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How does homophily shape the topology of a dynamic network?
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We consider a dynamic network of individuals that may hold one of two different opinions in a two-party
society. As a dynamical model, agents can endlessly create and delete links to satisfy a preferred degree, and the
network is shaped by homophily, a form of social interaction. Characterized by the parameter J ∈ [−1, 1], the
latter plays a role similar to Ising spins: agents create links to others of the same opinion with probability (1 +
J )/2 and delete them with probability (1 − J )/2. Using Monte Carlo simulations and mean-field theory, we focus
on the network structure in the steady state. We study the effects of J on degree distributions and the fraction
of cross-party links. While the extreme cases of homophily or heterophily (J = ±1) are easily understood to
result in complete polarization or anti-polarization, intermediate values of J lead to interesting features of the
network. Our model exhibits the intriguing feature of an “overwhelming transition” occurring when communities
of different sizes are subject to sufficient heterophily: agents of the minority group are oversubscribed and their
average degree greatly exceeds that of the majority group. In addition, we introduce an original measure of
polarization which displays distinct advantages over the commonly used average edge homogeneity.
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I. INTRODUCTION

Simple individual-based models have been commonly used
to describe emergent social phenomena [1]. Statistical physics
models have proven particularly useful to characterize collec-
tive behaviors of interacting populations [2–5]. In the past two
decades, there have been numerous advances in understanding
the properties of these interdisciplinary models notably on so-
cial networks [6–8]. An important line of research has focused
on dynamical processes on networks, particularly on opinion
dynamics [2] and evolutionary processes [9]. In this context,
the dynamics of paradigmatic statistical physics models have
been studied on complex networks whose structure is random
but static; see, e.g., Refs. [10–17]. In other models, collec-
tive phenomena emerge from the interactions between agents
whose links evolve while the states of the nodes (e.g., repre-
senting agents’ “opinions”) remain static. This is for instance
the case when individuals are more likely to bond and create
links as they are more like-minded, see, e.g., Refs. [18–20],
a form of social interaction referred to as “homophily” or
“assortative mixing” [8,21–25].

Social networks are comprised of individuals with a va-
riety of attributes, such as opinion, race, age, educational
background, or gender [26–28]. The level of homophily in
a society thus reflects the tendency of individuals to estab-
lish ties with those having similar attributes to theirs rather
than with others [21,27,29,30]. This phenomenon, reminis-
cent of filter bubbles and echo chambers, is commonly seen
in political parties [31–37]. Similarly, heterophily refers to

the tendency to establish links between agents with different
attributes (or dissenting “opinions”) [38–41]. Studying how
homophily and/or heterophily influence the network struc-
ture has gained importance in both sociological [22,23,25,27–
30,42] and physics-oriented literature [19,43–48]. In this
context, homophily often features in so-called nodal at-
tribute models [19,43,49] and growing networks like those of
Refs. [42,44,46,50], where it is generally modeled by means
of a biased probability of adding a link or by rewiring an
edge. Homophilic interactions are often considered together
with the process of structural balance [51], which aims at
eliminating tensions between a set of three connected agents
(triad) by the principle of “triad closure” [47,49]. By com-
bining homophilic edge weighting and triad closure, it was
recently shown that a transition to a state of global cooperation
can occur [49]. In Ref. [47], it is shown that homophilic
rewiring combined with triad closure leads to “homophily
amplification,” a phenomenon in which agents within a same
group are likely to interact and establish further connections.
Furthermore, voter-like models evolving on a network whose
links are dynamically updated according to a homophilic
rewiring process [52–58] are characterized by a continuous
phase transition yielding the fragmentation [54,55], or fission
[57], of the network into disconnected groups holding the
same opinion.

Here, we consider an evolving network model in which
links fluctuate continuously as the result of the homophilic
or heterophilic interactions between individuals of two com-
munities (e.g., political parties). Contrary to most previous
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FIG. 1. (a) Illustration of the link update rule with preferred degree κ = 2.5 and homophily parameter J . Here, a node i of degree ki =
3 > κ first selects one of its neighbors uniformly (node j); in the next time step, the link i j is cut with probability (1 − J )/2 if σi = σ j [i j is
an internal link (IL)], and with probability (1 + J )/2 if σi = −σ j (i j is a cross link, CL). CLs and ILs are necessarily cut only when J = 1
(extreme homophily) and J = −1 (extreme heterophily), respectively. Similarly, if ki < κ (not shown here), then in the next time step an IL i j
is created with probability (1 + J )/2 with a new neighbor j of the same opinion (σi = σ j), while a CL i j is created with probability (1 − J )/2
with a new dissenting neighbor (σi �= σ j). (b)–(e) Different polarization scenarios after 100 Monte Carlo steps (MCS, 1 MCS = N update
steps) starting with an empty graph (i.e., no links). Here, light and dark dots are voters (or nodes) i and i′ holding opinion −1 (σi = −1) and
+1 (σi′ = +1), respectively. Here, N = 100, m = 0 (communities of same size: N+ = N− = 50), κ = 4.5 in panels (b)–(e), and (b) J = 1,
(c) J = 0.5, (d) J = −0.5, (e) J = −1; see text.

works on networks with homophily, the dynamics shaped by
homophily here follows an evolutionary process character-
ized by the continuous creation and deletion of edges, with
an endlessly fluctuating number of links. More specifically,
we adopt the language of opinion dynamics and consider
an individual-based network model where agents hold one
of two different opinions [59–62], and form dynamical links
to satisfy a prescribed preferred degree [63–65]. The model
dynamics can therefore be thought of as a “birth-death pro-
cess” for links, with transition rates depending on a homophily
parameter characterizing the interactions between nodes. As
other preferred degree networks (PDNs) [63–65], our model
is characterized by a nontrivial out-of-equilibrium stationary
state. By combining analytical means and simulations, we
determine how the homophily shapes the long-time network
structure, typically characterized by the degree distributions
and the fraction of cross-party links. We also quantify the
extent of division between the communities by computing
the network’s polarization. This allows us to show that our
model shares some features found in earlier works, such as a
fragmentation (or fission) transition under extreme homophily
[see Fig. 1(a) and below]. More importantly, we also show that
our model exhibits intriguing features such as an “overwhelm-
ing transition” occurring when communities of different sizes
are subject to sufficient heterophily: agents of the minority
group are oversubscribed and their average degree greatly
exceeds that of the majority group.

The plan of the paper is as follows: the general formula-
tion of the model based on PDN dynamics with homophilic
interactions is introduced in the next section. In Sec. III, by
combining a mean-field analysis and Monte Carlo simula-
tions, we present a thorough study of the model’s properties

when both parties are of the same size: the fractions of
cross-party links and of agents adding links is obtained in
Sec. III A, while Sec. III B is dedicated to the network’s degree
distributions. In Sec. IV, we consider the general case of
communities of different sizes: in Sec. IV A, we show that un-
der sufficient heterophily the network consists only of agents
deleting nodes; while the model’s polarization is discussed in
Sec. IV B. In Sec. V, we introduce a quantity that efficiently
measures the network’s polarization. The final section is ded-
icated to a discussion of our results and to our conclusions.

II. MODEL FORMULATION AND GENERAL PROPERTIES

Our model is an undirected dynamical network consisting
of N nodes (or agents/voters) that are of two types: a frac-
tion n+ of them is in state +1, while the remaining fraction
n− = 1 − n+ is in state −1. Hence, the population consists
of number N± = Nn± agents holding opinion ±1. In the lan-
guage of opinion dynamics, each node i is a “voter” whose
opinion is the binary random variable σi ∈ {−1,+1}, i.e.,
each voter belongs to either party −1 or +1. For simplicity,
here {σ } are quenched variables, i.e., voters are “zealots”
[59,61,62,66] (see also Refs. [67–70]). The average opinion,
often referred to as “magnetization,” across the network is
m = 1

N

∑N
i=1 σi = n+ − n−, so that n± = 1

2 (1 ± m). Hence,
when the magnetization vanishes, m = 0, each party is a group
of the same size, that is N+ = N−.

According to the PDN dynamics, every node is assigned
a preferred degree κ , a value each agent attempts to achieve
by cutting or adding links [71]. The update rules of the model,
illustrated in Fig. 1(a), are thus as follows: at each update step,
an agent i of degree ki is chosen randomly and
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(1) if ki > κ , then the node i chooses a neighbor j with
uniform probability among all its neighbors, and then either
(i) the i j link is cut with the probability 1

2 (1 − Jσiσ j ), or (ii)
the i j link remains unchanged.

(2) if ki < κ, then the node i chooses uniformly a random
node j to which it is not already connected, and then either (i)
the new link i j is added with probability 1

2 (1 + Jσiσ j ), or (ii)
i and j remain unconnected.

Nodes with degrees greater than or less than κ are referred
to as cutters and adders, respectively. We always take κ to be
a half integer, with 1 � κ � N [63,65]. This guarantees that
the network is always dynamic, with an endlessly fluctuating
number of links, and each agent’s neighborhood is a small
subset of the population. Here, J is our homophily control
parameter, with −1 � J � 1.

A distinctive feature of this PDN with homophily is its
“evolutionary dynamics” shaped by homophily: links are con-
tinuously created and removed, as in a birth-death process,
with rates capturing the homophilic (J > 0) or heterophilic
(J < 0) agent interactions; see Eqs. (3) and (4). As illustrated
in Fig. 1(a), the probability of cutting a link between two
nodes is (1 − J )/2 if their opinions are the same, and (1 +
J )/2 if their opinions are opposite. It is therefore clear that
J > 0 models homophily, as it favors the addition of internal
links (ILs) between similar nodes, and the removal of cross
links (CLs) between nodes of different opinions. Similarly,
having J < 0 represents heterophily that favors the creation
of CLs over ILs.

While we focus on intermediate homophily, −1 < J < 1,
with links being continuously added and cut in an endlessly
fluctuating network, a system with extreme homophily or het-
erophily (J = ±1) is interesting as these are the only values
of J for which the addition or deletion of links occurs with
probability one. In fact, nodes only add ILs if J = 1 (CLs if
J = −1), and the network settles in a nontrivial static config-
uration when every node has k > κ and no adders are left.

This simple model is out of thermal equilibrium, as it
violates detailed balance, and its stationary properties are thus
expected to be nontrivial [63], as illustrated by Figs. 1(b)–
1(e). Our goal is to understand how homophily shapes the
properties of the steady-state network by focusing on the total
degree distributions, the fractions of CLs and adders in the
stationary state of the network. The total numbers of CLs
and ILs are denoted by L× and L� respectively. We can also
write L× = L+− = L−+ and L� = L++ + L−−, where Lσσ ′ is
the number of links between communities holding opinion σ

and σ ′. These quantities are time-fluctuating variables and the
total number of links in the network denoted by L = L× + L�
is not conserved [63,64]. The fraction of CLs in the network
is defined as ρ = L×/(L× + L�). When groups of ±1 voters
are of different sizes (m �= 0), we shall see that it is useful to
distinguish in each community the fraction of nodes that have
CLs; see Secs. IV and V.

We can gain some insight into the effect of J on the net-
work dynamics by considering the special cases J = ±1 and
J = 0. When J = 1, a node adds only ILs and cuts only CLs,
which leads to the population being split into two separate
groups; see Fig. 1(b). This phenomenon, sometimes termed
“fission” or “fragmentation,” where there are no CLs (L× = 0,
ρ = 0), is found in models with rewiring [52,55,57,58], and

corresponds complete polarization of the population. When
J = −1, each node can only add CLs and cut ILs, which
eventually results in complete antipolarization, i.e., a bipartite
graph with L� = 0, ρ = 1, as in Fig. 1(e). When J = 0, a
node adds and cuts links randomly, regardless of its neigh-
bor’s opinion, leading to a state of no polarization, where on
average half of the nodes are adders, and the average ratio
of CLs to ILs, controlled purely by phase space, is 2n+n−

1−2n+n−
.

When 0 < J < 1, the two communities are partly divided,
with a majority of ILs (ρ < 1/2); see Fig. 1(c). Similarly,
when −1 < J < 0, the network consists of a majority of CLs
(ρ > 1/2); see Fig. 1(d). Hence, the two communities are
partly divided when −1 < J < 1, which results in a partial
polarization of the network.

A common measure of polarization, sometimes referred
to as “average edge homogeneity” [36,72], is the difference
between the fraction of ILs and CLs, here denoted by � ≡
(L� − L×)/L = 1 − 2ρ ∈ [−1, 1]. When m = 0, � follows
homophily closely with � = 0,±1 when J = 0,±1, respec-
tively. However, as shown below, its suitability deteriorates
when m deviates from zero: we find that for m �= 0, the net-
work can be “polarized” (� > 0) even when J = 0. In Sec. V,
we will hence introduce an alternative measure of polarization
here denoted by �.

III. SYMMETRIC CASE, m = 0

In this section, we focus on the symmetric case m = 0
where the communities of agents holding opinion ±1 are
of the same size. This symmetry greatly simplifies the anal-
ysis: the statistical properties of both communities are the
same, and there is no need to distinguish between the opinion
groups. Using mean-field analysis and Monte Carlo simula-
tions, we obtain a detailed characterization of the effect of
homophily on the fractions of adders and cross-links in the
networks, and on the total and joint degree distributions.

A. Fractions of adders and cross-links

The network being dynamic, the fraction of adders, here
denoted by α, endlessly fluctuates. To gain some insight into
its distribution, it is useful to start by considering the results
of some typical Monte Carlo simulations; see Fig. 2. In all
our simulations, without loss of generality, we assume that
there are initially no links (e.g., mimicking a population of
arriving university students establishing links) and the number
of nodes N is even. When m = 0, the network thus consists
of N/2 nodes of each opinion. Using a range of J , κ, and
N (with κ � N), we let the system evolve and perform a
large number of update steps, N of which correspond to one
Monte Carlo step (MCS), so that in one MCS each node is
picked once on average for an update move. We have no-
ticed that after typically O(κ ) MCS, the quantity α (as well
as other global quantities such as ρ) reaches a well-defined
steady state in which the amplitude of the fluctuations de-
creases as the number of nodes N increases; see Figs. 2(a)
and 2(b). In fact, p(α), the stationary probability density of
α, is well fitted by a Gaussian, as shown in Figs. 2(c) and
2(d), where p(α) = 7.887 exp[−( α−0.4208

0.07143 )2] when N = 100
and the density is narrower when N = 1000, in which case

044311-3



LI, MOBILIA, RUCKLIDGE, AND ZIA PHYSICAL REVIEW E 104, 044311 (2021)

50 100 150 200 250 300
MCS

0

0.2

0.4

0.6

0.8

1
(a) Simulation

Theory

50 100 150 200 250 300
MCS

0

0.2

0.4

0.6

0.8

1
(b) Simulation

Theory

0 0.5 1
0

2

4

6

8

p

(c) Data
Fitted curve
Theoretical mean

0 0.5 1
0

5

10

15

20

25
p

(d) Data
Fitted curve
Theoretical mean

FIG. 2. Evolution and probability density of α, the fraction
of adders, when m = 0 for different values of N, κ and J: (a),
(b) typical sample paths of α as function of the time mea-
sured in the number of Monte Carlo steps (1 MCS = N update
steps); (c), (d) stationary probability density p(α). Parameters are
(N, κ, J ) = (100, 20.5, 0.5) in panels (a), (c) and (N, κ, J ) =
(1000, 10.5, 0.3) in panels (b), (d). Dashed lines show the mean-
field prediction α = (1 − J2)/2; see Eq. (2). Solid lines in panels (b),
(d) are the fitted Gaussians referred to in the text. Simulation data
in panels (c), (d) are obtained between 100 MCS and 5000 MCS,
sampled at the end of update steps of each MCS. Data are sampled
similarly in the following figures.

p(α) = 23.97 exp[−( α−0.4565
0.02348 )2]. We have obtained similar re-

sults for ρ: the fraction of CLs also attains stationarity after
O(κ ) MCS. Throughout, with κ’s ranging from 4.5 to 70.5,
we have run simulations for at least ten times longer than the
time O(κ ) necessary to reach stationarity. We then collected
data in the steady state for various lengths of time. In our
simulations, we have thus found that α and ρ approach a
steady state in which samples separated by one MCS are
essentially uncorrelated, where fluctuations scale as 1/

√
N ,

and the total number of links L is of order O(Nκ ). While L,
L×, L� are time-dependent quantities, they fluctuate around
their stationary values 〈L〉, 〈L×〉, 〈L�〉. In what follows, for
notational simplicity, L, L×, L� quantities will refer to their
stationary values. Similarly, in Sec. V, L±± denotes 〈L±±〉.

The simulation results of Fig. 2 strongly support a mean-
field analysis in which the fraction of adders and CLs would
simply be described by their stationary average values. When
−1 < J < 1, we obtain mean-field predictions for these val-
ues, simply referred to as α and ρ, by balancing the tendency
for L× and L� to increase and decrease in the stationary
state. For L× to increase, an adder, picked with probabil-
ity α, must interact with a nonneighbor of different opinion
with probability 1/2 (since n± = 1/2), adding a link with
probability (1 − J )/2. Similarly, for L× to decrease, a cutter,
picked with probability 1 − α, must interact with one of its
dissenting neighbors (with probability ρ), cutting the link with
probability (1 + J )/2. Balancing these contributions leads to
α(1 − J ) = 2(1 − α)(1 + J )ρ. Similar considerations for the
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FIG. 3. Fractions of adders α and of CLs ρ in the steady state as
functions of the homophily parameter for N = 1000, κ = 4.5, and
m = 0. (a) α vs J: solid line is from Eq. (1), symbols are obtained
by averaging simulation data collected between 100 MCS and 5000
MCS. (b) Same for ρ vs J: solid line is from Eq. (2).

changes in L� lead to the following additional equation α(1 +
J ) = 2(1 − α)(1 − J )(1 − ρ). Solving the balance equations
for L× and L� yields the mean-field predictions

α = 1

2
(1 − J2), (1)

ρ = 1

2
− J

1 + J2
. (2)

Results reported in Figs. 2 and 3 show that when 1 � κ � N ,
the mean-field predictions for α and ρ are in excellent agree-
ment with values obtained by averaging over simulation data,
for all values of J . It is worth noting the consistency of Eqs. (1)
and (2) with the consideration of the special cases above: ρ

increases from 0 (complete polarization) to 1 (complete an-
tipolarization) as the homophily parameter J decreases from
1 to −1. At the two extremes, J = ±1, the fraction of adders
α is zero. In the absence of homophily, J = 0, the fractions of
CLs and adders are 1/2, and there is no polarization.

B. Total and joint degree distributions

In addition to α and ρ, we are interested in determining the
effect of J on the long-time network structure, characterized
by its degree distributions. In this section, we investigate the
total degree distribution (giving the probability for a node to
have degree k in the stationary state), shown in Fig. 4(a), and
the conditional degree distribution, shown in Fig. 4(b). The
former can be obtained by combining the above mean-field
theory with a masterlike equation obeyed by the degree dis-
tribution at time t , denoted by p(k, t ). If Ra(k) and Rc(k) are
the rates at which a node of degree k adds or cuts a link, then
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FIG. 4. (a) Total degree distribution p(k) vs degree k for N =
1000, κ = 20.5, m = 0, and different values of J . Solid, dashed, and
dotted lines are from Eq. (5) for different values of J . (b) Conditional
distribution q(w | k) vs degree w � k for k = 19 and different values
of J . Lines are predictions from the binomial distribution Eq. (7).
Symbols represent data collected between 2000 MCS and 1 000 000
MCS. In both panels, J = 0 (×, solid lines), 0.5 (◦, dashed lines), 0.8
(�, dotted lines).

p(k, t ) obeys

d p(k, t )

dt
= Ra(k − 1)p(k − 1, t ) + Rc(k + 1)p(k + 1, t )

− [Ra(k) + Rc(k)]p(k, t ). (3)

Since this master equation governs a single-variate distri-
bution, the steady state limt→∞ p(k, t ) = p(k) is obtained by
balancing the probability that a node of degree k acquiring a
link [with rate Ra(k)] with that of the node of degree k + 1
losing a link [with rate Rc(k + 1)], i.e., Ra(k)p(k) = Rc(k +
1)p(k + 1). Once we determine expressions for Ra and Rc, the
recursion relation and normalization condition �k p(k) = 1
readily gives an explicit expression for p(k).

Under PDN dynamics [63–65], links are added and cut
from a node both actively (action by the chosen node) or
passively (action by other agents). Specifically, when k > κ ,
a node increases its degree only passively. In one time step,
an adder can be chosen with probability α and a link added
with probability 1

2 = 1
2 [ 1

2 (1 + J ) + 1
2 (1 − J )] (assuming that

half of the nonneighbors are of the same (or different) opinion
when κ � N). Hence, in the spirit of the mean-field approxi-
mation, this yields Ra = α

2 . For Rc, similar reasoning leads to
the probability for cutting a link being χ (ρ) ≡ 1

2 (1 − J )(1 −
ρ) + 1

2 (1 + J )ρ. Since k > κ , a node can take this action, as
well as suffer a decrease passively, from the fraction 1 − α

-1 0 1
J
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1.5

 -
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J

1.2

1.4

1.6

1.8

2

V
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)
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FIG. 5. (a) μ − κ vs J and (b) V (k) vs J for N = 1000 and
different values of κ: κ = 5.5 (×), 20.5 (◦), and 70.5 (�). Lines are
the analytical degree average and variance given by Eq. (6); markers
are these quantities obtained by averaging simulation data collected
between 2000 MCS and 1 000 000 MCS; see text.

of other cutters. Thus, Rc = χ (ρ)[1 + (1 − α)] . Similar ar-
guments can be used when k < κ , leading to Ra = 1+α

2 and
Rc = χ (ρ)(1 − α). Combining these consideration, we have

Ra = 1
2 [H (κ − k) + α], Rc = χ (ρ)[H (k − κ ) + (1 − α)],

(4)

where H is the Heaviside step function. Using the mean-field
results Eq. (2) for ρ to rewrite χ as a function of J in Eq. (4)
and solving the recursion relation, we obtain the stationary
total degree distribution as the steady-state solution of Eq. (3):

p(k) =
{(

1−J2

3−J2

)�κ�−k
for k < κ,(

1+J2

3+J2

)k−�κ�
for k > κ.

(5)

Interestingly, p(k) is an even function of J for all k’s: when
m = 0, homophily and heterophily have the same effect on
the distribution of degrees in the stationary network. This is
no longer the case when m �= 0; see below. We notice that
Eq. (5), in accord with simulation results, predicts that p(k) is
symmetric with respect to κ when J = 0 (no polarization): in
this case, we recover a Laplace distribution as in Refs. [63,65].
However, p(k) is skewed as soon as there is some degree of
homophily (J �= 0): in Fig. 4(a), the slopes of the left branch
of ln (p(k)) increase from ln 3 to infinity, while those of the
right branch increases from − ln 3 to − ln 2, as |J| increases
from 0 to 1. Comparison with simulation results shows that
these predictions Eq. (5) are in very good agreement with
data over a broad range of values of J (−1 < J < 1) and k
[Fig. 4(a)]. The deviations near the tails of the distribution are
understandable, as our approximation does not account for the
physical limits of k ∈ [0, N ).

With Eq. (5), we can compute the average degree μ =∑
k kp(k) and variance V = ∑

k (k − μ)2 p(k), whose explicit
expressions read

μ = κ + 3J2

2
and V = 7 + J4

4
. (6)

The results for μ are in good agreement with those from
simulation data when 1 � κ � N , and the results for V ap-
proach the theoretical prediction for large κ , as shown in
Fig. 5. We notice that somewhat counterintuitively μ in-
creases from κ monotonically with |J|. In other words, both
homophily and heterophily increase the average degree, which
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is consistent with the decrease of adders. More noteworthy
is that the presence of translational invariance (in k-space)
in our approximation scheme for p(k), i.e., the dependence
on (k, κ ) is only through the difference k − κ; see Eq. (5).
As a result, both μ − κ and V are independent of κ . In fact,
μ − κ = O(J2) and the standard deviations from the mean
degree are also of order O(J2). The systematic deviations
from the theoretical prediction of V in Fig. 5(b) stem from
finite-size effects and decrease as κ is set further from the
limits of our approximation (1 � κ � N).

To summarize, our mean-field theory, resulting in Eqs. (5)
and (6), captures the essence of our model when m = 0 and
agrees well with simulation data, with some deviations caused
by some of the underpinning mean-field assumptions. In par-
ticular, we have found that the total degree distribution in
the case of communities of the same size is exponential with
a peak around the preferred degree κ (when 1 � κ � N)
with small deviations about it that increase with the level of
homophily or heterophily in the population. As discussed in
the next section, a totally different and more complex picture
emerges when communities are of different sizes.

In addition to p(k), we are also interested in how the CLs
and ILs are distributed. We have thus studied the conditional
distribution q(w | k), giving the probability for a node of total
degree k to have w CLs in the stationary state among those
with total degree k. As in other network models with preferred
degrees [65], we expect no bias in favor of or against a CL
other than the effects of J , in such way to produce the ob-
served value of ρ. In other words, our assumption is that, for
a node with degree k, the probability of selecting one of its
neighbors of the opposing opinion is just ρ. Hence, we may
postulate a binomial distribution for w, the number of CLs our
node has:

q(w|k) =
(

k

w

)
ρw(1 − ρ)k−w. (7)

The distribution is in excellent agreement with simulation
data obtained for q(w | k) with different sets of parameters,
as illustrated in Fig. 4(b).

Note that when J changes sign, J → −J , we have ρ →
1 − ρ and therefore q(w|k) → q(k − w|k). These “degenera-
cies” will be lifted once we consider communities of different
sizes.

Beyond these comparisons, let us point out an interesting
and sharp distinction between the total degree distribution and
the conditional distribution q. The variance of the former is
O(1). Since it is independent of extensive parameters like N
and κ , the total degree distribution resembles a delta function
in the large N, κ limit. By contrast, being a binomial in w,
the variance of q is ρ(1 − ρ)k. Since the k’s of interest are
O(κ ), the variance here is of extensive form, a typical feature
of random networks like Poisson random graphs [7,8,73], also
found in rewiring models [54,55] where the mean and the
variance of degrees are of the same order.

IV. ASYMMETRIC CASE m �= 0

We now consider the general case where opinion groups
are of different sizes, with n+ �= n−, i.e., m �= 0. In this case,
each physical quantity is twofold: the fractions of adders or
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FIG. 6. Simulation results for the fraction of adders α+, α− when
N = 1000 and κ = 60.5. α+ (blue �) and α− (red ◦) versus J with
(a) m = −0.2 and (b) m = −0.6. Data are collected after 105 MCS.

cutters and the fractions of CLs or ILs have to be distinguished
in each community. Similarly, the rates at which a node adds
or cuts a link are different in each community. As a result, the
general asymmetric case m �= 0 turns out to be surprisingly
complex, and its thorough analysis is presented elsewhere
[74]. Here, our main goal is to present the salient features
of the model in this general case and to highlight an original
phenomenon, referred to as the “overwhelming transition,”
occurring here under sufficient heterophily. We also provide
arguments explaining the original phenomenology and pro-
vide some insights on how to generalize the analysis carried
out in the symmetric case m = 0. For this, we first discuss the
fraction of adders and CLs and then the degree distribution.

A. Fractions of adders and cross-links

We denote by ασ the fraction of adders in the communities
of opinion σ = ±. Similarly, we denote by ρσ = L×/(L× +
2Lσσ ) the fraction of CLs in opinion group σ , giving the
probability of a link connected to a node with opinion σ being
a CL.

As a result of the asymmetry, in general α+ �= α− and
ρ+ �= ρ−, with α± = α and ρ± = ρ when m = 0. Hence,
when m �= 0, each panel of the counterpart of Fig. 3 contains
twice as many curves, one for each community, as we see
in Fig. 6 [to be compared with Fig. 3(a)]. The special case
J = 0 is intuitively simple since the system thus behaves as if
there was just a single population (the distinction of opinion
is merely nominal), so that the addition and removal of links
are unbiased. Hence, α± = 1/2 regardless of m. Furthermore,
for an agent of opinion σ , the average fraction of CLs when
J = 0 is simply the fraction of agents of the opposite opinion,
yielding ρ± = n∓ = (1 ∓ m)/2.

Simulation results show that in general α±(m, J ) and
ρ±(m, J ) are nontrivial functions of J and m; see Fig. 6, where
we find that α± have a complex dependence on J and a very
different shape when m = −0.2 [Fig. 6(a)] and m = −0.6
[Fig. 6(b)].

When J > 0, there is always a finite fraction of adders in
both communities (α± > 0), whereas when J < 0, the fraction
of adders in the smaller group (α+ in Fig. 6) vanishes when
heterophily is too strong. In other words, when J is close
enough to −1, the minority consists only of cutters. When
J > 0 and both communities are of comparable sizes (|m| �
1), we recover a scenario similar to the symmetric case, e.g.,
Fig. 6(a), with a fraction of cutters and adders in both groups
are comparable. However, for larger asymmetry, the fraction
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FIG. 7. Simulation results for the total degree distributions p±(k)
in the community of ±1 nodes for different values of J and m when
N = 1000 and κ = 60.5. Data are collected after 105 MCS. Dashed
lines are eyeguides showing k = κ = 60.5. (a) Symbols � and ◦
refer to p+ and p−, respectively, for m = −0.2, J = −0.2 (blue and
red empty markers) and J = 0.2 (cyan and magenta filled markers).
(b) Symbols � (blue) ◦ (red) refer respectively to p+ and p−, for
m = −0.6, J = −0.6, when the minority agents are “overwhelmed”
by those in the majority (see Sec. IV).

of adders in the smaller community is considerably larger
than that in the majority agents [α+ � α− in Fig. 6(b)] if
J > 0, but otherwise (α+ � α−) for J < 0. Indeed, as noted
above, α+ is undetectably small when J drops below some
threshold value (for example, when m = −0.6, the threshold
is J ≈ −0.42).

B. Total degree distribution and an “overwhelming” transition

Turning to degree distributions, we denote by pσ (k) the
probability that an agent with opinion σ has k links in total
(regardless of the opinion of its neighbors). Figure 7 clearly
illustrates that p+(k) �= p−(k), with nontrivial dependence
of pσ (k) on both m and J . In particular, in Fig. 7(b) with
strong heterophily (J = −0.6), we notice that the minority
community is characterized by degrees greatly exceeding κ

and following a broad distribution.
For low asymmetry and small |J|, pσ (k) are qualitatively

similar to the p(k) above, compare Figs. 4(a) and 7(a) for
m = −0.2 and J = ±0.2. Though p±(k) are no longer even
functions of J , they are still (approximately) exponential dis-
tributions peaking near κ . Hence, the mean degree of all nodes
is close to the preferred κ .

By contrast, striking behavior emerges under large asym-
metry and high level of heterophily (|m| = O(1) and J near
−1) as illustrated in Fig. 7(b) for m = J = −0.6. In this case,
all minority agents are cutters, while the degree distribution
(p+ in Fig. 7) is Gaussian-like, with a mean much larger than
κ . However, the distribution for a majority agent, p−(k) in
Fig. 7, is comparable to those in the cases of small m, J: it is
approximately an exponential distribution peaking around κ .
Intuitively, this intriguing behavior stems from the combined
effect of the preferred degree and heterophily mechanisms re-
sulting in the minority agents being “overwhelmed” by those
in the majority. In fact, when one group is larger than the other
and strong heterophily favors the creation of CLs, agents in
the smaller group can be “overwhelmed” by links created by
members of the majority group, and their degree can exceed κ

forcing them to act as cutters. By analogy with the mechanism
of “homophily amplification” of Ref. [47] by which agents of

the same group interact and establish further connections, this
phenomenon can thus be described as a sort of “heterophily
amplification mechanism.”

To provide a more quantitative picture, we consider L×,
the total number of CLs. Roughly, due to the large number of
agents in the majority, these can act “as they wish” and settle
with degrees around κ , which can provide an estimate for
L×. If J = 0, then ρ− = n+, so that L× = (κN−)n+. However,
if heterophily is strong, then the most naive estimate of L×
would be larger by a factor of b = (1 − J )/(1 + J ), which is
the bias in favor of making CLs. Thus, a minority node (which
has opinion + here) would have L×/N+ ∼ κn−b CLs. Thus,
for large asymmetry and heterophily, the number of CLs alone
can greatly exceed κ . Meanwhile, a minority agent is biased
against cutting these CLs [suppressed by (1 + J )/2]. In this
scenario, minority agents are overwhelmed by the majority
adding links to them preferentially. Their cutting cannot keep
up with the creation of links by the opposing group. As a
result, their degrees are significantly larger than κ , as seen in
Fig. 7(b). This is in striking contrast with what we have found
in the symmetric case m = 0, where the degree distribution is
always centered about κ , and shows that, when communities
are of different sizes, simple update rules like those of the
PDN can lead to a broad degree distribution with a large
average degree of the smaller group. In Ref. [74], this picture
is corroborated by a detailed analysis of the “overwhelming
transition” and of p±(k) in terms of suitable analytical ap-
proximations. Interestingly, the authors of Ref. [44] studied a
two-community growing network according to the preferen-
tial attachment dynamics with homophilic interactions, and
showed that in their model heterophily helps increase the
degree of the minority group, but these authors did not report
the existence of an overwhelming transition in their model.

V. POLARIZATION

In this section, we study the phenomenon of polarization
that measures the extent of division between communities
with different opinions. We have seen that in the case of
extreme homophily (J = 1), there is “fission”, which results in
complete polarization with the network split into two separate
communities; see Fig. 1(b). Oppositely, when there is extreme
heterophily (J = −1), the network becomes bipartite, and in
this case, there is complete antipolarization; see Fig. 1(e).

To characterize the level of partial division between
the parties arising for intermediate homophily, −1 < J < 1
[Figs. 1(c) and 1(d)], polarization is often measured in terms
of the so-called average edge homogeneity [36,72]. The latter
quantity, here denoted by �, is defined as the difference be-
tween the fraction of ILs and CLs, that is � = 1 − 2ρ. When
m = 0, it has a simple dependence on J that is well captured
by Eq. (2), yielding � = 2J/(1 + J2). However, in general,
the fractions of ILs and CLs, and hence �, depend on the size
of each group (Nn±) and on ρ±. In the realm of the mean-
field approximation, we indeed have 1/ρ+ + 1/ρ− = 2/ρ,
yielding

� = 1 − 2ρ = 1 − 4ρ+ρ−
ρ+ + ρ−

, (8)
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FIG. 8. Measures of polarization � and � vs J for different
values of m. Symbols are from simulation data. (a) � = 1 − 2ρ

for m = 0 (�) and m = −0.2 (◦), and � for m = −0.2 (�). The
line shows the mean-field prediction � = 2J/(1 + J2) obtained for
m = 0 by using Eq. (2) in Eq. (8), while � has been computed from
its definition Eq. (9) using simulation data. (b) � (◦) and � (�) as
functions of J with m = −0.6; when J = 0, � = 0.36 and � = 0;
see text. The dashed line is an eyeguide showing zero polarization.
In all panels: N = 100 and κ = 6.5. Data are collected and sampled
from 103 to 105 MCS.

which is a nontrivial function of m and J; see Fig. 8. This
quantity provides a meaningful measure of polarization in
symmetric communities of similar sizes, i.e., when m is close
to zero. In this case, � indeed captures the correct degree of
polarization � → ±1 when J → ±1 and � ∝ J when J ≈ 0;
see Fig. 8(a). However, we note that � can provide misleading
impressions for m �= 0. This can be seen by noticing that when
J = 0, ρ± = (1 ∓ m)/2, and Eq. (8) thus gives � = m2, as
in Fig. 8(b). However, when J = 0, agents not discriminating
between the communities, there is no reason to associate it
with any level of polarization: a proper measure of polariza-
tion under J = 0 should thus give zero.

For a better measure of polarization, we turn to the joint
degree distribution Pσ (
+, 
−). This quantity gives the prob-
ability that a node holding opinion σ has 
τ links to agents
with opinion τ = ±. These distributions are illustrated in
Fig. 9, where P+(
+, 
−) and P−(
+, 
−) are, respectively,
displayed by dark and light dots, and where each cell is la-
beled by (
+, 
−), with the size of the dots being proportional
to Pσ (
+, 
−). The averages

(
̄±)σ ≡
∑

±


±Pσ

can be regarded as the “centers of mass” (CMs) of the distri-
butions Pσ . Clearly, the two CMs will not coincide in general,
as illustrated by � and � in Fig. 9 (where they have been
obtained from simulation data). Nevertheless, it can be shown
that they do coincide when J = 0, where the opinions of the
nodes are irrelevant [74]. Thus, the separation between the
two CMs can serve as a suitable measure of polarization.
Specifically, we define a “normalized” distance between CMs
and measure of polarization as

� ≡ 1

2

{
(
̄+)+ − (
̄+)−
(
̄+)+ + (
̄+)−

+ (
̄−)− − (
̄−)+
(
̄−)− + (
̄−)+

}
. (9)

FIG. 9. Visualization of the joint degree distributions P+(
+, 
−)
(dark dots) and P−(
+, 
−) (light dots) with N = 100, κ = 6.5 and
m = −0.6. (a) J = −0.1; (b) J = −0.6: each dot represent a node
holding opinion +1 (dark) or −1 (light). A node located in cell
(
+, 
−) has 
+ and 
− links to +1 and −1 nodes, respectively,
and total degree 
+ + 
− = k. The area of each dark or light dot is
proportional to the number of nodes having respectively 
+ and 
−
links to +1 and −1 nodes. Dashed lines show 
+ + 
− = κ . � and
� show, respectively, the centers of mass (
̄+, 
̄−)σ of nodes with
opinion σ [e.g., � is the center of mass of P+(
+, 
−)]; see text. Data
are collected and sampled from 103 to 105 MCS. Insets: illustration
of typical network configurations after 1000 MCS.

In the case of complete polarization, there are no CLs, so
(
̄σ )−σ vanishes and � = 1. Similarly, for antipolarization,
there are no ILs, so (
̄σ )σ vanishes and � = −1. Furthermore,
since (
̄σ )σ = (
̄σ )−σ we have � = 0 when J = 0 for all m.
In other words, this definition of polarization vanishes in the
absence of homophily for any asymmetry in the population
sizes, and avoids the deficiencies of �. The quantity Eq. (9)
has therefore the required properties to meaningfully charac-
terize polarization in networks with communities of arbitrary
sizes.

Figure 8 illustrates the salient features of � with simu-
lation results. We find that when |m| � 1, both � and �

are well approximated by � ≈ � ≈ 2J/(1 + J2), where we
have used the mean-field expression Eq. (2) for ρ in Eq. (8).
With m = −0.2, Fig. 8(a) illustrates this property. However,
for larger |m|, � deviates from � for most values of J , as
the data for m = −0.6 show in Fig. 8(b). To emphasize the
advantage of � over � as a measure of polarization, we
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note that there is a regime when � remains positive even
for heterophilic systems (J < 0)! By contrast, the sign of �

alone indicates which type of bias the agents have. We chose
the parameters (m, J ) = (−0.6,−0.1) in the run for Fig. 9(a),
for which numerically estimated (�,�) ≈ (0.28,−0.10), to
highlight this difference: while � ≈ 0.28 implies the system
is polarized, � ≈ −0.10 and the typical configuration clearly
indicates antipolarization [see inset of Fig. 9(a)]. Comparing
the values for � in Fig. 8, we note that the overall dependence
on m is relatively modest, which we interpret as an indication
of the robustness of this measure. In other words, being mostly
free from the influence from asymmetric community sizes,
� is indeed a better indicator of the effects of homophily
on polarization. In Ref. [74], this analysis is corroborated
by mean-field results allowing us to accurately reproduce the
properties of � and � for arbitrary m and J .

In Fig. 9(b), we illustrate the polarization and joint degree
distribution under high heterogeneity and large asymmetry,
(m, J ) = (−0.6,−0.6), in which case we have computed
(�,�) ≈ (−0.55,−0.87), corresponding to a high level of
antipolarization. As discussed above, in the case of large
asymmetry and high level of heterophily, the minority agents
are “overwhelmed” by the majority, and their degree dis-
tribution is Gaussian-like with a mean much larger than κ;
see Fig. 7(b). This phenomenon is also clearly noticeable in
Fig. 9(b), where P+ differs greatly from P− and from the joint
distributions of Fig. 9(a), and nearly all minority agents have
CLs and a degree exceeding κ . The comparison of Figs. 7(b)
and 9(b) gives an insight into finite-size effects: while all the
minority agents are cutters and there are no ILs within the
minority community when (N, κ ) = (1000, 60.5) [see also
Fig. 6(b)], a small number of minority agents are cutters and
have a few ILs when (N, κ ) = (100, 6.5).

VI. DISCUSSION AND CONCLUSION

We have considered the dynamics of an out-of-equilibrium
two-party network evolution model where agents hold fixed
opinions and form dynamical links. These try to satisfy a
preferred degree by endlessly creating and deleting edges. We
have introduced homophily, a form of social interaction, to
the simple preferred degree network dynamics. Unlike most
network models with homophily [42,44], here the update rules
are evolutionary, and homophily (or heterophily) influences
the rate at which edges are created and removed.

Here, we have studied in detail systems where the parties
are of the same size using both simulation techniques and
mean-field theories. The excellent agreement between the
analytical predictions and simulation results shows that we
understand how the varying level of homophily shapes the de-
gree distribution, the number of links across communities, and
the level of polarization. These can help understand the phe-
nomenon of filter bubbles [31] and echo chambers [32,33,35–
37], especially when the level of polarization is high, which
corresponds to the network where both parties have equally
high levels of the fraction of internal links (influence assort-
ment) [75], resulting in self-constructed echo chambers there.

Our model, under extreme homophily, exhibits complete
fission of the population into two disconnected and polar-
ized communities, previously found in models with rewiring

[54,55,57]. We have also introduced an original measure of
polarization that does not share the counterintuitive properties
associated with the average edge homogeneity, commonly
used in the literature, and depends weakly on the community
sizes.

Simulation results, corroborated by the detailed analysis
of Ref. [74], show that our model exhibits a rich set of be-
havior when communities are of different sizes, especially
when moderate to high levels of heterophily are present. In
particular, a striking feature of this model is the existence
of an “overwhelming transition”: under sufficient heterophily,
agents in the smaller group are “overwhelmed” by links cre-
ated by members of the majority group and only try to delete
edges, and their degree distribution is Gaussian-like with an
average much greater than the preferred degree. This transi-
tion therefore differs from fragmentation or fission [52,55,57]
and transition to paradise [49] found in other network mod-
els with homophily. Our dynamic network model shaped by
homophily therefore appears to be generally homogeneous
with total degree distribution centered about the preferred
degree, at the remarkable exception of the agents’ minority
group that have a broad distribution and large degrees in the
overwhelming phase.

The overwhelming transition is here attributed to the joint
effect of heterophily and the existence of preferred degree.
It would hence be interesting to investigate whether these
two ingredients are sufficient to lead to a similar transition
in other models, like those of Refs. [42,44,47], and whether
the overwhelming transition is a generic feature of network
models with homophily and a form of degree preference (not
necessarily a strict degree value as here). It is also intrigu-
ing to notice that the increase of the degree of the minority
group under sufficient heterophily, a salient feature of our
model that is related to the overwhelming transition, has also
been found in a two-community network growing according
to the preferential attachment dynamics where it originates
from a different mechanism [44]. Just as rewiring schemes
[56] can be naturally extended to co-evolutionary models,
where network varies in response to changes of node states
and these change in response to updates of the network links
[52,54,55,57,58,76–78], our model can be generalized to in-
clude coupled node and link coevolutionary dynamics. We
expect that the phenomenology of such a co-evolutionary
dynamics of a preferred degree network with homophily will
lead to an even richer and more complex phenomenology, to
understand which this study is certainly a necessary building
block.
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