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Abstract

Which variables determine the constraints on gene sequence evolution is one of the most central questions in molecular 

evolution. In the fission yeast Schizosaccharomyces pombe, an important model organism, the variables influencing the rate 

of sequence evolution have yet to be determined. Previous studies in other single celled organisms have generally found gene 

expression levels to be most significant, with numerous other variables such as gene length and functional importance identi-

fied as having a smaller impact. Using publicly available data, we used partial least squares regression, principal components 

regression, and partial correlations to determine the variables most strongly associated with sequence evolution constraints. 

We identify centrality in the protein–protein interactions network, amino acid composition, and cellular location as the most 

important determinants of sequence conservation. However, each factor only explains a small amount of variance, and there 

are numerous variables having a significant or heterogeneous influence. Our models explain more than half of the variance 

in dN, raising the possibility that future refined models could quantify the role of stochastics in evolutionary rate variation.

Introduction

The question of which variables determine the rate of 

sequence evolution is one of the most central in evolution-

ary genomics. While there is a long list of variables that 

are believed to influence the rate of sequence evolution, the 

importance of each has still not been explored in fission 

yeasts as far as we are aware. This has however been exam-

ined in a range of other organisms, generally showing that 

gene expression levels most strongly influence sequence 

constraint at least in single-celled organisms (Zhang and 

Yang 2015). Because of the significance of Schizosaccha-

romyces pombe in genetic research, it is important to inves-

tigate whether the drivers of molecular evolution differ in 

fission yeasts compared to other organisms.

Determining how much of the variance in sequence 

evolution rates is determined by each variable is a chal-

lenging high-dimensional regression problem. Previous 

studies (Jovelin and Phillips 2009; Yang and Gaut 2011; 

Alvarez-Ponce et al. 2017) have used principal components 

regression (PCR) to determine the influence of each vari-

able. We propose the additional use of the similar partial 

least squares regression (PLS), which unlike PCR reduces 

dimensionality of dependent variables with respect to both 

the independent and dependent variables rather than just 

the dependent variables (Haenlein and Kaplan 2004). Both 

methods are highly interpretable; in PCR, the variance in 

the independent variable explained by each dependent vari-

able can be calculated (Drummond et al. 2006), whereas in 

PLS, the variable importance in projection (VIP) (Mehmood 

et al. 2012) provides an indicator of variable importance. 

Additionally, partial correlation analysis, which finds the 

correlation between two variables adjusting for the influence 

of covariates, is used as a second estimate of the influence 

of each variable.

We use publicly available data from Grech and colleagues 

(Grech et al. 2019), with additional data from the PomBase 

(Lock et al. 2019), AnGeLi (Bitton et al. 2015), and STRING 

(Szklarczyk et al. 2019) databases to model the influence of 

170 genomic, proteomic, and functional variables on gene 

conservation. Using the modelling techniques described, we 

attempt to determine which variables are most influential on 

gene conservation in fission yeast.
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Background: Variables Influencing Sequence 
Constraints

Functional Importance

Kimura and Ohta (1974) suggested, based on the neutral 

theory of molecular evolution (Kimura 1968) that func-

tional importance (importance of gene for organismal fit-

ness) would be the most important predictor of sequence 

evolution constraint. This hypothesis is intuitive; del-

eterious mutations in highly important genes should be 

more detrimental to fitness, providing a selective pressure 

against sequence change. However, once confounders are 

adjusted for, it seems that functional importance measured 

as knockout fitness or survival only has a minor impact on 

sequence evolution rates (Zhang and Yang 2015). There 

are good reasons for this rather counterintuitive finding. 

It has been suggested (Bergmiller et al. 2012) that the 

reason ‘essential’ genes can be lost in evolution is that 

other genes replace their function. Aguilar-Rodríguez 

and Wagner (2018) found that, in the context of meta-

bolic networks, the rate of evolution is strongly correlated 

with ‘superessentiality’, i.e. how easily the protein can be 

bypassed in the network. Additionally, Pal et al. (2006) 

argue that essentiality under laboratory conditions may 

be entirely different from essentiality under natural (less 

favourable) conditions, although in the case of fission 

yeast Grech et al. (2019) found that constraint estimated 

from saturating transposon mutagenesis in the laboratory 

correlated well with evolutionary constraint. Perhaps more 

significantly, dispensability and essentiality both refer to 

the effect of gene loss rather than point mutations, which 

is how sequence change is measured (Pal et al. 2006; Alva-

rez-Ponce 2014).

Gene Expression

In the past two decades, gene expression has emerged as 

the strongest predictor of sequence conservation, at least 

in unicellular organisms (Alvarez-Ponce 2014). The so-

called expression–evolutionary rate (E-R) anticorrelation 

has been reported across a range of organisms (Alvarez-

Ponce 2014; Zhang and Yang 2015), and conserved genes 

have indeed been found to be highly expressed in Schizo-

saccharomyces pombe (Mata 2003). There are multiple 

suggestions why this might be, and Alvarez-Ponce (2014) 

and Zhang and Yang (2015) explain these in detail. They 

include hypotheses that the high codon bias of highly 

expressed genes introduces high constraints (Akashi 2001, 

2003), that reduction in organismal fitness resulting from 

deleterious mutations is correlated with expression level 

(Rocha and Danchin 2004), that the cost of producing 

non-functional proteins increases with protein abundance 

(Cherry 2010; Gout et al. 2010), that highly expressed 

proteins prefer residues that reduce the risk of misinter-

action (Yang et al. 2012), and that the mRNAs of highly 

expressed genes are more strongly folded which increases 

constraint (Park et al. 2013). However, the hypothesis 

that probably has most evidential support (Alvarez-Ponce 

2014) is the translational robustness hypothesis (Drum-

mond et al. 2005). It suggests that some proteins may have 

the ability to fold correctly even if the wrong amino acids 

have been added as a result of translational errors, and that 

these proteins are more constrained in order to preserve 

this translational robustness. Because the negative conse-

quences of mistranslation (e.g. misinteraction and misfold-

ing) would be more severe in highly expressed proteins, 

this selective pressure would be expected to increase with 

expression levels. Notably, these hypotheses are not mutu-

ally exclusive, and it seems likely that more than one of 

them contribute to this widely noted relationship.

Network Centrality

One hypothesis that has been found to be very important in 

some studies, but not in others, is that proteins that are more 

central in the protein–protein interactions network are more 

conserved. This, as suggested by Ingram (1961), is gener-

ally thought to be because mutations in highly connected 

proteins that result in loss of binding to other proteins would 

cause greater disruption to a greater number of pathways 

than less central proteins. Indeed, network centrality has 

been found to be one of the most important determinants 

of the rate of sequence evolution in organisms as diverse 

as humans (Alvarez-Ponce et al. 2017) and Saccharomyces 

cerevisiae (Fraser et al. 2002). Mannakee and Gutenkunst 

(2016) used systems modelling to develop a metric, dynami-

cal influence, which measures functional importance of the 

protein within its interactions network. They found that this 

metric showed one of the strongest correlations with evolu-

tionary rate, comparable with expression levels, even once 

covariates had been adjusted for. Overall, there is strong and 

increasing evidence that network centrality may be as impor-

tant as expression levels in determining the rate of evolution; 

it may be that in some cases, protein–protein interaction net-

work centrality is more important. However, when consid-

ering other networks or specific sub-networks, it is far less 

straightforward. For instance, central transcription factors 

generally evolve more quickly than peripheral ones (Jovelin 

and Phillips 2009). Aguilar-Rodríguez and Wagner (2018) 

found that in bacterial metabolic networks, enzymes’ rates 

of evolution depend more on their function in the network 

than their centrality.
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Sequence Length

The correlation between sequence length and conservation 

appears to depend greatly on context; some studies find no 

correlation and for those that do, there is no agreement on 

the direction of correlation (Alvarez-Ponce 2014). Alvarez-

Ponce (2014) points out that the Hill-Robertson effect (Hill 

and Robertson 1966), which is that linkage between closely 

located genes reduces the efficiency of selection, is stronger 

for longer genes. Longer genes do however generally con-

tain more introns, which reduces the Hill-Robertson effect 

(Comeron and Kreitman 2000).

Other Variables

Finally, a host of other variables influencing the rate of 

sequence evolution in a range of organisms have been 

reported before, including chaperone dependence (Ruther-

ford 2003) which has been found to be the most important 

determinant in Saccharomyces cerevisiae (Alvarez-Ponce 

et al. 2019), pleiotropy (Hahn and Kern 2005), cellular 

location (Julenius and Pedersen 2006; Liao et al. 2010), and 

codon bias (Drummond and Wilke 2008). Zhang and Yang 

(2015) and Alvarez-Ponce (2014) provide comprehensive 

reviews of the various variables implicated in sequence 

evolution.

Methods

Sequence Alignments

Proteomes of the four fission yeasts, Schizosaccharomy-

ces pombe, S. japonicus, S. octosporus, and S. cryophilus 

were downloaded from NCBI and assigned to orthogroups 

by Orthofinder 2.3.11 (Emms and Kelly 2019) with default 

parameters. Corresponding transcriptomes were also down-

loaded from NCBI and sorted into orthogroups according to 

Orthofinder results. Orthogroup nucleotide sequences were 

aligned into codons using corresponding protein alignments 

with MACSE 2.05 (Ranwez et al. 2011) and default param-

eters. Unreliable sites were filtered out with Gblocks (Cas-

tresana 2000).

Estimation of ω and dN

We attempted to calculate the ratio of nonsynonymous sub-

stitutions to synonymous substitutions (dN/dS, or ω), which 

is the most common method of estimating the rate of molec-

ular evolution. This was performed using CODEML (Yang 

2007) with an M0 model (NSsites = 0, model = 0) using 

the described alignments. Only 1:1:1:1 orthologous groups 

were used, with one gene per species. For all analysis in 

CODEML, we used a nearest-neighbour interchange maxi-

mum likelihood phylogenetic tree (Fig. 1) created in MEGA 

(Tamura et al. 2021) with a Tamura-Nei model assuming 

uniform rates across all sites. This tree was generated from 

an alignment of 50 concatenated orthologs chosen at ran-

dom. Unfortunately, dS was estimated to have a mean of 

12 indicating saturation, meaning that ω could not be reli-

ably estimated. This is because the genetic distance between 

the four fission yeasts is too great, as previously reported 

by Fawcett et al. (2014). We chose to retain the calculated 

dN values (n = 2576) as a metric of evolutionary rate, as 

there was no indication that this rate was saturated. It must 

however be remembered that since this rate does not adjust 

for the rate of synonymous substitutions, results should be 

treated with caution.

phyloP

Additionally, we relied on “phylogenetic p-values”, phy-

loP (Siepel et al. 2006), a hidden Markov model approach 

to detect selection and its direction. It models sequence 

differences between species, per nucleotide site, under 

a null hypothesis of neutral evolution. In other words, it 

indicates the probability of seeing the observed sequence 

changes given no selection. The absolute values of phyloP 

are −  log10(p-values), and negative scores indicate accel-

eration (positive selection) whereas positive scores indicate 

conservation (negative selection). Therefore, extreme phyloP 

values indicate strong evidence for selection. We used values 

(n = 5181) already available from Grech et al. (2019), who 

calculated the average phyloP per gene, using only coding 

sequences, for S. pombe with the HAL toolkit (Hickey et al. 

2013) using DNA alignments of S. pombe, S. cryophilus, S. 

octosporus, and S. japonicus.

Fig. 1  Maximum likelihood phylogenetic tree of the four fission yeast 

(Schizosaccharomyces) species based on a concatenated alignment 

of 50 orthologous groups, chosen at random. Created with MEGA 

10.2.5 using the Tamura-Nei model assuming uniform rates across all 

sites, using Nearest-Neighbor-Interchange as ML heuristic and rooted 

with the S. japonicus sequences. Visualised with FigTree 1.4.4 (tree.

bio.ed.ac.uk/software/figtree/)
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Data Sources

A list of genes (n = 5181) of protein coding genes in the 

Schizosaccharomyces pombe genome, with data on con-

straint (calculated as above), gene and protein expression, 

gene length, chromosome, essentiality and fitness on soli-

dum medium, were retrieved from the Figshare repository of 

Grech et al. (2019). Interactome data, both for direct physi-

cal interactions as well as for functional (i.e., all) interac-

tions were retrieved from STRING (Szklarczyk et al. 2019). 

Further data on intron number, average intron length, and 

genomic location were retrieved from AnGeLi (Bitton et al. 

2015). Gene ontology data (‘GO slims’, which are groups of 

broad categories of GO Terms) were retrieved using the GO 

Term Mapper (go.princeton.edu/cgi-bin/GOTermMapper), 

with the gene list from Grech et al. as input. All other data, 

including amino acid composition and protein length and 

size, were retrieved from PomBase (Lock et al. 2019). The 

links to the datasets are available in the “Availability of data 

and material” section.

Data Pre‑processing

Gene ontology (GO) annotation slims as well as chromo-

some data were one-hot encoded such that each GO slim 

became a column with the values in each row being either 

0 (corresponding to “false”) or 1 (“true”). This was done 

using the mltools 0.3.5 R package (Gorman 2018). All other 

variables were continuous. Amino acid composition data 

were scaled to proportion of protein. Missing data were 

imputed using missForest 1.4 (Stekhoven and Buhlmann 

2012) using all columns except constraint (dependent vari-

able), GO slims, and amino acid composition, as the two 

latter required too much compute power. All preprocessing 

was carried out in R 4.1.0 (R Core Team 2020) with use of 

Tidyverse 1.3.1 (Wickham et al. 2019). Some variables were 

removed due to low variance (i.e. if they contained missing 

values after scaling).

Network Analysis

Two protein–protein interactions network graphs were con-

structed from STRING (Szklarczyk et al. 2019), a database 

containing both experimentally confirmed and predicted 

interactions. The first network included all interactions, 

whether direct or indirect, and the second only direct, physi-

cal interactions. The graphs were created in igraph 1.2.6 

R package (Csardi and Nepusz 2006), using a minimum 

STRING interaction score of 0.400 to filter out unreliable 

interactions. The centrality metrics used were betweenness, 

closeness, degree (all proposed by Freeman 1979) and eigen-

vector centrality (Bonacich 1972). Closeness centrality is the 

inverse of the average shortest distance to all other nodes, 

and betweenness centrality is the number of closest paths 

between all pairs of nodes on which the node is located; 

these two global metrics provide a measure of control flow 

through the network (Alvarez-Ponce et al. 2019). Degree 

centrality (also known as ‘connectivity’) is simply the num-

ber of direct neighbours a node has, and is a local metric of 

centrality (Alvarez-Ponce et al. 2019). Eigenvector centrality 

captures both local and global information and is a weighted 

sum of the centralities of all the nodes that node is connected 

to (Negre et al. 2018).

Regression Models

To model sequence evolution constraint (phyloP) by all inde-

pendent variables, we fitted partial least squares (PLS) and 

principal components regression (PCR) models. Both PLS 

and PCR models were constructed using the pls R pack-

age v 2.7-3 (Mevik et al. 2019) and optimum number of 

components selected automatically with the selectNcomp 

function. All data were centred and scaled. Ten-fold cross-

validation was used in training to guard against overfitting. 

Performance prediction was then made on a held out test set; 

the size of this was set to 30% of the dN dataset (n = 2576), 

and the same genes were used for the phyloP test set, cor-

responding to just under 15% of that dataset (n = 5181).

Variable Importance Estimation

Two very similar methods were used to interpret the PCR 

and PLS models. For the PCR model, the percent variance 

explained by each variable was calculated by summing each 

variable’s influence on the latent projections in each model 

component, scaled by the variance in the dependent vari-

able explained by that component (Drummond et al. 2006). 

For PLS, variable importance in projection (VIP) scores 

were calculated using plsVarSel 0.9.6 (Mehmood et  al. 

2012). When VIP is used for variable selection, it is gener-

ally agreed that variables with VIP values below 1 can be 

removed (Chong and Jun 2005) which provides a guide for 

interpretation. The difference between the two scores is that 

while the variance explained by PCR only estimates how 

well the model describes the dependent variable, PLS-VIP 

estimates how well the model describes both independent 

and dependent variables (Andersen and Bro 2010), which 

is useful when making inferences about variable influence.

Model Comparisons

As comparison against the other regression models, a ran-

dom forest (RF) model was trained using randomForest 

4.6-14 (Liaw and Wiener 2002). It was trained using the 

default hyperparameters of 500 trees and the number of vari-

ables available for splitting at each node (“mtry”) set to the 



Journal of Molecular Evolution 

1 3

number of variables divided by 3. Root mean squared error 

on the 20% holdout test set was calculated for each model 

using the rmse function in the Metrics package (Hamner and 

Frasco 2018). Variance explained by PLS/PCR models was 

calculated with the R2 function in pls. Variance explained 

by the random forest model was calculated using ‘pseudo 

R2’ (Liaw and Wiener 2002):

where MSE is the mean squared error of prediction on train-

ing data, Y is the independent variable vector (true values), 

and Ŷ  the vector of predicted values.

Partial Correlation Analysis

Partial correlations were calculated between each independ-

ent variable and constraint (dN or phyloP score), using vari-

ables in all other variable groups (but not variables in the 

same variable group) as covariates. Spearman’s rank cor-

relation coefficient was chosen as a nonparametric alterna-

tive to Pearson’s correlation coefficient. Calculations were 

variance explained = 1 −
MSE

(

Y , Ŷ
)

variance(Y)

performed using the Pingouin 0.3.12 package (Vallat 2018) 

in Python 3.8.5. Bonferroni correction was used to adjust for 

multiple comparisons.

Results and Discussion

Network Centrality Increases Constraint

We used PLS and PCR models to assess gene-centric factors 

that affect gene conservation, using both dN and phyloP as 

metrics of sequence conservation. While these two metrics 

are correlated (ρ = − 0.524), they differ greatly in how they 

are calculated (see “Methods”). The independent variables 

included factors such as protein/mRNA gene expression 

values, protein features, gene features (size, introns, codon 

bias), and functional factors such as gene ontology assign-

ment (cellular locations, processes, and functions); a full list 

of variables is available in the Figshare repository (https:// 

doi. org/ 10. 6084/ m9. figsh are.c. 52635 23. v6). Figures 2 and 

3 illustrate that numerous variables each make a small con-

tribution; no single variable explains more than 1.3% of the 

variance in either phyloP or dN. It would be possible to sum 

the VIP scores or percent variance explained per variable 

Fig. 2  A Percent variance in 

dN explained by each variable 

using principal components 

regression compared to VIP 

scores for each variable in a 

partial least squares regression. 

Variables that are important in 

both models are closer to the 

top right corner. B VIP scores 

per variable in a PLS model 

with dN as dependent variable, 

grouped by variable group. 

C Percent variance explained 

per variable in a PCR model 

with dN as dependent variable, 

grouped per variable group. D 

Partial correlations (Spearman) 

between each variable and dN. 

Only significant correlations 

(Bonferroni-adjusted p < 0.05) 

shown

https://doi.org/10.6084/m9.figshare.c.5263523.v6
https://doi.org/10.6084/m9.figshare.c.5263523.v6
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group; however, we believe that due to the number of indi-

vidual variables this is likely to exacerbate model error and 

may artificially inflate the performance of variable groups 

with a higher number of individual variables. 

As seen in both Figs. 2 and 3, network centrality is a very 

important variable determining sequence evolution rates. 

This is most apparent when considering phyloP, where four 

centrality metrics (functional degree centrality, physical 

degree centrality, functional eigencentrality, and physical 

eigencentrality) cluster in the top right corner in Fig. 3a, 

signifying that these variables were highly important in both 

the PLS and PCR models. With respect to dN, network cen-

trality is also one of the most important variable groups in 

both regression models (Fig. 2a). All network centrality met-

rics except eigencentrality of physical interactions also show 

significant partial correlations (as strong as ρ = − 0.165, for 

functional degree centrality) with dN (Fig. 2d). For phyloP, 

correlations are weaker (no stronger than ρ = 0.092, also for 

functional degree centrality), but all correlations except the 

betweenness centrality metrics remain significant (Fig. 3d). 

Note that the opposite signs of correlations are expected 

since phyloP assigns higher values to more conserved genes, 

whereas for dN the opposite is true.

The fact that both eigencentrality (which measures the 

“importance” of the protein in the network) and degree cen-

trality (which is a count of the number of interaction part-

ners) are determined to be so important, and that the result 

is independent of whether only physical or all interactions 

are measured, indicates that network centrality constrains 

sequence evolution at multiple levels. Overall, it is appar-

ent that network centrality is an important determinant of 

sequence conservation in Schizosaccharomyces pombe and 

that, in general, the more central the protein in the pro-

tein–protein interactions network, the more conserved its 

sequence is. We did not investigate this in other types of 

networks where the results are expected to be different, as 

discussed above.

Amino Acid Composition Exerts a Significant 
Bidirectional Effect on Evolutionary Rates

According to the VIP scores calculated from the PLS model, 

amino acid composition is one of the most important vari-

ables affecting sequence evolution rates. The four variables 

with the highest VIP scores for dN are serine (VIP = 3.50), 

glycine (2.85), asparagine (2.43), and alanine (2.29) com-

position (Fig. 3b); by comparison the highest VIP score in 

Fig. 3  A Percent variance in 

phyloP explained by each vari-

able using principal components 

regression compared to VIP 

scores for each variable in a 

partial least squares regression. 

Variables that are important in 

both models are closer to the 

top right corner. B VIP scores 

per variable in a PLS model 

with phyloP as dependent vari-

able, grouped by variable group. 

C Percent variance explained 

per variable in a PCR model 

with phyloP as dependent varia-

ble, grouped per variable group. 

D Partial correlations (Spear-

man) between each variable and 

phyloP. Only significant cor-

relations (Bonferroni-adjusted 

p < 0.05) shown
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the phyloP PLS model is 2.41 (for functional degree central-

ity). Amino acid composition is relatively less important in 

modelling phyloP—the highest VIP score for amino acid 

is 2.01 for alanine content—but is nonetheless still highly 

significant in that model. As seen in Figs. 2d and 3d, many 

amino acid composition variables correlate strongly and sig-

nificantly either positively or negatively with constraint. It is 

interesting that the PCR models do not indicate that amino 

acid composition is a particularly important variable, and 

this highlights the benefits of using more than one model-

ling approach.

It is known that the changeabilities of amino acids dif-

fer depending on the structural requirements of the protein 

domain—particularly, there is a considerable difference in 

amino acids composition between transmembrane and other 

protein domains (Tourasse and Li 2000). It is also known 

that alanine and glycine, which both correlate relatively 

strongly positively with constraint (ρ = − 0.226 with dN and 

ρ = 0.144 with phyloP for alanine content), are enriched in 

highly conserved Low Complexity Regions (LCRs) (Ntoun-

toumi et al. 2019). However, serine correlates strongly nega-

tively with constraint (ρ = 0.425 with dN and ρ = 0.176 with 

phyloP) but is nonetheless also common in LCRs (Radó-

Trilla and Albà 2012). Regardless, it is clear that amino 

acid composition serves as a proxy for protein domains and 

regions that are under different selective pressures.

Intracellularity is a Very Important Determinant 
of Constraint

Intracellularity is the single variable that explains the most 

variance in dN (1.29%), which is supported by the high per-

cent variance explained in phyloP (0.89%) as well as high 

VIP scores (2.21 for dN and 2.32 for phyloP). As seen in 

Figs. 2a and 3a, several cellular location (or “component”) 

variables cluster towards the top right corner; these are 

all specific intracellular locations such “cytoplasm” and 

“organelle”, which most likely reflects the strong effect 

of intracellularity on constraint. While only two cellular 

location variables significantly correlate with both dN and 

phyloP—cytosolic location (ρ =  − 0.093 with dN; ρ = 0.078 

with phyloP) and cytoplasmic location (ρ =  − 0.079 with 

dN; ρ = 0.027 with phyloP)—both of these components 

reflect intracellularity. This shows that although covariates 

do appear to inflate the importance of cellular location in the 

regression models, there is clearly a direct effect of location. 

This is believed to be due to the complexity of the intracel-

lular environment constraining evolution, extracellular com-

munication changing more rapidly, and because extracellular 

proteins are pathogen targets necessitating positive selection 

(Julenius and Pedersen 2006).

Other gene ontology classifications also have a consid-

erable impact. With respect to both dN (Fig. 2b, c) and 

phyloP (Fig. 3b, c), some process and function variables 

score comparably with some network centrality metrics. 

This largely reflects that proteins involved in key synthetic, 

transcriptional, and translational pathways are conserved 

between Schizosaccharomyces species—which is hardly 

unexpected. For instance, it is known that ribosomal com-

ponents are some of the most conserved sequences across 

the tree of life (Isenbarger et al. 2008).

Gene Expression, Length, and Functional 
Importance Each Have a Moderate Impact

As is clear in Figs. 2 and 3, many variables have some 

degree of influence, or have been influenced by, the degree 

of constraint. As expected, gene and protein expression 

levels were found to be highly significant variables in 

determining sequence conservation. However, this variable 

is clearly not the single most important in S. pombe. This 

is most apparent in Figs. 2a and 3a; several other variables 

are closer to the top right corner than expression vari-

ables are. Nonetheless, the expected correlations between 

dN and expression (ρ =  − 0.079) as well as between phy-

loP and expression (ρ = 0.131) are present and relatively 

strong.

Another variable that was expected to have considerable 

influence was sequence size (i.e., gene or protein length or 

mass)—size variables have a rather high VIP scores in the 

PLS models; gene length scores up to 1.66 in the phyloP 

PLS model, and up to 1.05% variance explained in the dN 

model. Indeed, gene length is the variable with the strong-

est positive partial correlation with phyloP (ρ = 0.180), 

although strangely gene length also correlates positively 

with dN (ρ = 0.086); these results directly contradict each 

other. As mentioned, previous studies on the topic have 

found both positive and negative correlations with ω, so 

we are not entirely surprised that two different metrics 

indicate opposite relationships. The existence of a correla-

tion (positive or negative) between gene length and con-

servation is probably best explained by that the Hill–Rob-

ertson effect increases with gene length (Ingvarsson 2007), 

making selection on longer genes less effective. It remains 

unsolved why the direction of correlation varies.

As is well now established, functional importance is 

counterintuitively not the single most important determi-

nant of constraint, but it is clearly not insignificant either. 

Essentiality correlates significantly with constraint meas-

ured as either dN (ρ =  − 0.096) or phyloP (ρ = 0.077), and 

while this variable explains a relatively moderate amount 

of variance (0.430% in dN and 0.255% in phyloP), it has 

high VIP scores (1.58 for dN and 1.89 for phyloP). This 

moderate influence is consistent with the current view of 
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functional importance as a moderate determinant of con-

straint (Zhang and Yang 2015).

Our Models Explain Over 50% of the Variance in dN

So far, the previous studies we are familiar with have only 

been able to explain less than 50% of variance in ω. Indeed, 

Drummond et al. (2006) are an outlier with 45% of variance 

in dN/dS explained in yeast; Alvarez-Ponce et al. (2019) only 

explain 22% of variance in yeast dN/dS, and an integrated 

analysis of multiple organisms only managed to explain 18% 

of variance (Alvarez-Ponce et al. 2017). Needless to say, 

these results are not directly comparable with ours, as we 

used phyloP and dN rather than ω, but it does illustrate the 

challenge of modelling the variables influencing evolution-

ary rates. Yang and Gaut (2011) modelled dN and dS in 

Arabidopsis separately, finding 11% and 21% of the vari-

ance in each explained, respectively. As seen in Table 1, our 

models explain over 30% of the variance in phyloP, and over 

50% of the variance in dN.

Even as we have explained more than half of the variance 

in dN, and almost a third of the variance in phyloP, we think 

that it would be possible to improve these models further. 

We were unable to find any atlas of chaperone interactions 

in S. pombe, which Alvarez-Ponce et al. (2019) found to 

be very important as a determinant of constraint in Sac-

charomyces cerevisiae. We also do not investigate the role 

of network topology other than the protein–protein interac-

tions network centrality, and we do not consider specific 

subnetworks where centralities are likely to have different 

effects. Adding these variables would also bring us closer 

to understanding how much the rate in sequence evolution 

depends on stochastics, which we believe is very likely to 

be the single most important factor that affects evolutionary 

rate.

Conclusion

We show that the three most important known variables 

influencing rates of evolution (measured as dN or phyloP) 

in Schizosaccharomyces pombe are centrality in the pro-

tein–protein interactions network, amino acid composition, 

and cellular location; specifically, intracellularity, although 

these only explain a fraction of the variance in constraint. 

Many other variables have a weak to moderate influence. 

Our models explain about 1/3 of the variance in phyloP and 

half of the variance in dN, and including additional or more 

refined variables might reveal how much of the rate of evo-

lution is determined by specific biological factors and how 

much of it is the result of stochastics.
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