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A Nonlocal Noise Reduction Method Based on Fringe

Frequency Compensation for SAR Interferogram
Huaping Xu , Member, IEEE, Zhaohong Li, Shuo Li , Wei Liu , Senior Member, IEEE, Jingwen Li ,

Aifang Liu , and Wei Li

Abstract—Phase noise reduction is one of the key steps for
synthetic aperture radar interferometry data processing. In this
article, a novel phase filtering method is proposed. The main inno-
vation and contribution of this research is to 1) incorporate local
fringe frequency (LFF) compensation technique into the nonlocal
phase filtering method to include more independent and identically
distributed samples for filtering; 2) modify the nonlocal phase
filter from three aspects: 1) executing nonlocal filtering in the
complex domain of the residual phase to avoid gray jumps in
phase, 2) adaptively calculating the smoothing parameter based
on the LFF and the coherence coefficient, and 3) using the integral
image in similarity calculation to improve the efficiency; 3) perform
Goldstein filter in high coherence areas to reduce the computation
expense. Experiments based on both simulated and real data have
shown that the proposed method has achieved a better performance
in terms of both noise reduction and edge preservation than some
existing phase filtering methods.

Index Terms—Fringe frequency estimation, nonlocal filtering,
phase noise reduction.

I. INTRODUCTION

S
YNTHETIC aperture radar interferometry (InSAR) is an

important technique for obtaining high-precision digital

elevation model (DEM) and surface deformation of a wide area

[1]. However, the existence of thermal noise, decorrelation,

undersampling, and other factors will lead to various phase

noise. The residual points caused by phase noise will reduce

the success rate of phase unwrapping, and further affect the es-

timation accuracy of elevation and deformation. Therefore, how

to effectively suppress the phase noise before phase unwrapping

has been a focus of study in InSAR processing [2].

Phase filtering is the basic method to reduce phase noise,

and its performance mainly depends on the number of pixels
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involved in the filtering window. A larger filtering window has a

better noise reduction effect when the pixels are independent and

identically distributed (i.i.d) [3], otherwise, a large filtering win-

dow will lead to a serious loss of fringe details [4]. It is difficult

to select an appropriate window size for steep terrain with dense

and changeable fringes. Up to now, there are mainly two kinds

of improved phase filtering methods for rough areas: adaptive

window methods and local fringe compensation methods.

To balance the effects of noise reduction and fringe edge

preservation, the adaptive window methods adjust the size,

direction, or shape of the filtering window according to fringe

density. When it is first presented in [5], eight predefined direc-

tional windows are used to match the phase fringes. The limited

direction may mismatch the local fringe and lead to discontinuity

in the filtered fringes. To match the filtering directional window

with the fringes more accurately, in [6], the local tangents of

the fringe edge are calculated first, and then the linear win-

dow along the tangential direction is interpolated to carry out

low-pass filtering. The angle of the directional window can be

chosen arbitrarily. However, for fringes with strong curvatures,

the linear filtering window will cause some distortion to the

curve fringe and make the phase fringe discontinuous. In [7], the

directional filtering window consistent with the fringe direction

is derived by tracking the tangential direction of the fringes,

and the window size can be adjusted adaptively according to

the stripe width. This method can keep the strong curvature

fringes. However, the discontinuous fringe will affect the es-

timation of the direction and width of the filtering window. The

intensity-driven adaptive-neighborhood method obtains similar

pixels by using the intensity-driven region-growth technique and

constructs a neighborhood with variable shape and size as the

filtering window [8]. Irregular contour filtering windows can

effectively improve their adaptability to steep terrain, but the

limited number of neighborhood pixels will affect the perfor-

mance of noise reduction.

Adaptive window filters can reduce the conflict between

noise reduction and detail preservation to some extent. But it

is very difficult to adjust the window size in an appropriate way,

especially in rough areas with variable fringes. Another way to

suppress phase noise in steep terrain is to reduce fringe density

with local-fringe-compensation before noise filtering. A method

proposed in [9] removes the local fringe frequency (LFF) and

filters the residual phase in a local window, and finally adds back

the removed fringes to the filtered residual phase. It can effec-

tively reduce the fringe density and improve the edge-preserving

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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ability. To improve the LFF estimation accuracy, a statistical

threshold is used to avoid sudden LFF changes in [10], while a

further improved method is proposed in [11] by fusing multifre-

quency interferograms to improve the LFF-estimation accuracy.

In [12], a complexity factor is introduced by combining the

coherence coefficient, LFF, and residual point distribution, then

the local fringe estimation window size is adaptively selected

based on the complexity factor; as the residual phase is filtered

by the Goldstein filter after removing the local fringe, the phase

noise is effectively suppressed. The two-stage filtering method

[13] separates the noisy phase into a smooth part and a detail

part, where the smooth part is extracted from the filtered result

in the first stage and the detail component is filtered in the

second stage and then added to the smooth part to obtain the final

result. These methods can protect the fringes while performing

effective denoising, but their denoising performances are still

limited because local neighborhood filtering windows are used.

Generally speaking, the more similar pixels used in phase

filtering, the more accurate the phase estimation result. For those

local filtering methods described above, their filtering windows

cannot be too large; otherwise, it risks destroying phase details in

the fringe-dense area and reducing the clarity of interferometric

fringes; the estimation reliability is low when the noise level

is high in the neighborhood filtering window. To overcome

this issue, the nonlocal means filter (NLM) has been proposed

for image denoising in recent years [14], [15]. NLM methods

rely on the similarity of pixels rather than spatial proximity, so

they can make use of similar pixels outside the neighborhood

area to obtain a more accurate estimation value. To improve

the reliability of similarity matching, the NLM determines the

similarity of central pixels by matching their neighborhood patch

(similarity window). The NL-InSAR method applies the NLM

principle to interferometric phase processing [16]. It calculates

the similarity based on the probability distribution of the interfer-

ometric phase, finds similar central pixels in the interferogram,

and reduces noise by an averaging operation. It overcomes the

restriction that the filtering window must cover a consecutive

neighborhood. By making full use of similar pixels, it can

maintain more detailed features after phase denoising. Although

nonlocal filtering methods can use pixels in the whole image, the

process is very time-consuming. Generally, a large local window

(search window) is selected to reduce the computation load, and

good denoising performance can be obtained as well [17].

For nonlocal filtering methods, the filtering effect is affected

by the size of the similarity window. The phase difference of

complex scenes is considered in the nonlocal-SAR filter for

well-performing altitude map generation (NL-SWAG) [18], and

the patch size is adaptively selected based on the heterogeneity of

local scenes. The more intense the phase change in the searching

window, the smaller the similarity window to be used. In [19],

structure similarity (SSIM) and threshold are used to select simi-

lar pixels nonlocally to form the phase tensor from the interfero-

gram, and then the Wiener filter is applied to reduce noise based

on high-order singular value decomposition. An interferometric

phase denoising method is proposed by combining local sparsity

of wavelet coefficients and nonlocally patch similarity in [20].

These methods improve the accuracy of similarity estimation by

improving the similarity measurement method or adjusting the

similarity window, so as to improve noise reduction. However,

in steep terrain areas, the interferometric fringes are dense and

vary greatly, which makes it difficult to select similar pixels and

in turn limits its ability for noise reduction.

To reduce the adverse effects of phase fringes on similarity

matching in steep terrains, a nonlocal filtering method based on

LFF compensation is proposed in this article. First, the LFF

is estimated and removed from the original phase to reduce

fringe density in the search window; second, the residual phase

is filtered by an improved nonlocal method; finally, the denoised

phase is obtained by combining the filtered residual phase and

the removed local fringe. The proposed method improves non-

local filtering in the following aspects.

1) Noise reduction is carried out in the complex domain to

further reduce the influence of interferometric fringes on

the calculation of similarity weight.

2) The smoothing parameter is adaptively chosen on the LFF

and the coherence coefficient of residual phase to preserve

the fringes better.

3) The integral image is used in similarity calculation to

improve operation efficiency.

The rest of this article is organized as follows. The principle

and implementation process of nonlocal phase noise reduction

based on fringe frequency compensation are presented in Sec-

tion II. In Section III, results based on both simulated and real

data are provided using the proposed method, in comparison

with some existing local and nonlocal phase filtering methods.

Conclusions are drawn in Section IV.

II. NONLOCAL NOISE REDUCTION METHOD BASED ON LOCAL

FRINGE COMPENSATION

The filtering process of the nonlocal method involves more

consistent pixels in a larger range. Compared with the local

filters, it can suppress noise more effectively with less loss of

fringe details. However, the dense and varied fringes reduce

the number of similar pixels in steep terrain, which affects

similarity matching and limits the noise suppressing ability.

To reduce the influence of fringe on the matching of similar

patches, we propose to compensate for the local fringe before

nonlocal filtering and present the improved nonlocal filtering for

the residual phase.

A. Nonlocal Filtering Principle

Through similarity matching, nonlocal filters can find more

similar pixels for noise reduction. The procedure of similarity

matching is shown in Fig. 1. By sliding the similarity window

pixel by pixel in the search window, the similarity between patch

xand patch y is calculated to determine the filtering weights of

pixels in the search window. The filtered phase of NLM can be

expressed as the weighted average of the pixels in the search

window S, given by

NL (v (x)) =
∑

y∈S

w (x, y) · v (y) (1)



9758 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 1. Procedure of similarity matching.

Fig. 2. Schematic diagram of similar patches.

where v = {v(x)|x ∈ I} represents the phase of pixel x, and

w(x, y) ∈ [0, 1] is the weight depending on the similarity be-

tween surrounding patches around x and y with
∑

y∈S

w(x, y) = 1.

In Fig. 2, pixels in red rectangles have similar structural

features as those to be reconstructed. In the filtering process,

the center pixels of these patches will have larger weights.

B. Principle of LFF Compensation

The interferometric phase noise is assumed to be additive [19],

and the noisy phase can be expressed as

ϕn = ϕc +ϕr + n0 (2)

where ϕc is the prominent fringe phase which represents the

basic topography, ϕr is the residual terrain phase, and n0is

phase noise. ϕc represents the outline of terrain, which is the

prominent component of the phase value. Therefore, the inter-

ferometric fringe density could be reduced by removing ϕc, and

the residual phase ϕres, containing residual terrain and noise,

can be represented as

ϕres = ϕn − ϕc. (3)

The prominent fringe phase ϕc can be obtained by estimating

the LFF.

ϕc (m,n)

= arg

{

g
∑

i=1

Ci exp [j2π (mfxi + nfyi)]

}

, g ∈ [1, G] (4)

whereCi is the amplitude of the frequency component (fxi, fyi)
and G is the number of vectors. The LFF compensation effect is

shown in Fig. 3. As can be seen, after removing the prominent

fringe phase, the phase noise remains in the residual phase, and

the fringe density in the residual phase is effectively reduced.

C. Nonlocal Noise Reduction Based on Fringe Frequency

Compensation

1) Fringe Frequency Removal: To increase the number of

similar pixels, it is proposed that the prominent fringe phase

that causes significant fringes is removed from the noisy phase in

the search window to reduce fringe density, and fringe frequency

compensation is realized in the complex image, which is

Ires (m,n) = I (m,n) · exp [−jϕc (m,n)] (5)

where I(m,n) is the complex form of the noisy phase, ϕc is

estimated firstly, and then phase compensation is implemented

by (5).

The phase values and similarities in a search window before

and after removing LFF are shown in Fig. 4. From the similarities

given in Fig. 4(b), (c), and (e), (f), it can be seen that the residual

phase has sparser fringes, and more pixels with high similarity

are obtained in the search window after removing the local

fringes. With more similar pixels, phase estimation will become

more accurate. Therefore, nonlocally filtering the residual phase

is more reliable than directly dealing with the original phase.

2) Adaptive Selection of Smoothing Parameter for Nonlocal

Noise Reduction: After removing local fringes, the residual

phase is filtered using the improved nonlocal method. To further

reduce the effect of the fringe boundary in the residual phase,

all filtering operations are carried out in the complex domain.

Euclidean distance has a good effect on patch matching in the

case of additive Gaussian noise [20], so it is more suitable

for measuring the similarity of interferometric phase in the

complex domain than directly applying to the phase value under

the assumption that the distribution of phase noise is complex

Gaussian [21].

In the NL-InSAR method, the size of the search window and

similarity window will affect the noise reduction performance.

With the increase of search window size, the performance first

becomes better and then worse [22]. This is because a larger

neighborhood window contains more similar pixels, but as the

window size continues to grow, the proportion of dissimilar

pixels will increase. As to the similarity window, a smaller

window has a better reduction effect on steep terrain, while a

larger window has a better performance on flat terrain. In [22],

the window size is optimized through iterative experiments, and

finally, the search window and the similarity window are set to

17 × 17 and 7 × 7, respectively. In our method, the size of

the search window is adjusted to 21 × 21 because the fringes

become sparser and the number of similar pixels increases after

removing local fringes.

The value of the center pixel x after filtering is given as

⎧

⎪

⎨

⎪

⎩

ĪRe =
∑

y∈Re[Ires]

wRe (x, y) · v (y)

ĪIm =
∑

y∈Im[Ires]

wIm (x, y) · v (y)
(6)

where Re[Ires] and Im[Ires] are the real and imaginary parts

of the complex residual phase Ires. The weights wRe(x, y)
and wIm(x, y) are determined by the Euclidean distance and

smoothing parameters between the pixel patches centered on x
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Fig. 3. Effect of LFF compensation. (a) Original phase. (b) Prominent fringe phase. (c) Residual phase.

Fig. 4. Similarity changes before and after removing local fringes. (a) Original phase. (b) Similarity map of original phase. (c) Histogram of original phase
similarity. (d) Residual phase. (e) Similarity map of residual phase. (f) Histogram of residual phase similarity. For better presentation, the similarity value is
normalized.

and y

wRe,Im (x, y) =
exp

(

−||V (x)− V (y) ||22,a/h
2
)

∑

y
exp

(

−||V (x)− V (y) ||22,a/h
2
)

x, y ∈ Re [Ires] , Im [Ires] (7)

where || · ||22,a is the Gaussian weighted Euclidean distance, and

the Gaussian kernel is

G (∆x) =
1

2πσ2
exp

(

−
∆x2

2α2

)

(8)

whereα > 0 is the standard deviation of the Gaussian kernel.∆x
represents the distance between the pixel in the similarity block

and its center pixel, which highlights the contribution of the

center pixel of the similarity block to the similarity calculation.

h is the smoothing parameter, which controls the attenuation

speed of the weight function. The larger the value of h, the more

obvious the smoothing effect of phase filtering.

In the smooth region, the number of similar pixels is large,

and a larger h is required, which gives a small range of weights

and suppresses the noise well. On the contrary, in the rugged

region, the number of similar pixels is small, a smaller h is

needed to increase the weights difference so that similar pixels

would have larger weights to preserve the detailed textures.

In literature, the smoothing parameter h is mostly determined

according to the noise distribution and the size of the search

window. In [20], the value of h is directly proportional to the

standard deviation of noise σn, with h ≈ 10σn, while it is found

that better noise reduction is achieved when the value of h
is within the range 0.4− 0.6σ2

n in [23]. These methods only

consider the distribution of noise in the search window. For the

interferometric phase, both noise statistics and fringe density

should be considered. In our method, the adaptive smoothing

parameter h′ is chosen adaptively as

h′ = 10σn · γ ·
(

1 + f ′x2 + f ′y2
)−1/2

(9)

where γ is the coherence value and (f ′
x, f

′
y) is the dom-

inant frequency of the residual phase. The value range of

γ · (1 + f ′x2 + f ′y2)−1/2 is within (0, 1). σn is the standard

deviation of phase noise in the search window.
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Fig. 5. Flowchart of the proposed phase filtering method.

The variance of phase noise can be expressed as a function of

coherence γ [24]

σ2
n = E

[

(φ− φ0)
2
]

=

⎧

⎨

⎩

π2

3 − π arcsin γ + πarcsin2γ −
Li2

(γ2)

2 , L = 1
π
∫

−π

(φ− φ0)
2pdf(φ; γ, L, φ0)dφ, L ≥ 2

(10)

where Li2(·) represents the Euler logarithm with base 2 and L
is the number of observations.

3) Method Implementation: The implementation of the pro-

posed nonlocal phase noise reduction method based on local

fringe compensation is shown in Fig. 5.

Step1: Remove local fringes

In a search window, the LFF can be estimated with different

methods. For example, the linear fringe estimation with

the autocorrelation function method, the maximum likelihood

method (ML) [25], or the modified multiple-signal classification

method [26], and the nonlinear fringe estimation with prominent

spectrum extraction method [27]. Given the stability of the

ML method, it is used to estimate the LFF here. After the

interferometric phase is transformed into the frequency domain

by 2-D fast Fourier transform (FFT2), the LFF is derived

by detecting the amplitude peak position of the 2D signal

spectrum

max
(f̂x,f̂y)

⎛

⎝

∣

∣

∣

∣

∣

∣

k+p
∑

x=k−p

l+q
∑

y=l−q

exp [jϕn (m,n)]

· exp [−j2π (mfx + nfy)]

∣

∣

∣

∣

∣

∣

⎞

⎠ . (11)

To reduce the error caused by the quantization of FFT, the

Chip-Z transform [28], [29] is used to further improve the accu-

racy of fringe frequency estimation. The frequency estimation

offset is obtained by 32 times sampling of Chip-Z transform to

correct the frequency estimation result. Then the linear promi-

nent fringe phase is expressed as

ϕc1 (m,n) = 2π
(

mf̂x + nf̂y

)

. (12)

In areas with large fringe curvature, it is difficult to use linear

fringes to compensate for the fringes in the search window. In

this case, we use the prominent spectrum extraction method to

estimate the prominent fringe. According to (4), a certain number

of vectors with larger weight Ci are selected to form the main

phase component, and the residual phase vector reflects terrain

details and phase noise.

The prominent frequency spectrum can be obtained by the

following rule:

S ′ (u, v) =

{

S (u, v) , |S (u, v)| ≥ b
0, |S (u, v)| < b

(13)

where S(u, v) = F [In(m,n)] is the phase spectrum of the

search window. bis the spectrum amplitude threshold. In this

article, b is determined by the lower bound of the first 3%

maximum spectrum amplitude. In comparison with the half

power point threshold given in [27], the proposed adaptive

spectrum amplitude threshold is beneficial to estimate the main

fringes more precisely. Fig. 6 shows the phase fringes extracted

by different thresholds. In each group of images, the left one is

the interferometric phase and the right one is the corresponding

spectrum. It can be seen from Fig. 6(b) that the threshold set

according to the half power point is too high, and only a small

amount of useful spectrums is extracted and detail information is

lost. The result by the proposed method shown in Fig. 6(c) retains

the prominent spectrum sequence according to the number of

points in the FFT window, which can avoid the influence of

extreme spectrum amplitude on threshold selection and extract

the prominent fringe more effectively.

Then the nonlinear prominent fringe phase is expressed as

ϕc2 (m,n) = arg
{

F−1 [S ′ (u, v)]
}

. (14)

The residual phase in the complex domain is obtained by (5).

The nonlinear method can remove the local fringe better, but

the estimation result is susceptible to phase noise. Therefore,

when the distribution phase fringes are simple, the linear fringe

estimation method can be used to compensate for the local phase.

On the other hand, it is more suitable to compensate for nonlinear
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Fig. 6. Prominent fringes extracted by different thresholds. (a) Original noisy
phase. (b) Half power point as the threshold. (c) Retaining 3% of the maximum
amplitude spectrum.

fringes using method 2, when the curvature of phase fringe is

large and the phase noise is not too heavy.

Step2: Adaptive filtering based on phase coherence

In a region with high coherence, the traditional local filtering

method can also obtain good filtering results. To improve the

operation efficiency, nonlocal filtering is only applied in the low

coherence region, while the local filtering method, Goldstein

filtering method used in this article, is applied in the high

coherence region. The coherence γ can be calculated by the

following formula [2]:

γ =
E [S1S

∗
2]

√

E
[

|S1|
2
]

E
[

|S2|
2
]

(15)

where S1 and S2 are the main and slave SAR complex images,

respectively, and E[·] is the mathematical expectation. Set the

local filtering window size to 1/2 of the search window and

perform Goldstein filtering when the average coherence in the

search window is higher than the threshold value. (threshold

is set as 0.7 in this article); otherwise, the residual phase in

the search window is filtered nonlocally. The nonlocal filtering

process is carried out in the complex domain of the phase. The

residual phase is filtered using the similarity of the real part and

the imaginary part, separately, and the filtered residual phase is

obtained by combining the filtered real and imaginary parts.

TABLE I
PARAMETERS FOR SIMULATED DATA

The integral image method proposed in [30] is employed to

calculate the similarity to reduce the operation cost. The value

of each point in the integral image is the sum of all the pixel

values in the upper left corner of the original image. The sum of

all pixels in the similarity window can be quickly calculated by

searching through the integral image four times. The complexity

of the algorithm for calculating Euclidean distance has been

reduced from O(ND2d2) to O(ND2) for an image with N
pixels, where D is the size of the search window and d is that of

the similarity window.

Step 3: Superimpose local fringe

After residual phase filtering, the filtered phase is obtained

by combining the removed local fringe with the filtered residual

phase

ϕ̄ (m,n) = arg
{

Īres · exp [jϕc (m,n)]
}

. (16)

Specifically, the local fringe is added back to the complex

domain. Then, the interferometric phase is obtained by taking

the angle of the complex value.

III. RESULTS AND ANALYSIS

In this section, both simulated and real data are filtered with

different methods and the results are evaluated. Two local fil-

tering methods, including the slope adaptive method and the

Goldstein filtering method, and two nonlocal filtering methods,

including the NL-InSAR [16] and the NL-SWAG [18] methods,

are used as comparisons. All the experiments are implemented

on a PC with Intel(R) Core(TM) i5-5200U@2.2GHz CPU and

a 32-GB memory.

A. Simulated Data

The simulated SAR image is generated using real DEM in

Xi’an, China, and the main parameters are listed in Table I.

The clean wrapped phase can be expressed as

ϕ = mod

(

2π ·∆r

λ
, 2π

)

− π (17)

where λ is the wavelength, ∆r is the range difference calculated

by DEM and satellite position, and mod(·, 2π) denotes the

residue value after dividing by 2π.

A pair of SAR complex images are simulated with the method

in [31] while random phase noise and complex Gaussian noise

are added. The noisy wrapped phase is obtained by conjugate

cross-product of main and slave complex images. The simulated
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Fig. 7. Simulated data. (a) SAR image. (b) Coherence map. (c) Interferometric
phase. (d) Clean wrapped phase.

results are shown in Fig. 7, and the image size is 290 × 200

pixels.

The local filtering methods used in the test are slope adap-

tive filter and Goldstein filter, and the filtering window size

is 13 × 13. The filtering parameter of Goldstein filter is set

as 1− γ [35]. Nonlocal filtering methods are the NL-InSAR

method, NL-SWAG method, and the proposed method with a

search window of 21 × 21 and a similarity window of 7 × 7.

The proposed method1 uses the ML method to estimate linear

fringes, while the proposed method2 uses spectrum amplitude

extraction method to estimate prominent fringes. The results

of the different filtering methods are shown in Fig. 8, where

the left image is the filtered result, and the right one shows the

phase estimation error and the distribution of residual points,

with purple dots representing positive residuals and cyan ones

negative residuals.

As can be seen from the figures above, in Fig. 8(a), the

slope adaptive filter performs well in fringe-sparse areas, but

it generates more residual points in fringe-dense areas. In Fig.

8(b), the Goldstein filter blurs fringe boundary and introduces

phase distortion. In Fig. 8(c), there are obvious fringe ruptures

that will lead to severe error in the following phase unwrapping

operation. Intuitively, both the NL-SWAG method and the pro-

posed method shown in Fig. 8(d)–(f) can effectively suppress the

phase noise. It can be seen from the phase error diagrams that

the error and residual points of the proposed method2 are less

than other methods not only in areas with sparse fringes but also

in areas with dense fringes. In order to compare the denoising

performance of different methods, the phase error profiles of

different filtering results in area A and area B are shown in

Fig. 9.

As can be seen from Fig. 9, in area A with dense fringes,

the two local filtering methods, i.e., slope adaptive filtering and

Goldstein filtering, have a large phase error. This shows that

the local filtering window cannot effectively suppress the phase

noise because only a limited number of pixels are used for phase

Fig. 8. Filtered phase and phase error. (a) Slope adaptive filtering. (b) Gold-
stein filtering. (c) NL-InSAR. (d) NL-SWAG. (e) Proposed method1. (f) Pro-
posed method2.

estimation. The three nonlocal methods, i.e., NL-InSAR, NL-

SWAG, and the proposed method, have better noise reduction

effects. This is because nonlocal filters use more information in a

larger search window, thereby having a more stable noise reduc-

tion performance. In area B with sparse fringes, most methods

have achieved good noise reduction results, while the Goldstein
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Fig. 9. Cross-sections of phase error. (a) Area A. (b) Area B.

filter has larger phase errors. Goldstein filtering in the frequency

domain tends to remove the high-frequency information as noise

and has poor ability in preserving phase details. Compared with

the proposed method, the similarity matching of NL-InSAR

is interfered by phase fringes, resulting in a reduction in the

number of similar pixels, and therefore its noise reduction effect

is not significantly improved. The NL-SWAG method adaptively

selects the size of the matching window. The window is small

where the fringes are dense and the similarity estimation is

less reliable because the small window is sensitive to phase

noise. The proposed methods can use a larger similarity window

after removing local fringes and can select similar pixels more

accurately. It is obvious from Fig. 9 that in areas with dense

fringes or changeable fringes, more improvement is achieved

by the proposed method than that in areas with sparse fringe.

To quantitatively compare the filtering results of differ-

ent methods, phase root mean square error (RMSE), edge-

preserving index (EPI), the number of residual points and fil-

tering time, are introduced to evaluate the filtered phases. Their

definition can be found in [32].

The evaluation results are shown in Table II. It can be seen

from the results that the slope adaptive filter has a smaller phase

RMSE and its EPI is close to 1, which is because the LFF

compensation operation can protect the fringe edge and reduce

TABLE II
EVALUATION RESULTS OF SIMULATED DATA

Fig. 10. Real data. (a) Interferometric phase. (b) Coherence map.

the phase error. Nonlocal methods can use more similar pixels

to suppress noise so that they have fewer residues. The pro-

posed methods have the advantages of both LFF compensation

and nonlocal filtering, so they have not only have better noise

suppression ability but also better edge preservation ability.

However, one disadvantage of the proposed method is that due

to the high computational complexity in similarity matching,

the running time increases significantly. To show the filter per-

formance more intuitively, according to the height ambiguity

of the system, the elevation accuracy of the DEM inverted by

different interferometric phase is derived [2] and shown in the

fourth column of Table II. Since nonlinear frequency estimation

can compensate the local fringes more effectively, the filtered

result of the proposed method2 has the minimum phase error. It

is worth noting that the proposed method2 is more efficient than

proposed method1 because chip-z transformation is not needed

in nonlinear fringe estimation.

B. Real Data

1) ERS SAR Data: The real SAR image data is from the ERS

satellite recording in September 2000 and October 2000 at the

Enta volcano in Italy. The selected area has 400 × 220 pixels.

The fringe pattern and coherence map are shown in Fig. 10. Due

to volume scattering decorrelation and temporal decorrelation

caused by vegetation growth, the average coherence coefficient

of the selected region is only 0.537.

Slope adaptive filtering, Goldstein filtering, NL-InSAR, NL-

SWAG, and the proposed method are used to filter the phase

in Fig. 10(a). The filter parameters are the same as those in

Section III-A. The filtering results of different methods are

shown in Fig. 11. In each row, the left image is the denoised
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Fig. 11. Filtered phase and residues distribution. (a) Slope adaptive filtering.
(b) Goldstein filtering. (c) NL-InSAR. (d) NL-SWAG. (e) Proposed method1.
(f) Proposed method2.

TABLE III
EVALUATION RESULTS OF ERS DATA

phase, and the right one is the distribution map of residual points.

In the right figures, the purple dots represent positive residual

points, while the cyan points represent negative ones. Since the

phase error cannot be calculated using real data, the denoised

phase is used as the gray background in the right image to show

the position of residual points.

The low coherence in this vegetation coverage area makes it

difficult to obtain a large number of i.i.d. samples in a local win-

dow for interferometric noise suppression [33]. The proposed

methods employ LFF compensation and nonlocal strategy to

look for more i.i.d. pixels in a larger range and reduce the weight

of heterogeneous pixels to improve denoising performance. In

Fig. 11(a), many residual points are left in the result of the slope

adaptive filtering method. In Fig. 11(b), the Goldstein filtering

method produces phase ambiguity when the filtering intensity

is too high. In Fig. 11(c), there are some fringe breaks and

distortions in the results of the NL-InSAR method. In Fig. 11(d),

the result of the NL-SWAG method has more residual points than

the proposed methods. In Fig. 11(e), the proposed method can

use a larger matching window after removing local fringes and

has better noise reduction and fringes preservation compared

with the NL-SWAG method. As shown in Fig. 11(f), the fringes

are most complete and clear, and the edge information and details

are preserved best. Similarly, SAR interferograms in urban areas

are more heterogeneous and the proposed methods also perform

better for them.

Due to the lack of noiseless real data, MSE and EPI of the

filtered phase cannot be calculated. Thus, the performance of the

filtering results is evaluated with the number of residual points,

residual phase deviation (RPSD) and filtering time. The RPSD

is calculated after removing the local fringes, whose definition

and calculation formula can be found in [32].

The evaluation results are shown in Table III. The empirical

conclusion is similar to that of the simulated data. Slope adaptive

filtering and NL-InSAR have more residual points. Goldstein

filter has better noise reduction ability but cannot keep the edge

and detailed information well. The proposed method has the

least residues and RPSD, so it has achieved the best results

in both residual point reduction and fringe preservation, which

facilitates better the following phase unwrapping and elevation

inversion. But the proposed method spends more running time

because both LFF compensation and similarity matching have

a large amount of calculation.

2) NSAR Data: Another set of airborne data over a mountain

area in Weinan, Shaanxi Province recorded by N-SAR system in
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TABLE IV
SYSTEM PARAMETERS OF N-SAR

Fig. 12. NSAR data. (a) SAR amplitude image. (b) Interferometric phase.
(c) Coherence map. (d) Shadow label.

January 2021, is selected to demonstrate the effectiveness of the

proposed method. NSAR is an airborne SAR/InSAR system de-

veloped by Nanjing Research Institute of Electronic Technology

[34]. The main parameters of NSAR systems are shown in Ta-

ble IV. The amplitude image, interferometric fringes, coherence

map of size 300 × 300 pixels are shown in Fig. 12(a)–(c). At the

center of the scene, the slope of a gully area is large, resulting

in obvious shadows. Shadow areas lack useful information and

have a low correlation coefficient. They are detected and labeled

as Fig. 12(d).

The results of different filtering methods are shown in Fig. 13.

Since the airborne data has sparse stripes, all filtering methods

have achieved good noise reduction effects. Among them, the

results of NL-SWAG and the proposed method are slightly better

than the other three methods. In Fig. 13(d), pixels in the shadow

area are over-filtered by the NL-SWAG method, leading to

artifacts, which will fail to reflect the real terrain in the final

height estimation result. The proposed method improves the

accuracy of similarity calculation after frequency compensation

and therefore can suppress noise well in the normal area and

retain the shadow boundary. By examining the bottom area of

the filtered phase, it can be found that among the five filtering

methods, only the proposed one can keep the fringes intact, while

Fig. 13. Filtered phase and residues distribution. (a) Slope adaptive filtering.
(b) Goldstein filtering. (c) NL-InSAR. (d) NL-SWAG. (e) Proposed method1.
(f) Proposed method2.

the other four more or less cause some defects of phase detail

and fringe breaks. Quantitative evaluation results are given in

Table V. The areas affected by shadows are not included in

the evaluation. Similar to the results of ERS data, the proposed

method has demonstrated the least residues and the smallest
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TABLE V
EVALUATION RESULTS OF NSAR DATA

RPSD. Compared with local filtering methods, pixels in a larger

range are used in nonlocal filters, which is beneficial to noise

reduction; compared with other nonlocal filtering methods, after

LFF compensation, the residual phase of the proposed method

has sparser fringes, which helps with edge protection. Therefore,

the proposed methods not only reduce the phase noise more

effectively but also preserves the local fringe better.

IV. CONCLUSION

To improve the similarity matching ability of traditional

NL-InSAR in areas with dense fringe, a new nonlocal noise

suppression method has been proposed, which consists of three

main steps. First, the local fringe compensation technique is

employed to reduce fringe density; then, nonlocal filtering is

implemented in the complex domain of the residual phase;

finally, the denoised phase is obtained by combining the local

fringes with the filtered residual phase. In addition, the smooth-

ing parameter is improved based on statistical characteristics of

the interferometric phase. As shown by filtering results using

both simulated and real data, in the complex region, existing

filtering methods suffer from different degrees of residual noise

and loss of fringe detailed information, while the proposed one

has achieved the best denoising and fringe preserving result.

Nonlocal filtering can find similar pixels in a larger range to

suppress noise. However, the larger the search window, the more

difficult to accurately estimate the LFF. One possible direction

for future research is to realize the adaptive selection of similarity

window and search window according to the fringe distribution

of the residual phase, so as to further improve the adaptability

of this method to steep terrains.
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