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CONGRUENCES OF SAITO-KUROKAWA LIFTS AND

DENOMINATORS OF CENTRAL SPINOR L-VALUES

NEIL DUMMIGAN

Abstract. Following Ryan and Tornaŕıa, we prove that moduli of congru-

ences of Hecke eigenvalues, between Saito-Kurokawa lifts and non-lifts (certain
Siegel modular forms of genus 2), occur (squared) in denominators of central
spinor L-values (divided by twists) for the non-lifts. This is conditional on
Böcherer’s conjecture and its analogues, and is viewed in the context of recent
work of Furusawa, Morimoto and others. It requires a congruence of Fourier
coefficients, which follows from a uniqueness assumption, or can be proved in
examples. We explain these factors in denominators via a close examination
of the Bloch-Kato conjecture.

1. Introduction

Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 be an elliptic curve defined

over Q, with its rational point at infinity the neutral element for an abelian group
structure. Associated with E is an L-function L(E, s) =

∏

p Lp(E, s), where for any

prime p of good reduction (all but finitely many), Lp(E, s) = (1−app−s+p1−2s)−1,
with 1 + p − ap the number of points mod p on E. This converges for ℜ(s) > 3

2 ,

by the Hasse bound |ap| < 2p1/2, but has an analytic continuation to the whole
complex plane, thanks to the modularity of E: the function f(z) =

∑∞
n=1 ane

2πinz

on the upper half plane is a modular form of weight 2 for the congruence sub-

group Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) : N | c
}

, holomorphic at cusps and satisfying

f
(

az+b
cz+d

)

= (cz + d)2f(z) for all

(

a b
c d

)

∈ Γ0(N). Here N , the conductor of E, is

an integer divisible by certain powers of the primes of bad reduction.
The Birch and Swinnerton-Dyer conjecture equates the rank of the finitely-

generated group E(Q) of rational points with the order of vanishing of L(E, s)
at s = 1, which is the central point with respect to a functional equation relating
values at s and 2 − s. It also gives a formula for the leading term in the Taylor
expansion about s = 1. When the order of vanishing is 0, this is just a formula for
the value:

L(E, 1) =

∏

p cp #XΩ

(#E(Q))2
,

where the cp are certain integer factors coming from primes p of bad reduction, X
is the Shafarevich-Tate group, and Ω is the integral of a Néron differential over the
real locus.
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2 NEIL DUMMIGAN

Supposing that ℓ | #E(Q) for some prime ℓ, one might hope to be able somehow

to detect the factor ℓ2 in the denominator of the rational number L(E,1)
Ω . The

existence of a rational point of order ℓ is equivalent to a congruence

(1) ap ≡ 1 + p (mod ℓ),

for all primes p of good reduction. In this paper, we consider an analogous situation,
replacing L(E, 1) = L(f, 1) by L(k − 1, F, spin), the central value of the spinor L-
function attached to a suitable Siegel modular form of genus 2 (i.e. involving a 4×4
symplectic group) and weight k. The congruence (1) is replaced by a congruence
of Hecke eigenvalues

µp(F ) ≡ ap(f) + pk−1 + pk−2 (mod λ)

between F and another Siegel modular form, the Saito-Kurokawa lift, which comes
from a genus 1 form f of weight 2k − 2. In these circumstances the Bloch-Kato
conjecture, a wide generalisation of the Birch and Swinnerton-Dyer conjecture, puts
a factor λ2 in the denominator of a formula for L(k − 1, F, spin).

To prove that this factor actually occurs, in the denominator of an algebraic
number obtained by dividing L(k − 1, F, spin) by a suitable twisted value L(k −
1, F, spin, χd), we need something on central twisted spinor L-values for F . Our
main results are conditional on conjectures of Böcherer type, relating these to linear
combinations of Fourier coefficients of F . In the remainder of this introduction
we go into considerably more detail, at least in the case of level 1, then briefly

summarise the contents of the paper, which cover also odd, square-free Γ
(2)
0 (M)

level, and paramodular level.
Let F (Z) =

∑

S a(F, S)e
2πitr(SZ) be a Siegel cusp form of genus 2 and weight k

for Sp2(Z) :=

{

g ∈M4(Z) : tg

(

0 −I
I 0

)

g =

(

0 −I
I 0

)}

. In particular,

F ((AZ +B)(CZ +D)−1) = det(CZ +D)k F (Z) ∀ (A B
C D ) ∈ Sp2(Z).

Here, Z ∈ H2 := {Z ∈ M2(C) : tZ = Z, Im(Z) > 0}, S runs over matrices

of the form S =

(

a b/2
b/2 c

)

, with a, b, c ∈ Z, a > 0, disc(S) := b2 − 4ac < 0

and cont(S) := gcd{a, b, c}. Let 〈F, F 〉 be the Petersson norm of F (normalised
as in [16]). We have a(F, tUSU) = a(F, S) for any U ∈ SL2(Z). Let −D <
0 be a fundamental discriminant, and K = Q(

√
−D), with associated quadratic

character χ−D, w(K) roots of unity and ideal class group ClK . There is a natural
bijection between elements of ClK and SL2(Z)-equivalence classes of the S (of fixed
discriminant −D), with a(F, S) depending only on the class of S, so we have a
well-defined a(F, c) for each c ∈ ClK . Let Λ : ClK → C× be any character, and
define

R(F,K,Λ) :=
∑

c∈ClK

a(F, c)Λ−1(c).

Let AI(Λ−1) be the automorphic representation of GL2(A) automorphically in-
duced from Λ−1 (viewed as a character of GL1(AK)), where A is the adele ring of
Q. This is associated with the theta series

θΛ−1(z) =
∑

a⊆OK

Λ−1(a)e2πiN(a)z
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(sum over integral ideals), which is of weight 1, character χ−D. If F is a Hecke eigen-
form, let πF be the associated cuspidal, irreducible, automorphic representation of
GSp2(A), L(s, πF ) the degree 4 spinor L-function, L(s, πF ×AI(Λ−1)) the degree
8 tensor product L-function, and L(s, πF , ad) the degree 10 adjoint L-function.

The following is a generalisation of a refinement of a well-known conjecture of
Böcherer [8], and is Conjecture 1.3 in [16].

Conjecture 1.1. Suppose that F is a cuspidal Hecke eigenform of weight k ≥ 2
for Sp2(Z), not a Saito-Kurokawa lift, and K = Q(

√
−D) any imaginary quadratic

field as above. Then

|R(F,K,Λ)|2
〈F, F 〉 =

24k−4π2k+1

(2k − 2)!
w(K)2Dk−1L(1/2, πF ×AI(Λ−1))

L(1, πF , ad)
.

Note that here we are normalising L-functions in such a way that s = 1/2
is the central point of the functional equation. The spinor L-function of F is
L(s, F, spin) = L(s − (k − 3/2), πF ). Dickson, Pitale, Saha and Schmidt [16] have
shown that this conjecture is implied by Y. Liu’s refined global Gan-Gross-Prasad
conjecture [31], using their calculations of local integrals, and the identification of
R(F,K,Λ) with a Bessel period [41, 1-26], [20, (4.3.4)], [38, Proposition 4.3]. In
the case Λ = 1, which has been proved by Furusawa and Morimoto [21], the tensor
product L-function decomposes as L(s, πF )L(s, πF ×χ−D), and it becomes a refined
version of Böcherer’s conjecture, [16, Theorem 1.16].

Suppose now that k is even, and let f be a cuspidal Hecke eigenform of weight
k′ := 2k − 2 for SL2(Z). Let Q(f) be the number field generated by the Hecke

eigenvalues of f . Associated with f is its Saito-Kurokawa lift f̂ , a cuspidal Hecke
eigenform of weight k for Sp2(Z), such that

L(s, f̂ , spin) = L(s, f)ζ(s− (k − 1))ζ(s− (k − 2)), and

L(s, f̂ , st) = ζ(s)L(s+ (k − 1), f)L(s+ (k − 2), f).

Let T be the ring generated over Z by (for all primes p) the Hecke operators
denoted T (p) and T1(p

2) in [25, ➜4]. (Note that T2(p
2) acts on the space of weight

k cuspforms Sk(Sp2(Z)) as multiplication by p2k−6.) If F is a cuspidal Hecke
eigenform of weight k ≥ 3 for Sp2(Z), and T ∈ T, let µF (T ) denote the eigenvalue
for T acting on F . As noted in [25, ➜4], this is always an algebraic integer. Let
Q(F ) be the number field generated by all the µF (T ). Let {F1, F2, . . . , Ft} be a
basis of Hecke eigenforms for Sk(Sp2(Z)), and let E be the field generated by the
Hecke eigenvalues of all the Fi, i.e. the compositum of the Q(Fi). The following is
essentially a theorem proved independently by Brown and Katsurada [10, 25].

Theorem 1.2. Let f be as above, and ℓ > 2k − 4 a prime number. Let λ′ | ℓ be a
prime of Q(f), and suppose that there exists a fundamental discriminant −D < 0,
and even m with 2 < m < k − 2, such that

ordλ′

(

ζ(m)L(m+ k − 2, f)L(m+ k − 1, f)Dk−(3/2)L(f, k − 1, χ−D)

〈f, f〉π3m+2k−4L(f, k)

)

< 0.

Then there exists a cuspidal Hecke eigenform F of weight k for Sp2(Z), orthogonal
to f̂ , and a prime λ | λ′ in E, such that for all T ∈ T,

µF (T ) ≡ µf̂ (T ) (mod λ).

We prove this at the beginning of the next section.
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Remark 1.3. There exist periods Ω+ ∈ R, Ω− ∈ iR such that each L(f, t), for

1 ≤ t ≤ 2k − 3, is of the form Lalg(f, t)(2πi)
tΩ(−1)t , and

L(f, k − 1, χ−D) = Lalg(f, k − 1, χ−D)(2πi)k−1i
√
DΩ+,

with Lalg(f, t), Lalg(f, k − 1, χ−D) ∈ Q(f). These periods are defined only up to
Q(f)×-multiples, but there is a natural choice (up to divisors of small primes) such

that if ordλ′

(

〈f,f〉
iΩ+Ω−

)

> 0 then there is a congruence of Hecke eigenvalues between

f and some other cuspidal Hecke eigenform of weight 2k − 2 for SL2(Z) (not a
multiple of f), i.e λ′ is a congruence prime for f in S2k−2(SL2(Z)). This is a
theorem of Hida, essentially [24, Theorem 7.1]. Adopting this choice, the condition
of Theorem 1.2 is satisfied if the following hold.

(1) ordλ′(ζ(1−m)Lalg(m+ k − 1)Lalg(m+ k − 2)) = 0.
(2) There exists a fundamental discriminant −D < 0 such that

ordλ′(Dk−1Lalg(k − 1, f, χ−D)) = 0.

(3) λ′ is not a congruence prime for f in S2k−2(SL2(Z)).
(4) ordλ′(Lalg(k, f)) > 0.

We may think then of Lalg(k, f) (the critical value immediately to the right of the
centre) as the origin of the modulus of the congruence. Condition (3) implies that
F is not a Saito-Kurokawa lift, and conditions (1) and (2) are very weak.

Remark 1.4. Theorem 1.5 below is then telling us that the divisor λ, which starts
in the numerator of Lalg(k, f), also occurs in the denominator of Lalg(k−1, F, spin).

This is analogous to how 691, which comes from the numerator of ζ(12)
π12 , also oc-

curs in the denominator of Lalg(11,∆), with the congruence between the Saito-
Kurokawa lift and non-lift playing the rôle of Ramanujan’s congruence τ(n) ≡
σ11(n) (mod 691). Here, ∆(z) =

∑∞
n=1 τ(n)q

n is the normalised cusp form of level
1 and weight 12 for SL2(Z).

Theorem 1.5. Let f and λ be as in Theorem 1.2, and suppose the following.

(1) The F in Theorem 1.2 is unique, up to scaling.
(2) F is not a Saito-Kurokawa lift.
(3) There exists a fundamental discriminant −D < 0 such that ordλ′(c(D))

(as in the proof of Theorem 1.2) is minimal and the class number hK of
K = Q(

√
−D) is not divisible by ℓ.

Then Conjecture 1.1 implies that L(k−1, F, spin) 6= 0, and that for any fundamental
discriminant d > 0, coprime to ℓD, assuming also that L(k − 1, F, spin, χd) 6= 0,

ordλ

(

L(k − 1, F, spin)

L(k − 1, F, spin, χd)

)

≤ −2.

Remark 1.6. Remark 10 in [21] suggests that Furusawa and Morimoto may soon
prove Y. Liu’s conjecture for general Λ. This would, by [16, Theorem 1.13], prove
Conjecture 1.1, making Theorem 1.5 unconditional.

Theorem 1.5 is one of the main results of the paper, and its proof occupies
➜2. By examining the proof of Katsurada’s Theorem 5.2 [25], which led to our
Theorem 1.2, we prove in Proposition 2.1, under a uniqueness condition on F , a

congruence of Fourier coefficients between f̂ and F . The explicit formula for the

Fourier coefficients of f̂ , in particular the fact that a(f̂ , S) depends only on the
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discriminant of S, leads to R(f̂ , K,Λ) = 0 for non-trivial Λ. The congruence of

Fourier coefficients between f̂ and F then gives R(F,K,Λ) ≡ 0 (mod λ). Applying
Conjecture 1.1, for trivial and non-trivial Λ (with different K), carefully chosen
as in [36, Proposition 5.1], then leads to Theorem 1.5. So far we have largely
followed Ryan and Tornaŕıa, the only novelty being to link their work, via our
Proposition 2.1, with that of Katsurada and Brown on divisors of L-values as moduli
of congruences.

In ➜3 we introduce a new ingredient, taking a careful look at the Bloch-Kato
conjecture on special values of motivic L-functions, applied to the central twisted
spinor L-values we are concerned with here, and, in Proposition 3.1, connect it with
Theorem 1.5. We view a global torsion term as contributing λ2 to the denominator
of L(k−1, F, spin). The purpose of dividing by L(k−1, F, spin, χd) is then to cancel
an unwanted Deligne period.

So far we have only considered forms of level 1. In ➜4 we generalise the results of

➜2 and ➜3 to the case of Γ
(2)
0 (M)-level, for odd, squarefree M . Agarwal and Brown

have proved the Hecke eigenvalue congruences analogous to those of Katsurada
and Brown in Theorem 1.2, namely Theorem 4.2. While the uniqueness condition
(leading to a congruence of Fourier coefficients) may be less practical here, we are
motivated by the work of Dickson, Pitale, Saha and Schmidt, showing that in this
case the direct analogue of Conjecture 1.1 (i.e. Conjecture 4.1) would follow from
Y. Liu’s refined Gan-Gross-Prasad conjecture, which has been proved for trivial Λ
by Furusawa and Mizumoto, and might be extended by them to non-trivial Λ.

In ➜5 we consider the case of paramodular level Γpara(M), for odd squarefree
M . Conjecture 5.1 (which implies Ryan and Tornaŕıa’s Conjecture C) is a weak
analogue of Conjecture 1.1, good enough for our purposes, and in Proposition 5.3
we prove that it would follow from Y. Liu’s refined Gan-Gross-Prasad conjecture.
Theorem 5.4 shows how congruences of Fourier coefficients between Gritsenko lifts

and non-lifts F would then imply ordλ

(

L(k−1,F,spin)
L(k−1,F,spin,χd)

)

≤ −2, for suitable d.

We finish by applying this to known numerical examples in weights k = 2 and 3.
Weight 2, paramodular level, was the main focus of Ryan and Tornaŕıa, and Poor
and Yuen. V. Golyshev and A. Mellit’s interest in a weight 3 example of Poor and
Yuen, including the appearance of the congruence modulus in Hecke and spinor
L-values, was what led me to look at all this.

2. Proof of Theorem 1.5

First we must come back to a proof of Theorem 1.2.

Proof. As in equation (5) in [19, ➜6],
(2)

ζ(m)L(m+ k − 2, f)L(m+ k − 1, f)Dk−(3/2)L(f, k − 1, χ−D)

〈f, f〉π3m+2k−4L(f, k)
=
L(m, f̂ , st) c(D)2

π3m+2k−3〈f̂ , f̂〉
,

where f̃(z) =
∑

c(n)qn ∈ Sk−(1/2)(Γ0(4))
+ is a half-integral weight modular form

mapping to f under Kohnen’s correspondence, via which one constructs f̂ . To

obtain this formula (following [10] or [25]) one uses the factorization of L(s, f̂ , st),

a formula of Kohnen and Skoruppa for 〈f̂ ,f̂〉
〈f̃ ,f̃〉 [27], and a formula of Kohnen and

Zagier for 〈f̃ ,f̃〉
〈f,f〉 [28]. The scaling of f̃ determines that of f̂ , in fact if disc(S) = −D,
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a fundamental discriminant, then a(f̂ , S) = c(D). It follows that if If̂ is the

fractional ideal of Q(f̂) = Q(f) generated by the Fourier coefficients of f̂ then,
under our assumption,

ordλ





L(m, f̂ , st) I2
f̂

π3m+2k−3〈f̂ , f̂〉



 < 0.

The congruence of Hecke eigenvalues is now a direct application of a theorem of
Katsurada [25, Theorem 5.2]. �

Proposition 2.1. Let f , m and λ be as in Theorem 1.2, and suppose that the F
there is unique, up to scaling. Then for an appropriate choice of scalings, such

that the a(F, S) and the a(f̂ , S) are all integral at λ but neither the a(F, S) nor the

a(f̂ , S) are all divisible by λ, there is a congruence of Fourier coefficients

a(F, S) ≡ a(f̂ , S) (mod λ) ∀S.
Proof. Let {F1, F2, . . . , Ft} be a basis of Hecke eigenforms for Sk(Sp2(Z)), with

F1 = f̂ and F2 = F , and recall that E is the field generated by the Hecke eigenvalues
of all the Fi. Now Sk(Sp2(Z)) has a basis with rational Fourier coefficients [4],
spanning over Q the set of all forms with rational Fourier coefficients. With respect
to this basis each Hecke operator T (p) or T1(p

2), preserving rationality of Fourier
coefficients, acts by a rational matrix. It follows that we may assume that each Fi

has Fourier coefficients in the field Q(Fi) generated by its Hecke eigenvalues, hence
in E. (For the generalisations beyond level 1 in later sections, we can use [39] in
place of [4].)

Katsurada applies a certain differential operator to the Siegel-Eisenstein series
of genus 4, then, fixing any S0, considers a partial Fourier coefficient Fm+2,k;S0

(Z)
in its restriction to H2 × H2. By [25, Theorem 4.4],

Fm+2,k;S0
(Z) = Ck,m

t
∑

i=1

L(m,Fi, st)

π3m+2k−3〈Fi, Fi〉
a(Fi, S0)Fi(Z),

where Ck,m is some rational constant such that ordℓ(Ck,m) = 0 (because ℓ > 2k−4,
cf. formula preceding [25, Theorem 4.3]), while Fm+2,k;S0

(Z) has rational Fourier
coefficients, integral at ℓ (denominators divisible at worst by primes less than or
equal to 2m+ 3 ≤ 2k − 5). Note that E is totally real, so, looking at Katsurada’s

formula, Fi(−Z) = Fi(Z).
Thanks to (2), in Theorem 1.2 we may choose −D, among negative fundamental

discriminants, in such a way that ordλ′(c(D)) is minimal. If we then scale f̃ so

that ordλ′(c(D)) = 0 then all the coefficients of f̃ are integral at λ′, since for any
fundamental discriminant −D′ < 0, the non-fundamental coefficients c(D′n2) are
determined by the formal equality of Dirichlet series

L(s− (k − 2), χ−D′)
∞
∑

n=1

c(D′n2)n−s = c(D′)
∞
∑

n=1

an(f)n
−s.

Moreover, all the Fourier coefficients of f̂ are integral at λ′, because of the formula

a(f̂ , S) =
∑

b|cont(S)

c

( |disc(S)|
b2

)

,
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which follows from Theorem 1 and Proposition 3 of [29].

If S0 has discriminant −D, chosen as above, then ordλ′(a(f̂ , S0)) = 0, because

a(f̂ , S0) = c(D) (with the scaling of f̂ determined by that of f̃). We now know

that f̂ is scaled as in the statement of the proposition.
Given that, by (2),

ordλ′

(

L(m, f̂ , st) c(D)2

π3m+2k−3〈f̂ , f̂〉

)

< 0,

and ordλ′(c(D)) = ordλ′(a(f̂ , S0)) ≥ 0, we see that if

Fm+2,k;S0
(Z) =

t
∑

i=1

ciFi(Z)

then ordλ′(c1) < 0.
By uniqueness of F , for each i > 2 there exists Ti ∈ T such that

ordλ(µf̂ (Ti)− µFi
(Ti)) = 0.

We can apply the operator
∏t

i=3(Ti − µFi
(Ti)) to both sides of

Fm+2,k;S0
(Z) =

t
∑

i=1

ciFi(Z)

to kill all the Fi for i > 2, obtaining an equation of the form

F(Z) = b1f̂ + b2F,

where F has Fourier coefficients integral at λ, and ordλ(b1) = ordλ(c1) < 0, because

b1 = c1

t
∏

i=3

(µf̂ (Ti)− µFi
(Ti)).

Dividing both sides by b1, and replacing F by (−b2/b1)F , we find a congruence

mod λ of Fourier coefficients between f̂ and F (which forces the scaling of F to be
as in the statement of the proposition). �

Lemma 2.2. Let f be a cuspidal Hecke eigenform of weight 2k−2 for SL2(Z), with
Saito-Kurokawa lift f̂ . Let −D < 0 be a fundamental discriminant, K = Q(

√
−D)

and Λ : ClK → C× a non-trivial character. Then

R(f̂ , K,Λ) = 0.

Proof.

R(f̂ , K,Λ) =
∑

c∈ClK

a(f̂ , c)Λ−1(c) = c(D)
∑

c∈ClK

Λ−1(c) = 0.

�

Let −D be a fundamental discriminant, and d > 0 a fundamental discriminant
coprime to D. Let K = Q(

√
−Dd) and L = Q(

√
−Dd,

√
−D). Then L is an

unramified quadratic extension of K. Let Λ be the quadratic character of ClK ≃
Gal(H/K) whose kernel is Gal(H/L), where H is the Hilbert class field of K. Using
Frobenius reciprocity,

IndQK(Λ−1) ≃ χ−D ⊕ χd,
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hence
L(1/2, πF ×AI(Λ−1)) = L(1/2, πF × χ−D)L(1/2, πF × χd).

Similarly, using K ′ = Q(
√
−D) and the trivial character id of ClK′ ,

L(1/2, πF ×AI(id)) = L(1/2, πF × χ−D)L(1/2, πF ).

It follows that if Conjecture 1.1 is true then (as long as ℓ ∤ d)

ordλ

(

L(k − 1, F, spin)

L(k − 1, F, spin, χd)

)

= ordλ

( |R(F,K ′, id)|2
|R(F,K,Λ)|2

)

.

To complete the proof of Theorem 1.5, it suffices to show that ordλ(R(F,K
′, id)) = 0

and ordλ(R(F,K,Λ)) > 0, with D chosen as in condition (3) of Theorem 1.5, and
F scaled as in the proof of Proposition 2.1. But, using Proposition 2.1,

R(F,K ′, id) ≡ R(f̂ , K ′, id) = c(D)hK′ 6≡ 0 (mod λ)

(which implies that L(k − 1, F, spin) 6= 0) and, by Lemma 2,

R(F,K,Λ) ≡ R(f̂ , K,Λ) = 0 (mod λ).

Remark 2.3. The choice of Λ above was inspired by [36, ➜2.2]. The proof of Lemma
2 is taken from [36, Proposition 4.2]. The proof of Theorem 1.5 is essentially that
of [36, Proposition 5.1], combined with our Proposition 2.1.

Remark 2.4. Because k is even and f has level 1, the sign in the functional

equation of L(s, f) is (−1)k−1 = −1, hence L(k−1, f) = 0, but since L(s, f̂ , spin) =

L(s, f)ζ(s − (k − 1))ζ(s − (k − 2)), then L(k − 1, f̂ , spin) = 0. So the fact that

R(f̂ , K ′, id) 6= 0 implies that Conjecture 1.1 (which excludes Saito-Kurokawa lifts)

cannot be extended to f̂ for the trivial character. But since χd(−1) = 1 we find

that also L(k− 1, f̂ , spin, χd) = 0, so the fact that R(f̂ , K,Λ) = 0 can be viewed as

proving an extension, to f̂ and the non-trivial character Λ, of Conjecture 1.1, cf. [36,
➜4]. However, note also that in the case of Saito-Kurokawa lifts, using Waldspurger’s

theorem, Böcherer proved his original conjecture, where L(k−1, f̂ , spin, χ−D) is still

present, but other factors such as L(k−1, f̂ , spin) are replaced by an undetermined,
but non-zero constant.

Example 2.5. (From [26, ➜4].) When k = 22, so 2k − 2 = 42, S42(SL2(Z)) is
spanned by Galois conjugate Hecke eigenforms f = f1, f2, f3 with Hecke eigenval-
ues in a field E generated by the roots of a polynomial g(x) := x3 + 7181x2 −
2766919456x − 4705905729536. There is a prime ideal λ | ℓ, with ℓ = 1423, such
that ordλ(Lalg(f, k)) > 0, and 22 is the smallest value of k for which this happens
with an ℓ > 2k − 4. There is an eigenform F with rational Fourier coefficients

(Υ22 in Katsurada’s notation) such that {f̂1, f̂2, f̂3, F} is a basis for S22(Sp2(Z))
and there is a congruence mod λ of Hecke eigenvalues between F and f̂ . Using the
computations in [26, ➜4], ℓ does not divide the discriminant of g(x), or the index of
the order in 〈1, θ, θ2〉Z generated by the Fourier coefficients of f , where θ is a root
of g(x). It follows that there is no mod λ congruence of Hecke eigenvalues between
f and either of its Galois conjugates, hence F has the desired uniqueness property.

Moreover, with f̂ scaled as in [26], If̂ is an algebraic integer, not divisible by λ,

while ordλ(a(f̂ , S)) = 0, where S is Katsurada’s A0 =

(

1 1/2
1/2 1

)

, of discriminant

D = −3, and hQ(
√
−3) = 1. The remaining conditions of Theorem 1.5 are easily

checked.
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3. Interpretation via the Bloch-Kato conjecture

Let F and λ be as in Theorem 1.5. By a theorem of Weissauer [42], there exists
a 4-dimensional Eλ-vector space Vλ, with a continuous action ρF,λ of Gal(Q/Q),
such that for each prime p 6= ℓ, the Euler factor at p in L(s, F, spin) is

Lp(s, F, spin)
−1 = det(I − ρF,λ(Frob

−1
p )p−s|V Ip

λ ),

where Ip is an inertia subgroup at p, and Frobp is a Frobenius element mapping to

a generator x 7→ xp of Gal(Fp/Fp).

For us, since F is level 1, ρλ is unramified at all p 6= ℓ, so V
Ip
λ = Vλ. But when

we look at Vλ⊗χd, where the Galois action is twisted by a character corresponding
to the Dirichlet character χd, there will be ramification at primes dividing d, and
the local Euler factors at such primes will in fact be trivial. For any integer j, let
Vλ(j) be the jth Tate twist, so we have tensored with the jth power of the ℓ-adic
cyclotomic character, multiplying the action of each Frobp by pj . Let Tλ be a

Gal(Q/Q)-stable Oλ-lattice in Vλ, and Aλ := Vλ/Tλ.
Poincare duality gives an isomorphism of Eλ[Gal(Q/Q)]-modules

Vλ ≃ V ∗
λ (3− 2k),

where V ∗ := HomEλ
(V,Eλ) with the natural Gal(Q/Q)-action. We may now define

another Gal(Q/Q)-stable Oλ-lattice T
′
λ in Vλ by

T ′
λ := T ∗

λ (3− 2k),

where T ∗
λ = HomOλ

(Tλ,Oλ), and then

A′
λ := V ′

λ/T
′
λ.

Were the residual representation ρF,λ of Gal(Q/Q) on Tλ/λTλ irreducible, T ′
λ would

necessarily be the same as Tλ (up to scaling). However, for us ρF,λ will be reducible
(therefore actually dependent on the choice of Tλ), and we need to avoid assuming
that T ′

λ is the same as Tλ.
Conjecturally, Vλ is the λ-adic realisation MF,λ of MF , a Grothendieck motive

over Q with coefficients in E, associated to F . We assume at least the existence
of a premotivic structure (collection of realisations and comparison isomorphisms)
in the sense of [15, 1.1.1]. The Hodge type of the de Rham realisation MF,dR is
{(0, 2k− 3), (k− 2, k− 1), (k− 1, k− 2), (2k− 3, 0)}, and the central point s = k− 1
gives the unique critical value of the L-function L(s, F, spin) of MF .

The following formulation of the λ-part of the Bloch-Kato conjecture [7], applied
to the central critical value of L(s, F, spin), is based on [15, (59)] (where, however,
there is a non-empty set Σ of bad primes), using the exact sequence in their Lemma
2.1.

ordλ

(

L(k − 1, F, spin)

Ω

)

= ordλ

(

(
∏

p cp)#H
1
f (Q, A

′
λ(k − 1))

#H0(Q, A′
λ(k − 1))#H0(Q, Aλ(k − 1))

)

,

where “#B” denotes the Fitting ideal of B. Here H1
f (Q, A

′
λ(k − 1)) is a Bloch-

Kato Selmer group, defined by certain local conditions, Ω is a Deligne period, and
the cp are local Tamagawa factors. The Ω and the cp depend (up to units in the
localisation OE,(λ)) on choices of OE,(λ)-lattices TB and TdR in the Betti and de
Rham realisations ofMF (which are E-vector spaces). The choice of TB determines
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Tλ = TB⊗Oλ, which is required to be Gal(Q/Q)-stable. Note that, since (assuming
Conjecture 1.1) L(k− 1, F, spin) 6= 0, conjecturally then H1

f (Q, A
′
λ(k− 1)) is finite.

The congruence of Hecke eigenvalues in Theorem 1.2 may be read as an equality
of traces of Frob−1

p between ρF,λ and Fλ(1−k)⊕ρf,λ⊕Fλ(2−k), thus identifying the
composition factors of ρF,λ. (Typically ρf,λ, the residual representation attached
to f , will be irreducible, but we do not have to assume this.) We now make a
choice of Tλ in such a way that Fλ(1− k) is a submodule of ρF,λ. There can be no
non-trivial extension of Fλ(2 − k) by Fλ(1 − k) inside ρF,λ, since this would force
ordℓ(B2) > 0, using Herbrand’s Theorem as in [10, ➜8]. It follows that we can also
arrange for Fλ(2− k) to be a quotient of ρF,λ.

Then the trivial representation Fλ is a submodule of ρF,λ(k− 1), contributing a

factor of λ to #H0(Q, Aλ(k−1)). Since there is a perfect Galois-equivariant pairing
T ′
λ/λT

′
λ × Tλ/λTλ → Fλ(3 − 2k), the quotient Fλ(2 − k) must be paired with a

submodule Fλ(1 − k), and T ′
λ/λT

′
λ must have its composition factors in the same

order as Tλ/λTλ, in particular also with a submodule Fλ(1−k). This contributes a
factor λ also to #H0(Q, A′

λ(k− 1)). We may view these contributions as the origin
of the −2 in Theorem 1.5, but we need to pay some attention to the various other
factors.

We assume that there is “no particular reason” for there to be a non-trivial
element of the Selmer group H1

f (Q, A
′
λ(k − 1)). Having chosen Tλ as above, we

then choose TdR in such a way that V(TdR ⊗ Oλ) = Tλ, where V is the version
of the Fontaine-Lafaille functor used in [15]. Consequently, if ℓ > 2k − 2 then
ordλ(cℓ) = 0, by [7, Theorem 4.1(iii)]. For p 6= ℓ, ordλ(cp) is also 0 for any p at
which ρF,λ is unramified, which is all p 6= ℓ for us, since F has level 1.

We must also consider MF ⊗Mχd
, whose L-function is L(s, F, spin, χd), where

Mχd
is the premotivic structure associated to the even Dirichlet character χd. For

natural choices of bases for the Betti and de Rham realisations of Mχd
, the Deligne

period is 1/
√
d [13, ➜6]. It follows that the Deligne period for MF ⊗Mχd

(with

the implied choices of lattices) is Ω/(
√
d)2 = Ω/d. The Bloch-Kato conjecture says

that

ordλ

(

L(k − 1, F, spin, χd)

Ω/d

)

= ordλ

(

(
∏

p cp(χd))#H
1
f (Q, A

′
λ(k − 1, χd))

#H0(Q, A′
λ(k − 1, χd))#H0(Q, Aλ(k − 1, χd))

)

.

We shall assume that ℓ ∤ d. If p | d then Ip, which acted trivially on Vλ, now acts
non-trivially through a quotient of order 2, via χd. Hence H0(Qp, Aλ(k− 1, χd)) is
trivial, from which it follows that ordλ(cp(χd))=0 and that H0(Q, Aλ(k− 1, χd)) is
trivial. Similarly H0(Q, A′

λ(k−1, χd)) is trivial. As before, we have ordλ(cp(χd)) =
0 for p ∤ ℓd, and (if ℓ > 2k − 2), ordλ(cℓ(χd)) = 0. (We have tensored together
the choices of lattices we already made in realisations of MF and Mχd

.) We have
arrived at the following.

Proposition 3.1. Let F and λ be as in Theorem 1.5, with ℓ > 2k − 2, and d >
0 a fundamental discriminant such that ℓ ∤ d. Let Tλ be chosen as above (with
Fλ(1 − k) a submodule of Tλ/λTλ). The Bloch-Kato conjecture predicts that if
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H1
f (Q, A

′
λ(k − 1)) is trivial (and if L(k − 1, F, spin, χd) 6= 0) then

ordλ

(

L(k − 1, F, spin)

L(k − 1, F, spin, χd)

)

≤ −2.

This seems to fit well with Theorem 1.5, but we should examine the notion that
there is “no particular reason” for H1

f (Q, A
′
λ(k − 1)) to be non-trivial, by looking

at some closely related situations where there is a reason to believe that a Selmer
group is non-trivial. Suppose that we choose Tλ a different way, with Fλ(1 − k)
not a submodule of T ′

λ/λT
′
λ (but then necessarily ρf,λ or Fλ(2− k) is a submodule

instead). Then we can no longer rely on the contribution of H0(Q, A′
λ(k − 1)) to

help explain Theorem 1.5, and (unless λ2 | #H0(Q, Aλ(k − 1))) require instead
non-triviality of H1

f (Q, A
′
λ(k− 1, χd)). We sketch how this arises, in the two cases.

Note that this non-triviality of H1
f (Q, A

′
λ(k−1, χd)) (or λ

2 | #H0(Q, Aλ(k−1)))
would be forced by isogeny-invariance of the Bloch-Kato conjecture, but only if
we assume triviality of H1

f (Q, A
′
λ(k − 1)) for the original choice of Tλ. So the

independent constructions below lend credence to such an assumption.

(1) Let the 2-dimensional Galois representation ρf,λ associated to f be on a
space Vf,λ. Since χd is an even character, the sign in the functional equation
of L(s, f, χd) is −1, like that of L(s, f). By a parity result of Nekovář [32,
Theorem B] (assuming irreducibility of ρf,λ), the dimension of the λ-adic

Selmer group H1
f (Q, Vf,λ(k−1, χd)) is odd, so in particular H1

f (Q, Vf,λ(k−
1, χd)) is non-trivial. Suppose we choose Tλ in such a way that ρf,λ is a

submodule of T ′
λ/λT

′
λ. Then using a non-zero element of H1

f (Q, Vf,λ(k −
1, χd)), and the injection from the λ-torsion Af,λ[λ](k − 1, χd) of Af,λ(k −
1, χd) to that of A′

λ(k − 1, χd), we can construct a non-zero element of
H1(Q, A′

λ(k − 1, χd)), and using the fact that it came from something in
H1

f (Q, Vf,λ(k− 1, χd)), satisfying the Bloch-Kato local conditions, it is not

difficult to show that it too satisfies those conditions, so lies inH1
f (Q, A

′
λ(k−

1, χd)).
If one tried to construct an element inH1

f (Q, A
′
λ(k−1)) (which we do not

really want) in this manner, H0(Q, A′
λ[λ](k−1)/A′

f,λ[λ](k−1) might be non-

trivial, because of the composition factor Fλ of A′
λ[λ](k−1)/A′

f,λ[λ](k−1),
so the constructed element may be 0.

(2) If we choose Tλ in such a way that Fλ(2 − k) is a submodule of T ′
λ/λT

′
λ,

we may similarly construct a non-zero element of H1
f (Q, A

′
λ(k − 1, χd)),

starting from the non-triviality of H1
f (Q,Qℓ(1, χd)), which follows from the

infinitude of the group of units of Q(
√
d).

Remark 3.2. If we abandon the hypothesis in Theorem 1.5 concerning uniqueness
of F , and let G be another such eigenform in Sk(Sp2(Z)), satisfying the Hecke

eigenvalue congruence with f̂ , then ρG,λ, like ρF,λ, has composition factors Fλ(1−k),
ρf,λ and Fλ(2 − k). Even if we ensure (by choice of Oλ-lattices before reducing)
that Fλ(1 − k) is a submodule for both ρF,λ and ρG,λ, because of the reducibility
there is no guarantee that ρF,λ and ρG,λ are isomorphic. Proposition 5.1 of [6] gives
a condition that would ensure that they are. If they are then, letting r be minimal
such that ρF,λ and ρG,λ (on the Oλ-lattices) are different modulo λr+1,

ρG,λ(σ) ≡ ρF,λ(σ)(I + λr θ(σ)) (mod λr+1)
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defines a cocycle θ representing a non-zero cohomology class in H1(Q, ad(ρF,λ)).
Composing with projection to the quotient module Fλ(2−k) of ρF,λ would land us

inH1(Q, A′
λ[λ](k−1)), so could conceivably lead to a non-zero element of the Selmer

group H1
f (Q, A

′
λ(k−1)). If so, the Bloch-Kato conjecture could be compatible with

failure of the conclusion of Theorem 1.5. There is an analogous remark in [18, ➜8],
in a different situation.

4. Squarefree level

LetM ≥ 1 be an integer, and Γ
(2)
0 (M) :=

{(

A B
C D

)

∈ Sp2(Z) : C ∈MM2(Z)

}

.

As explained in [16, ➜1.4, ➜3.2], there is a notion of old and new subspaces of

Sk(Γ
(2)
0 (M)), and a newform is, in the new subspace, an eigenform F of T (p) and

T1(p
2) for all primes p ∤ M and of operators U(p) for all p | M . It generates an ir-

reducible cuspidal automorphic representation πF of GSp2(A). Let T be the Hecke
algebra generated by the T (p) and T1(p

2) for all primes p ∤M .
Let f =

∑

af (n)q
n ∈ S2k−2(Γ0(M)) be a normalised newform (of genus 1),

with k ≥ 2 even and M odd and squarefree. As explained in [2], there is a Saito-

Kurokawa lift f̂ ∈ Sk(Γ
(2)
0 (M)). It is a Hecke eigenform for T, with µf̂ (T (p)) =

af (p) + pk−2 + pk−1 for all primes p ∤M .
Theorem 1.13 of [16] is that the following is a consequence of Yifeng Liu’s refined

Gan-Gross-Prasad conjecture.

Conjecture 4.1. Suppose that F ∈ Sk(Γ
(2)
0 (M)), with M odd and squarefree,

k ≥ 3, is a newform, not a Saito-Kurokawa lift or a Yoshida lift. Let K = Q(
√
−D)

be an imaginary quadratic field, with χ−D(p) = −1 for all primes p | M , Λ a
character of ClK , and R(F,K,Λ) defined as before. Then

|R(F,K,Λ)|2
〈F, F 〉 =

24k−4π2k+1

(2k − 2)!
w(K)2Dk−1L(1/2, πF ×AI(Λ−1))

L(1, πF , ad)

∏

p|M
Jp,

where

Jp =











(1 + p−2)(1 + p−1) if πF,p is of type IIIa [37, ➜2.2];

2(1 + p−2)(1 + p−1) if πF,p is of type VIb;

0 otherwise.

The following may serve the role of Theorem 1.2. It is taken from results of
Agarwal and Brown [1, Theorem 6.5, Theorem 7.4, Corollary 7.5].

Theorem 4.2. Let k ≥ 6 be even, M odd and squarefree, f ∈ S2k−2(Γ0(M)) a

newform, f̂ ∈ Sk(Γ
(2)
0 (M)) a Saito-Kurokawa lift. For primes p | M , let wp(f)

be the Atkin-Lehner eigenvalues. Suppose that there exists an even character χ of
conductor N > 1, with M | N , a fundamental discriminant −D < 0 coprime to M ,
with χ−D(p) = wp(f) for all primes p |M , and a prime divisor λ | ℓ > 2k−2 (with
ℓ ∤ ND) in a sufficiently large number field E, such that

ordλ

(

LN (3− k, χ)L(2k − 4, f, χ)L(2k − 3, f, χ)Dk−(3/2)L(f, k − 1, χ−D)

〈f, f〉π4k−7L(f, k)

)

< 0.

(Here the superscript N indicates omission of Euler factors at p | N .) Suppose that
there is no mod λ congruence of Hecke eigenvalues between f and any newform of
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level dividing M . Then there exists a Hecke eigenform (for T) F ∈ Sk(Γ
(2)
0 (M)),

not a Saito-Kurokawa lift, such that for all T ∈ T,

µF (T ) ≡ µf̂ (T ) (mod λ).

If additionally ℓ ∤ (p2 − 1) for all primes p |M , then F is not a Yoshida lift.

In Theorem 1.2, the existence of the auxiliary evenm with 2 < m < k−2 requires
k > 6, which was automatically satisfied at level 1 because 2k − 2 ≥ 12. But for
M > 1 in general it is a real condition. In fact, Agarwal and Brown only require
k ≥ 6, because the twist by χ allows them to use m = k − 2, which also avoids the
application of a differential operator to the Eisenstein series. This condition also
ensures convergence of the genus 4 Siegel-Eisenstein series whose pullback formula
is being applied, and integrality at ℓ of its Fourier coefficients. They also strengthen

our condition “< 0” in Theorems 1.2 and 4.2 to “< −ordλ

(

〈f,f〉
iΩ+Ω−

)

”, thus ensuring

that F may be taken not to be a Saito-Kurokawa lift, even if λ is a congruence prime
for f .

As in the case M = 1, there is a half-integral weight form f̃ =
∑

c(n)qn ∈
S+
k−(1/2)(Γ0(4M)) in the background. Note that, for a fundamental discriminant

−D < 0, c(D) = 0 unless χ−D(p) = wp(f) for all primes p | M , by [30, Corollary
1, Remark]. It is easy to prove the following analogue of Theorem 1.5. For the

formulas c(D) = a(f̂ , S0) and

a(f̂ , S) =
∑

b|cont(S)
b∤M

c

( |disc(S)|
b2

)

,

used in the proof of Theorem 1.5 in the special case M = 1, we can in general use
[2, ➜3].

Theorem 4.3. Let f and λ be as in Theorem 4.2, and suppose the following.

(1) wp(f) = −1 for all primes p |M .
(2) The F in Theorem 4.2 is unique, up to scaling.
(3) There exists a fundamental discriminant −D < 0, with χ−D(p) = −1 for

all primes p | M , such that ordλ(c(D)) is minimal and the class number
hK of K = Q(

√
−D) is not divisible by ℓ.

Then Conjecture 4.1 implies that L(k−1, F, spin) 6= 0, and that for any fundamental
discriminant d > 0, coprime to ℓD, such that χd(p) = 1 for all primes p | M ,
assuming also that L(k − 1, F, spin, χd) 6= 0,

ordλ

(

L(k − 1, F, spin)

L(k − 1, F, spin, χd)

)

≤ −2.

The condition on χd(p) guarantees that χ−dD(p) = −1 for all primes p |M , and
happily coincides with that appearing in Proposition 4.4 below. The congruence
ensures that for no p |M can we be in one of the cases where Jp = 0 in Conjecture
4.1, since this would imply R(F,K, id) = 0. This would contradict

R(F,K, id) ≡ R(f̂ , K, id) = h(K)c(D) 6≡ 0 (mod λ).

Note that Jp is independent of K and Λ, so it cancels when we take the ratio. Its
value does not matter to us, as long as it is non-zero. The uniqueness of F forces
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it to be a newform. Remark 1.6 applies also here, i.e. Conjecture 4.1 may soon be
proved by Furusawa and Morimoto.

It is easy to prove the following generalisation of Proposition 3.1.

Proposition 4.4. Let k ≥ 2 be even, M odd and squarefree, f ∈ S2k−2(Γ0(M))

a newform, f̂ ∈ Sk(Γ
(2)
0 (M)) a Saito-Kurokawa lift. Let T be the Hecke algebra

generated by the T (p) and T1(p
2) for all primes p ∤ M . Let F ∈ Sk(Γ

(2)
0 (M)) be a

newform, not a Saito-Kurokawa lift, such that for all T ∈ T,

µF (T ) ≡ µf̂ (T ) (mod λ).

Here λ is a prime divisor in a suitable number field E, dividing a rational prime
ℓ > 2k− 2. Let d > 0 a fundamental discriminant such that ℓ ∤ d and χd(p) = 1 for
all primes p |M . Let Tλ (a lattice in the λ-adic Galois representation attached to F )
be chosen with Fλ(1−k) a submodule of Tλ/λTλ. The Bloch-Kato conjecture predicts
that if H1

f (Q, A
′
λ(k−1)) is trivial (and if L(k−1, F, spin), L(k−1, F, spin, χd) 6= 0)

then

ordλ

(

L(k − 1, F, spin)

L(k − 1, F, spin, χd)

)

≤ −2.

The condition χd(p) = 1 for p | M (so that the Galois character χd is trivial
when restricted to Gal(Qp/Qp)) ensures that cp and cp(χd), though not necessarily
trivial when p |M , are at least the same, and so cancel in the ratio.

5. Paramodular level

Let M be an odd squarefree integer, and let f ∈ S2k−2(Γ0(M)) be a newform
with sign −1 in the functional equation of its L-function. We require k ≥ 2, but
no longer that k is even. As explained in [11, ➜6], there is a paramodular Saito-

Kurokawa lift f̂ ∈ Sk(Γ
para(M)), a.k.a. the Gritsenko lift Grit(φ) of an associated

Jacobi form φ of weight k, level 1 and index M . The paramodular group of level
M is defined by

Γpara(M) =









Z Z 1
MZ Z

MZ Z Z Z
MZ MZ Z MZ
MZ Z Z Z









∩ Sp2(Q)

= γM4(Z)γ
−1 ∩ Sp2(Q), γ = diag(1, 1,M, 1).

To get from f to φ, this time we do not go via a modular form of half-integral
weight, rather we go in one step by the inverse of the isomorphism in Theorem 5
of [40].

A new feature of the paramodular case is that in the Fourier expansion F =
∑

S a(F, S)e
2πitr(SZ), we now have S =

(

a b/2
b/2 c

)

with a restriction M | a, and
a(F,U tSU) = a(F, S) for U ∈ Γ0(M). Let QM,−D be the set of all such S, with
fixed fundamental discriminant b2 − 4ac = −D. Note that the condition M | a

arises from the fact that





I2

(

1
M 0
0 0

)

02 I2



 ∈ Γpara(M), so F is invariant under the

translation τ 7→ τ + 1
M , where Z =

(

τ z
z τ ′

)

.
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Conjecture 5.1. ForM odd and squarefree, k ≥ 2, suppose that F ∈ Sk(Γ
para(M))

is a newform (cf. [37]), not a Saito-Kurokawa lift. Let K = Q(
√
−D) be an

imaginary quadratic field, with χ−D(p) = 1 for all primes p |M , and Λ a character
of ClK such that Λ([p]) = 1 for all prime ideals p |M . Then

|R(F,K,Λ)|2 = cFw(K)2Dk−1L(1/2, πF ×AI(Λ−1)),

where cF is some constant independent of K and Λ, and now

R(F,K,Λ) :=
∑

[S]∈QM,−D/Γ0(M)

a(F, S)Λ−1([S]).

Here, to evaluate Λ−1 on [S], one simply projects from QM,−D to Q1,−D, replac-
ing the Γ0(M)-equivalence class of S by its SL2(Z)-equivalence class, which is then
identified with an element of ClK in the usual way.

Remark 5.2. For the choice of Λ occurring in the proof of Theorem 1.5, with
K = Q(

√
−Dd) and χ−D(p) = χd(p) = 1 for all primes p | M , this conjecture

becomes a conjecture of Ryan and Tornaŕıa [36, Conjecture C], though this is
not immediately obvious. Equation (4) in [22, ➜I.1] gives a surjective map Φ :
QM,−Dd/Γ0(M) → Q1,−Dd/SL2(Z). If we replaced S by Φ(S) in Conjecture 5.1

then we would get Ryan and Tornaŕıa’s Conjecture C. Now if S =

(

αM b/2
b/2 c

)

then Φ(S) =

(

αM1 b/2
b/2 cM2

)

, for a certain factorisation M = M1M2. Under the

usual bijection between Q1,−Dd/SL2(Z) and ClK , [S] maps to (the class of) S̃ :=

〈2αM, b +
√
−Dd〉Z. Although this is the Z-span, it is easy to check that it is in

fact an ideal in OK . Likewise, Φ(S) maps to Φ̃(S) := 〈2αM1, b +
√
−Dd〉Z. Since

S̃ ⊆ Φ̃(S), there is an ideal a of OK such that S̃ = aΦ̃(S). If p | M then p splits
in L = Q(

√
−dD,

√
−D), hence Λ([p]) = 1 for any p of norm p. This shows that Λ

satisfies the hypothesis of Conjecture 5.1. But since NmK/Q(a) = M2 | M , it also
shows that Λ([a]) = 1, so Λ([S]) = Λ([Φ(S)]), as required.

Proposition 5.3. Conjecture 5.1 follows from Y. Liu’s refined Gan-Gross-Prasad
conjecture.

Proof. Looking at Y. Liu’s conjecture as stated in [16, Conjecture 1.12], first note
that πF,v is generic for almost all places v, given that F is not a Gritsenko lift, as
in [16, ➜1.4, (ii) non-CAP]. The formula [16, (9)] is

|B(φ,Λ)|2
〈φ, φ〉 =

CT

SπF

ζ(2)ζ(4)L(1/2, πF ×AI(Λ−1))

L(1, πF , ad)L(1, χ−D)

∏

v

Jv(φv).

Here SπF
is either 4 or 2, depending on whether or not F is a Yoshida lift. We

proceed as in [16, ➜3.3]. In their (75) we replace S by some fixed S in QM,−D, then
in their K0, at p | M we replace their TS(Qp) ∩ GL2(Zp) by TS(Qp) ∩ Ip, where
Ip :=

{(

α β
γ δ

)

∈ GL2(Zp) : p | γ
}

. It is still the case that TS(Q) ∩ K0 ≃ OK ,

since TS(Q) = A×, with A := {x + yξS : x, y ∈ Q}, and ξS =

(

b/2 c
−a −b/2

)

such

that ξ2S = −D/4, and M | a. Thus we arrive at their Proposition 3.5 relating the
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Bessel period B(φ,Λ) with R(F,K,Λ), and Proposition 3.6 that

|R(F,K,Λ)|2
〈F, F 〉

= e4πtr(S)

(

D1/2w(K)2

23SπF

)

L(1/2, πF ×AI(Λ−1))

L(1, πF , ad)

J∞
vol(R×\TS(R))

∏

p|M
J(φp).

As in [16, (105)], J∞

vol(R×\TS(R)) = 22kDk−(3/2)e−4πtr(S), so we now have the cor-

rect power of D, and it remains to show that the J(φp), for primes p | M , are
independent of K and Λ.

Viewing Λ as a character of A×
K/K

×, the conditions χ−D(p) = 1 and Λ([p]) = 1
ensure that locally at p | M , (K ⊗ Qp)

× ≃ Q×
p × Q×

p , and the restriction of Λ is

trivial. However, on the face of it, J(φp) may depend on the way that Q×
p ×Q×

p is
embedded in GL2(Qp) as TS(Qp), depending on S and therefore on K. Looking at
the definition of J(φp) preceding [16, Conjecture 1.12], and bearing in mind that
Λp is trivial, we must show that

∫

Q×

p \TS(Qp)

∫

N(Qp)

〈πF,p(tpnp)φp, φp〉
〈φp, φp〉

θ−1
S (np) dnp dtp

is independent of K. Here πF,p is the local component at p of the automorphic
representation of GSp2(A) associated with F , 〈·, ·〉 is an invariant inner product on

its space, and TS(Qp) is embedded in GSp2(Qp) via g 7→
(

g 0
0 (det(g)) tg−1

)

. Also,

N(Qp) = {n(X) : X ∈M2(Qp),
tX = X},with n(X) :=

(

I X
0 I

)

,

and θS(n(X)) := ψp(tr(SX)), with ψp : Qp → C a standard additive character.

We seek γ ∈ Ip such that tγSγ =

(

0 1/2
1/2 0

)

. Then let γ̃ :=

(

γ 0
0 (det(γ)) tγ−1

)

∈
Kp, the local component at p of an open compact subgroup of GSp2(Af ) whose
intersection with GSp2(Q) is Γpara

0 (M). By invariance of the inner product, and
the fact that φp is Kp-fixed,

〈πF,p(tpnp)φp, φp〉
〈φp, φp〉

=
〈πF,p(γ̃

−1tpnpγ̃)πF,p(γ̃
−1)φp, πF,p(γ̃

−1)φp〉
〈φp, φp〉

=
〈πF,p(γ̃

−1tpnpγ̃)φp, φp〉
〈φp, φp〉

.

Now tr(SX) = tr
(

tγSγ
det γ · (det(γ))γ−1X tγ−1

)

and

n((det(γ)γ−1X tγ−1) = γ̃−1n(X)γ̃.

Using ξS = ιS with ι :=

(

0 1
−1 0

)

, and the fact that γ−1ι tγ−1 = (det(γ))−1ι (for

any invertible 2-by-2 matrix γ), we find that γ−1ξSγ = ξS′ , where S′ =
tγSγ
det(γ) =

(

1
2 det(γ) 0

0 − 1
2 det(γ)

)

, which gives a standard TS′ =

(

Q×
p 0
0 Q×

p

)

. Conjugation

by γ̃−1 maps TS to TS′ (inside GSp2(Qp)) and N(Qp) to N(Qp), preserving the
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measures and converting the integral for J(φp) to a standard form independent of
K and Λ (subject to the conditions of the proposition).

It remains to show that γ exists. If c = 0 then ax2 + bxy + cy2 = x(ax+ by) =

XY , where

(

X
Y

)

=

(

1 0
a b

)(

x
y

)

, so γ−1 =

(

1 0
a b

)

∈ Ip since p | a. If c 6= 0

then, applying first a γ of the form

(

1 α
0 1

)

, we may suppose that p ∤ c. By the

assumption χ−d(p) = 1, and since p is odd, there exists β ∈ Zp with β2 = −d. Since
β2 = b2−4ac ≡ b2 (mod p), we may choose β ≡ b (mod p). Then ax2+bxy+cy2 =

XY , where

(

X
Y

)

=

(

(b+ β)/2c 1
(b− β)/2 c

)(

x
y

)

, so γ−1 =

(

(b+ β)/2c 1
(b− β)/2 c

)

∈ Ip since

p | (b− β) and p ∤ c. �

The analogue of Proposition 4.4 is almost identical, including the condition ℓ >
2k − 2, but in the following there is no condition on the prime number ℓ such that
λ | ℓ.

Theorem 5.4. For M odd and squarefree, k ≥ 2, suppose that F ∈ Sk(Γ
para(M))

is a newform (cf. [37]), not a Saito-Kurokawa lift, with Fourier coefficients integral
at λ, not all divisible by λ. Suppose that φ is a Jacobi form of weight k, level 1
and index M , and that there is a congruence of Fourier coefficients F ≡ Grit(φ)
(mod λ). Suppose that there exists a fundamental discriminant −D < 0 such that
χ−D(p) = 1 for all primes p |M , and

R(F,Q(
√
−D), id) 6≡ 0 (mod λ),

equivalently

R(Grit(φ),Q(
√
−D), id) 6≡ 0 (mod λ).

Then Conjecture 5.1 implies that L(k−1, F, spin) 6= 0, and that for any fundamental
discriminant d > 0, coprime to ℓD, such that χd(p) = 1 for all primes p | M ,
assuming also that L(k − 1, F, spin, χd) 6= 0,

ordλ

(

L(k − 1, F, spin)

L(k − 1, F, spin, χd)

)

≤ −2.

We do not assume that φ is a Hecke eigenform, though the case where Grit(φ) =

f̂ , for a newform f ∈ S2k−2(Γ0(M)) with sign −1 in the functional equation of
L(s, f), is of particular interest.

Proof. For S =

(

αM b/2
b/2 c

)

of discriminant −dD, a(Grit(φ), S) depends only on

the discriminant and on b (mod 2M), cf. [36, around Proposition 4.2]. (Note that

this is unlike the Γ
(2)
0 (M) case, where a Fourier coefficient of a Saito-Kurokawa

lift depended only on the discriminant.) For each ρ (mod 2M) with ρ2 ≡ −dD
(mod 4M), we may define a subset QM,−dD,ρ of QM,−dD, comprising those S
for which b ≡ ρ (mod 2M). Gross, Kohnen and Zagier show [22, ➜I.1] that the
map Φ : QM,−Dd/Γ0(M) → Q1,−Dd/SL2(Z) remains surjective even when re-
stricted to QM,−dD,ρ/Γ0(M). The size of the pre-image in QM,−dD,ρ of any c ∈
Q1,−Dd/SL2(Z) is a power of 2 independent of c (but possibly depending on ρ).
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Letting Λ : ClQ(
√
−dD) → C× be as in Remark 5.2, the unramified quadratic

character associated to Q(
√
−D,

√
d)/Q(

√
−dD), we see that for each ρ the subsum

∑

[S]∈QM,−dD,ρ/Γ0(M)

a(Grit(φ), S)Λ−1(Φ([S])) = 0.

By Remark 5.2, Λ(Φ([S])) = Λ([S]), so, summing over ρ,

R(Grit(φ),Q(
√
−dD),Λ) = 0.

The congruence implies that

R(F,Q(
√
−dD),Λ) ≡ 0 (mod λ).

We may now proceed as in the proof of Theorem 1.5, noting that we must be in a
case where Jp 6= 0 for all primes p |M , since R(F,Q(

√
−D), id) 6= 0. �

Results of Brown and Li [11, Theorem 6.9, Corollary 6.14] provide a substitute
for Theorems 1.2 and 4.2 in the paramodular case, and we could use them to prove
congruences of Fourier coefficients between paramodular Saito-Kurokawa lifts and
non-lifts. Then we could apply Theorem 5.4 to these congruences to get some
analogue of Theorems 1.5 and 4.3. But perhaps it is more interesting to apply
Theorem 5.4 to some numerical examples with k = 2 or 3.

Example 5.5. By [34, Theorem 7.3], S2(Γ
para(277)) is 11-dimensional, with a 10-

dimensional subspace of Gritsenko lifts, and a non-lift T-eigenform F , with rational
integer Fourier coefficients (g.c.d. 1), satisfying a congruence

a(F, S) ≡ a(Grit(φ), S) (mod 15) ∀S.
Here φ is the first Fourier-Jacobi coefficient of F and Grit(φ) is its Gritsenko
lift. Ryan and Tornaria [36, Table 4] computed R(F,Q(

√
−7), id) = 2. Note that

χ−7(277) = 1. Let K = Q(
√
−7d), with d > 0 a fundamental discriminant such

that χd(277) = 1, and let Λ be the quadratic character of ClK in the proof of
Theorem 1.5. The fact that R(F,K,Λ) ≡ 0 (mod 15) is illustrated numerically for
several values of d in [36, Table 4]. This is essentially [36, Proposition 5.1]. Anyway,
Theorem 5.4 says that Conjecture 5.1 implies

ordℓ

(

L(1, F, spin)

L(1, F, spin, χd)

)

≤ −2,

for ℓ = 3 and ℓ = 5 (assuming as always that the denominator does not vanish).
Recall that Proposition 5.3 shows that Conjecture 5.1 follows from Y. Liu’s re-
fined Gan-Gross-Prasad conjecture, so this inequality will become unconditional if
Furusawa and Morimoto extend their proof to non-trivial Λ, as will those in the
examples below. There is also experimental support for several values of d in [36,
Table 4]. They approximated L-values numerically, obtaining coefficients in the
Dirichlet series by counting points mod p on the hyperelliptic curve below.

It has been proved recently by Brumer et. al. [12] that L(s, F, spin) is the L-
function of the jacobian J of the genus 2 curve y2 + y = x5 +5x4 +8x3 +6x2 +2x,
which has a rational point of order 15. The Birch and Swinnerton-Dyer conjecture
then predicts a contribution of 152 to the denominator of L(1, F, spin)/Ω, where
Ω is a determinant of periods of Néron differentials. This factor of 152 is exposed

by considering the ratio L(1,F,spin)
L(1,F,spin,χd)

. The trivial composition factors generated by

rational torsion points in the Gal(Q/Q)-modules J [3] and J [5] can also be connected
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with congruences of Hecke eigenvalues between Hecke eigenforms, F ≡ f̂1 (mod 3)

and F ≡ f̂2 (mod λ), where f1 has rational Hecke eigenvalues and λ | 5 in a number
field of degree 9. These congruences of Hecke eigenvalues extend to congruences of
Fourier coefficients, as noted following the proof of Theorem 7.3 in [34].

Example 5.6. By [33, Theorem A.1], S2(Γ
para(731)) (where 731 = 17 × 43) is

19-dimensional, with an 18-dimensional subspace of Gritsenko lifts, and a non-lift
T-eigenform F , with rational integer Fourier coefficients (g.c.d. 1), satisfying a
congruence

a(F, S) ≡ a(f̂ , S) (mod 5) ∀S.
Here, as in [6, ➜9.1], f ∈ S2(Γ0(731)) is a normalised newform with rational co-
efficients, associated with the elliptic curve (Cremona label 731a1) y2 + xy + y =
x3 − 539x+ 4765. We have χ−8(17) = χ−8(43) = 1. Also R(F,Q(

√
−2), id) =

a

(

F,

(

731 462/2
462/2 73

))

+a

(

F,

(

731 54/2
54/2 1

))

= −1+(−1) = −2 6≡ 0 (mod 5).

Letting d > 0 be a fundamental discriminant such that 2 ∤ d and χd(17) = χd(43) =
1, Theorem 5.4 says that Conjecture 5.1 implies

ord5

(

L(1, F, spin)

L(1, F, spin, χd)

)

≤ −2.

It has been proved recently by Berger and Klosin [6] that L(s, F, spin) is the
L-function of the jacobian of the genus 2 curve y2 + (x3 + x2)y = x5 +2x4 − x− 3,
which has a rational point of order 5. The Birch and Swinnerton-Dyer conjecture
then predicts a contribution of 52 to the denominator of L(1, F, spin)/Ω, where Ω
is a determinant of periods of Néron differentials, which is exposed by considering

the ratio L(1,F,spin)
L(1,F,spin,χd)

.

Example 5.7. Poor and Yuen [34, ➜8, Example 1] showed that S3(Γ
para(61)) is

7-dimensional, with a 6-dimensional subspace of Gritsenko lifts, and a non-lift T-
eigenform F , with rational integer Fourier coefficients (g.c.d. 1), satisfying a con-
gruence

a(F, S) ≡ a(Grit(φ), S) (mod 43) ∀S.
Here φ is a certain Jacobi cusp form of weight 3 and index 61, and Grit(φ) is its
Gritsenko lift. We have χ−3(61) = 1. Also

R(F,Q(
√
−3), id) = a

(

F,

(

61 −27/2
−27/2 3

))

= 3 6≡ 0 (mod 43).

Let d > 0 be a fundamental discriminant such that 3 ∤ d, χd(61) = 1. Then
Theorem 5.4 says that Conjecture 5.1 implies

ord43

(

L(2, F, spin)

L(2, F, spin, χd)

)

≤ −2.

To link this with the analysis in ➜3, we can easily derive, from the congruence
between F and Grit(φ), a congruence mod λ, of Hecke eigenvalues or even of Fourier

coefficients, between F and f̂ , where f ∈ S4(Γ0(61)) is a newform with coefficients
in a number field E of degree 6, and λ | 43 is a prime divisor in E. (Expressing

Grit(φ) as a linear combination of f̂1, . . . , f̂6, where {f = f1, f2, . . . , f6} is a basis of
Hecke eigenforms for S4(Γ0(61)), in the relation F ≡ Grit(φ) (mod λ), one applies
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an element of T to kill the f̂2, . . . , f̂6 components, in the manner of the proof of
Theorem 1.2.)

As in [11, ➜7], this congruence of Hecke eigenvalues, interpreted as mod λ re-
ducibility of a Galois representation, leads to an element in a Selmer group which,
via the Bloch-Kato conjecture, predicts that λ | Lalg(3, f). (We might have re-
marked earlier that in general, the Bloch-Kato conjecture links the congruence to
the appearance of λ in both the numerator of Lalg(k, f) and the denominator of
Lalg(k − 1, F, spin).) Using the command LRatio in the Magma computer package
[9], one readily checks that, as expected, 43 | NmE/Q(Lalg(3, f)). Corollary 6.14 in
[11], which proves a congruence of Hecke eigenvalues from divisibility of Lalg(k, f),
does not apply here, since the condition k ≥ 6 is far from being satisfied. It would
be very nice to be able to prove this connection between L-values and congruences
for such a low value as k = 3. Regarding Examples 5.5 and 5.6, k = 2 is too low,
since then k > 2k − 3, so L(k, f) is not even a critical value.

Using their methods, Poor and Yuen were able to produce the Euler factors at
2, 3 and 5 of L(s, F, spin). Some time around the end of 2010, in collaboration with
V. Golyshev, A. Mellit computed the first 1000 coefficients of a Dirichlet series,
using the requirement that it should satisfy experimentally a functional equation of
the type expected of L(s, F, spin), cf. [17, ➜6]. Not only were these compatible with

the above Hecke eigenvalue congruence with f̂ , they were also sufficient to check
numerically that 432 appears to divide the ratio of the central L-value to a twisted
central L-value, using the algorithm of T. Dokchitser implemented in Magma [17]
to approximate the L-values.

The data also supports a congruence

µF (T (p)) ≡ 1 + p3 + pap(g) (mod λ′),

for all primes p 6= 61, where g =
∑

an(g)q
n ∈ S2(Γ0(61)) is a normalised newform

with coefficients in a cubic field E′, and λ′ | 19 is a divisor in E′. (Golyshev
conjectured the existence of a second congruence for F , beyond the one involving
43, then K. Buzzard found it, having realised the possibility of it involving weight
2 rather than weight 4.) For over ten years this remained unproved, but recent
computations of Rama and Tornaŕıa using quinary forms have led to a proof, which
will be published in due course.

The left hand side of the congruence was obtained experimentally from the coeffi-
cients of the Dirichlet series. For yet another way to produce the first 100 coefficients
of this Dirichlet series, using algebraic modular forms for the orthogonal group of
a quinary quadratic form, see [23, Appendix B] (computations that have been ex-
tended to the first 3000 coefficients by Rama and Tornaŕıa [35]). It is expected that
L(s, F, spin) is the L-function attached to the 3rd cohomology of some Calabi-Yau
3-fold defined over Q, with Hodge numbers h3,0 = h2,1 = h1,2 = h0,3 = 1. In
support of this, Golyshev has recently matched it experimentally with a fibre in
one of the 4th order motivic variations in the AESZ database [3].

Acknowledgements. I am grateful to Vasily Golyshev and Anton Mellit
for stimulating my interest in this subject, via Example 5.7, to Kevin Buzzard for
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