing N_DM and 
N_fukui 0.91 2.30 72.6 48.0 

5[a] SOL_SET_17 None 0.94 1.84 79.9 53.5 

6[b] SOL_SET_17 None 0.92 2.14 75.9 50.9 

7[a] SOL_SET_15 Removing NS_DM and 
N_fukui 0.93 1.90 81.6 58.6 

8[b] SOL_SET_15 Removing NS_DM and 
N_fukui 0.91 2.17 75.8 51.3 
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[a]result with training/test split averaged over 10 runs; [b]results with 10-fold cross validation 

Finally, the nucleophilic descriptors, except N_fukui, N_fukui_Li and N_fukui_charge, were 

generated using PM6 instead of DFT in Gaussian 09. This led to a decrease of CPU time from 

3076.0 hours for DFT to 352.0 for PM6 for 896 nucleophiles. Charge descriptors N_Ea/NS_Ea, 

N_Eb/NS_Eb, N_Ea_NonH/NS_Ea_NonH were derived from (NBO) population analysis from 

DFT calculation, which is not possible with PM6. Thus, Mulliken partial charges were used 

instead.  

While little decrease in ET model metrics was observed between GAS_SET_14 and 

GAS_SET_14_PM6 (Table 4, entry 3 and Table 5, entry 2), a significant deterioration in model 

accuracy was observed between the ET models using SOL_SET_15 and SOL_SET_15_PM6 

(Table 4, entry 7 and Table 5, entry 4). Switching from DFT descriptors to PM6 descriptors led to 

a decrease of 11.7 in %N±2.0 and 7.0 in %N±1.0. The much larger decrease in model accuracy 

observed with SOL_SET_15_PM6 compared to that of GAS_SET_14_PM6 can be attributed to 

the documented poor accuracy of PM6/PCM solvation model compared to more computationally 

expensive models, such as HF/SMD.42,43 

Table 5. Metrics for ET models with semi-empirical PM6 descriptors[a] 

No. Descriptor set Modification R2
 RMSE %N±2.0 %N±1.0 

1 GAS_SET_16_PM6 None 0.92 2.14 68.6 48.1 

2 GAS_SET_14_PM6 Removing 

N_DM_PM6 and 

N_fukui 

0.92 2.13 71.5 49.8 

3 SOL_SET_17_PM6 None 0.93 1.98 69.6 49.0 

4 SOL_SET_15_PM6 Removing 

NS_DM_PM6 and 

N_fukui 

0.92 2.02 69.9 51.6 

[a]result with training/test split averaged over 10 runs; [b]results with 10-fold cross validation 
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4. CONCLUSIONS 

Highly accurate prediction of nucleophilicity parameter N in four most common solvents has 

been achieved with Extra Trees algorithm across the whole range of nucleophiles in the Mayr’s 

reactivity parameter database (R2 = 0.93, RMSE = 1.90, %N±2.0 = 81.6 and %N±1.0 = 58.6, 

compared to an estimated experimental error of 1.1 ± 0.9).18 This was achieved using our CSPR 

approach,19 which focuses on the causal physicochemical relationships between the orthogonal 

descriptors and the predicted parameters, and rational improvements of the prediction models. The 

use of PCA descriptors for the solvents, based on the ACS Solvent Tool,20,21 which opens up the 

possibility of rapid expansion to prediction of nucleophilicity in modern green solvents with little 

direct literature reactivity data. These will underpin prediction of reaction selectivity in different 

solvents. Analysis of the models showed that steric factors are still under-represented, due to bias 

in the experimental database. The most important descriptors are solvent-dependent HOMO 

energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with PM6 

descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and 

approximately 10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the 

experimental values. 
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