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Abstract

In this paper we investigate the effectiveness of direct statistical simulation (DSS) for two low-

order models of dynamo action. The first model, which is a simple model of solar and stellar dynamo

action, is third-order and has cubic nonlinearities whilst the second has only quadratic nonlinearities

and describes the interaction of convection and an aperiodically reversing magnetic field. We show

how DSS can be utilised to solve for the statistics of these systems of equations both in the presence

and the absence of stochastic terms, by truncating the cumulant hierarchy at either second or third

order. We compare two different techniques for solving for the statistics, timestepping — which is

able to locate only stable solutions of the equations for the statistics and direct detection of the fixed

points. We develop a complete methodology and symbolic package in Python for deriving the statis-

tical equations governing the Low-order dynamic systems in cumulant expansions. We demonstrate

that although direct detection of the fixed points is efficient and accurate for DSS truncated at second

order, the addition of higher order terms leads to the inclusion of many unstable fixed points that may

be found by direct detection of the fixed point by iterative methods. In those cases timestepping is a

more robust protocol for finding meaninful solutions to DSS.

1 Introduction

Magnetic fields in planets stars and galaxies are believed to be generated by the interaction of turbulent

motions of electrically conducting fluids, rotation and magnetic fields. This complicated nonlinear inter-

action can, in theory, be modelled by the solution of nonlinear partial differential equations. However the

need for a description on a vast range of spatial and temporal scales means that the pertinent parameter

regime lies far beyond the capabilities of even modern supercomputers, see e.g., Tobias (2021). For this

reason alternative approaches and descriptions are being investigated.

One such approach involves deriving and solving equations for the low-order statistics of the un-

derlying system. This approach, termed Direct Statistical Simulation (DSS), has the advantage that the

low-order statistics are smoother in space than the detailed dynamics; hence fewer spatial modes may

be required for an accurate description of the statistics than the dynamics. Moreover the statistics are

more slowly-varying than the complicated dynamics and so may be described by the evolution on a

slow-manifold (or perhaps even by a fixed point of the dynamical system describing DSS). However the

derivation of the equations for DSS from the relevant PDEs is complicated, requiring either repeated

differentiation of the Hopf functional equation Hopf (1952) or repeated integrations to find the evolu-

tion of high-order correlations. Moreover, DSS suffers from the “curse of dimensionality”, involving

the solution of a hierarchy of equations for cumulants that have a higher dimension than the underlying
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fields described by the original PDEs. For these reasons, truncation of the relevant cumulant hierarchy

needs to be effected as soon as convenient and efficient methods for the solution of the system need to

be developed.

DSS has previously been utilised for a range of PDE models involving the interaction of mean flows

and magnetic fields with turbulence. In most cases the systems described the interaction of turbulence

with a zonal mean flow or magnetic field; examples include models of the the driving of (magnetised)

zonal barotropic jets by stochastic driving Tobias et al. (2011), driving of zonal flows in plasmas Wein-

stock (1969) and the turbulence and dynamo originating from the magnetorotational instability Squire

and Bhattacharjee (2015). Because of the technical challenges of deriving and solving the DSS system,

often the most straightforward implementation of DSS, termed CE2, has been performed and a complete

investigation of the system for a range of parameters was not possible. CE2 has been shown to give an

accurate description of the low-order statistics for systems with significant mean flows and fields that are

close to statistical equilibrium. However, in certain cases away from statistical equilibrium CE2 is less

accurate and fails to give a valid description Tobias and Marston (2013); higher order truncations are

needed.

In this paper we investigate the effectiveness of DSS for two model problems in dynamo theory. We

consider the simple case where the dynamics is described by the evolution of systems of ordinary dif-

ferential equations (ODEs). Though these systems are obviously simplifications of the dynamics of the

full geophysical or astrophysical dynamos, they serve as useful testbeds for evaluating methods of DSS.

The simplicity of the systems allows the development of strategies for the implementation of DSS and

of an understanding of the nature of the approximations used. The two problems we consider display

different model dynamics. In the first Wilmot-Smith et al. (2005), relevant to the solar dynamo, the initial

instability is to oscillatory dynamo action, and oscillatory magnetic fields may then be modulated aperi-

odically. The second system models the interaction of convection with dynamo action in a geodynamo

setting Chui and Moffatt (1993). Here the initial dynamo bifurcation is stationary and chaos sets in via a

global bifurcation that leads to reversals of the magnetic field reminiscent of that exhibited by the Earth.

This paper is organised as follows. In the next section the general formulation of Direct Statistical

Simulation is described. This includes the method of derivation of the relevant equations in addition to

the various methods of solution. In section 3 we introduce the low-order solar dynamo system, giving a

description of the dynamics before describing how well our DSS strategies are able to provide an accurate

description of the low-order statistics. In section 4 we perform a similar analysis of the convective

dynamo system. We conclude in the Discussion section by suggesting the implications of our results for

a programme of DSS for PDE models.

2 The cumulant representation of low-order magnetohydrodynamical sys-

tems

In this section we describe how the low-order statistics of systems of ordinary differential equations

can be accessed via DSS. The models we consider in the paper are simplified models of dynamo action

and will be described in subsequent sections. In general such low-order models are derived either via

a Galerkin truncation of the partial differential equation (PDE) system, e.g., see Holmes et al. (2012),

Passos and Lopes (2008) or via a normal form analysis, see e.g., Tobias et al. (1995).

Both of the low-order systems we consider may be represented by a set of ordinary differential
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equations with up to cubic nonlinearities; the i-th component of a cubic nonlinear system is written as

dtxi =
∑

j

Lij xj +
∑

j,k

Qijk xjxk +
∑

j,k,l

Cijkl xjxkxl + fi, (1)

where the coefficients of the cubic and quadratic nonlinear interactions are given by Cijkl and Qijk

respectively and Lij is for the linear term. Here we also include the possibility of a stochastic forcing,

fi, that is assumed to be the independent Gaussian, fi ∼ N (µi, σ
2
i ), is introduced to synthesize the

unmodelled physical processes, where µi and σ2
i are the statistical mean and variance of fi, respectively,

see e.g., Allawala and Marston (2016).

2.1 The cumulant expansion of low-order dynamical systems

For a dissipative low-order dynamical system of the form given in equation 1 in the absence of noise,

the solution often takes the form of an attractor given by a fixed point, periodic solution or chaotic

attractor. For such solutions, and in the presence of noise, this attractor can be characterised by the

calculation of a probability density function (PDF). The low-order statistics of the PDF may then be

represented by the cumulants of the distribution Kendall et al. (1987). Consider separating each state

variable via a Reynolds decomposition, that is we represent the unknown field, xi, as the sum of the

coherent component, Cxi
= 〈xi〉, and a non-coherent counterpart, δxi, so that

xi = Cxi
+ δxi, (2)

where the statistical average of the fluctuation vanishes, i,e., 〈δxi〉 = 0. We also assume that the statistical

average further satisfies of the Reynolds averaging rules, i.e.,

〈δxi〉 = 0, 〈δxiCxj
〉 = 0, and 〈xiCxj

〉 = Cxi
Cxj

. (3)

In this paper, the ensemble average is employed to derive the cumulant equations of the low-order dy-

namical systems and is noted as 〈•〉. It is then useful to define the higher cumulants measuring the shape

of the probability density function (PDF) using this averaging procedure Kendall et al. (1987). The first

three cumulants are identical to the statistical central moments and defined as

Cxi
= 〈xi〉, Cxixj

= 〈δxiδxj〉 and Cxixjxk
= 〈δxiδxjδxk〉. (4)

In this study, we explicitly use cumulant expansions up to fourth order, where the fourth cumulant is

defined as

Cxixjxkxl
= 〈δxiδxjδxkδxl〉 − Cxixj

Cxkxl
− Cxixk

Cxjxl
− Cxjxk

Cxixl
. (5)

Note that fourth and higher cumulants, unlike the second and third, are not centred moments. In particular

the fourth cumulant of a Gaussian distribution vanishes, whilst the fourth centred moment does not. For

this reason an expansion in cumulants makes better sense for distributions that are close to Gaussian than

an expansion in centred moments.

In this paper we derive the cumulant expansions of the governing dynamical equation (1) directly

from the definition of cumulants. Alternatively the cumulant equations can be obtained via the Hopf

functional approach Frisch (1995).
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Taking the ensemble average of Eq. (1), we obtain the first order cumulant equation for the coherent

component, Cxi
,

dtCxi
= dt〈xi〉 =

∑

j,k,l

Cijkl 〈xjxkxl〉+
∑

j,k

Qijk 〈xjxk〉+
∑

j

Lij 〈xj〉+ 〈fi〉,

=
∑

j,k,l

Cijkl
[

Cxj
Cxk

Cxl
+ Cxj

Cxkxl
+ Cxjxk

Cxl
+ Cxjxl

Cxk
+ Cxjxkxl

]

+
∑

j,k

Qijk

[

Cxj
Cxk

+ Cxjxk

]

+
∑

j

Lij Cxj
+ µi. (6)

The evolution of the fluctuation, δxi, that is determined by subtracting Eq. (6) from (1) is used to derive

the high order cumulant equations. By multiplying δxm by the governing equation of dtδxi, δxi with

dtδxm and taking the ensemble average, we find that the second order equation satisfies

dtCxixm =

〈

δxm
d

dt
δxi + δxi

d

dt
δxm

〉

=

{〈

δxm
d

dt
(xi − Cxi

)

〉}

=







∑

j,k,l

Cijkl
[

Cxjxkxlxm + Cxj
Cxkxlxm + CxjxkxmCxl

+ CxjxlxmCxk
+ Cxj

Cxk
Cxlxm

+Cxj
CxkxmCxl

+ CxjxmCxk
Cxl

− Cxjxk
Cxlxm − Cxjxl

Cxkxm − CxjxmCxkxl

]

+
∑

j,k

Qijk

[

Cxj
Cxkxm + CxjxmCxk

+ Cxjxkxm

]

+
∑

j

Lij Cxjxm







+ 2 〈δfiδfm〉 ,(7)

where the symbol {•} notes the symmetrization procedure by swamping the field δxi and δxm of Eq.

(7). Note that the stochastic force, fi, is assumed to be Gaussian and independent and so the stochastic

force is only self-correlated in the second order equation, e.g., 〈δf2
i 〉 = σ2

i , 〈δfjδfi〉 = 〈δfj〉〈δfi〉 = 0
and 〈δxiδfi〉 = 〈δxi〉〈δfi〉 = 0. The procedure for deriving the third order equation follows the same

fashion as for the second order Eq. (7), i.e.,

dtCxixmxn =

〈

δxmδxn
d

dt
δxi + δxnδxi

d

dt
δxm + δxiδxm

d

dt
δxn

〉

=

{〈

δxmδxn
d

dt
(xi − Cxi

)

〉}

=







∑

j,k,l

Cijkl Sc +
∑

j,k

Qijk Sq +
∑

j

Lij Cxjxmxn







, (8)

where the symmetrization procedure noted by {•} involves all permutations of δxi, δxm and δxn. The

terms, Sc that couples with the cumulants of the first five orders and Sq that couples with the first four

represent the third order cumulant expansions of the cubic and quadratic terms. The derivation of these

terms is tedious and detailed in Appendix A. The complexity of the cumulant expansions of the nonlinear

terms increases rapidly as increasing the degree of nonlinearity and the truncation order. For this reason

we have developed software to automate the derivation of the cumulant hierarchy for any ODE system

(with up to cubic nonlinearity). This Python software for deriving the cumulant equations is available in

the Supplementary material of this paper (https://github.com/Kuan-Li-Math-Geo/dss_

low-order.git). The symbolic representation of the cumulant equations are further converted into

the numerical functions for computation via lambdify in sympy. Using this approach the cumulant equa-

tions with sparse representations are solved with fewer computations than using the conventional method

via the dense matrix-vector multiplications, e.g., see Allawala and Marston (2016).
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2.2 The statistical closures of the cumulant equations

In a cumulant hierarchy, the expansion of the dynamical equation (1) leads to an infinite set of coupled

equations. Hence, a proper statistical closure must be chosen to truncate the cumulant expansion at the

lowest possible order. For Gaussian distributions the cumulant hierarchy naturally truncates at second

order; all statistics of order greater than two are zero. For this case the cumulant equations describing the

evolution of the first and second cumulant in Eq. (6) and (7) are called the CE2 system, where all higher

order terms greater than two are neglected, see e.g. Marston et al. (2019).

However it is certainly possible that the statistics of a dynamical systems is poorly represented by a

Gaussian PDF. Many distributions exhibit strong asymmetry (skewness) or long tails (flatness) as we will

see in $3 and $4. For these problems, one may have to take the third order cumulants into consideration,

setting the fourth order cumulant to zero Cxixjxkxl
= 0, Orszag (1970) i.e.,

0 = Cxixjxkxl
= 〈δxiδxjδxkδxl〉 −

(

Cxixj
Cxkxl

+ Cxixk
Cxjxl

+ Cxjxk
Cxixl

)

. (9)

Effects of the fourth order cumulants that are proportional to the rate of change (gradient) of xi Monin

et al. (1975) are further modelled by a diffusion process, −Cxixmxn/τd. The parameter, τd > 0, is

known as the eddy damping parameter Marston et al. (2019). For a cubic nonlinearity term, the third

order expansion also involves the 5-point correlations that is set to zero for simplicity. The third order

cumulant equation (8) may now be rewritten as

dtCxixmxn =







∑

j,k,l

Cijkl Sc +
∑

j,k

Qijk Sq +
∑

j

Lij Cxjxmxn







− Cxixmxn

τd
. (10)

The cumulant equations that consist of (6), (7) and (10) are known as CE3 approximation.

The CE3 equations are complicated and involve many interactions. They may be simplified slightly

by assuming that the third cumulant evolves rapidly in comparison with the first and second cumulant.

This means that Eq. (10) is further simplified to a diagnostic system by setting all time derivatives for the

third cumulants to be zero, i.e. dtCxixmxn = 0. A further simplification that leads to faster computation

involved the neglect of all terms involving the first order cumulants, Cxi
in the equations for the third

cumulant. The third order cumulants then are the solution of the diagnostic equation,

0 =







∑

j,k,l

Cijkl S′

c +
∑

j,k

Qijk S′

q +
∑

j

Lij Cxjxmxn







− Cxixmxn

τd
. (11)

This representation is then directly substituted into the cumulant equation of the second order in Eq. (7),

where S′

c and S′

q stand for the cumulant expansions, Sc and Sq, without the first order cumulants. This

truncation that couples Eqs. (6), (7) and (11) is named CE2.5 approximation Marston et al. (2019) and

Allawala et al. (2020).

We shall investigate how well the low-order statistics of the full distribution are captured by the

solutions of the cumulant hierarchy in the approximations described above for two dynamo systems.

2.3 The fixed points of the cumulant equations

The cumulant hierarchy derived symbolically comprises ODEs that can be integrated forward in time

using standard timestepping methods. This approach will determine stable solutions to the cumulant
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equations. It may also be of interest to determine the fixed points of the cumulant system. These fixed

points are the invariant solutions to the governing equations and in general are not unique. There may

indeed be many invariant solutions — particularly for the higher order truncations of the hierarchy.

Many of the time-invariant solutions of the cumulant system are either unstable as we integrate

CE2/2.5/3 equations in time or statistically non-realizable. Realizability is ensured if the second cumu-

lant satisfies the Cauchy–Schwarz inequality, C2
xi
C2
xj

≥ C2
xixj

. Hence, a fundamental problem is to

determine the number of realizable fixed points that exist in the cumulant equations, whether or not they

are stable, and how to obtain them efficiently.

In order to determine the fixed points, we utilise the misfit functional, J , to measure the temporal

variation of the cumulant equations, i.e., for CE2/2.5 and CE3 approximations, the misfit, J , is defined

as

J =
1

2





∑

i

[

d

dt
Cxi

]2

+
∑

i,j

[

d

dt
Cxixj

]2



 ,

J =
1

2





∑

i

[

d

dt
Cxi

]2

+
∑

i,j

[

d

dt
Cxixj

]2

+
∑

i,j,k

[

d

dt
Cxixjxk

]2



 , (12)

for CE2 and CE3 respectively.

For a fixed point the temporal variation of the cumulant equations vanishes and the misfit converges

to zero, i.e. J = 0. As discussed, the time stepping method is an effective scheme to find the stable fixed

points of the dynamical system. In addition to time stepping methods for minimizing J , it is of great

interest to determine the advantages and limitations of other methods for determining the time-invariant

solutions of the cumulant equations via minimization of the misfits. Such methods may include quasi-

newton methods, conjugate-gradient (CG) methods, the trust-region method Nocedal and Wright (2006)

or sequential quadratic programming (SLSQP) Kraft (1988). We have experimented with all of these

methods as discussed below for the dynamo models.

3 The low-order solar dynamo

The first model of dynamo action that we consider here is one relevant to solar and stellar dynamo action

Tobias et al. (1995); Wilmot-Smith et al. (2005). The third-order model is derived using a normal form

analysis and undergoes the same bifurcation sequence as more complicated, so-called α-ω PDE models,

see e.g. Tobias (2002). The system takes the form of a third-order model with up to cubic nonlinearity,

where the evolution equations are given by

dtx = λx− ωy + azx+ d(x3 − 3xy2) + fx

dty = λy + ωx+ azy + d(3x2y − y3) + fy

dtz = µ− z2 − (x2 + y2) + cz3 + fz, (13)

where the dimensionless functions x and y represent the toroidal and poloidal components of the mag-

netic field and z represents the velocity field. The control parameters, ω and λ stand for the basic linear

cycle frequency and growth rate of the magnetic field x and y, a and c do not have physical interpretation

but are used to remove the degeneracy of the secondary Hopf bifurcation Wilmot-Smith et al. (2005) that
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leads to modulation of the basic cycle. The stochastic forces, fx, fy and fz are introduced to represent

unmodelled physical processes.

We begin by deriving the cumulant equations for this system using the symbolic software. Substi-

tuting the governing dynamical equation, Eq. (13), into the cumulant expansions in Eq. (6), (7) and

(8), we obtain the low-order statistical approximations of the solar dynamo system, where the first order

equations read

dtCx = d(C3
x + 3CxCxx − 3CxC

2
y − 3CxCyy + Cxxx − 6CxyCy − 3Cxyy)

+ a(CxCz + Cxz) + λCx − ωCy + µx,

dtCy = d(3C2
xCy + 6CxCxy + 3CxxCy + 3Cxxy − C3

y − 3CyCyy − Cyyy)

+ a(CyCz + Cyz) + λCy + ωCx + µy,

dtCz = c(C3
z + Czzz + 3CzCzz)− C2

x − Cxx − C2
y − Cyy − C2

z − Czz + µz. (14)

The term, µx,y,z , is the statistical mean of the stochastic force, fx,y,z . The second and third order equa-

tions have a complicated form and are detailed in Eqs. (23) and (24) in Appendix B. The cumulant

equations are further truncated according to CE2/2.5/3 truncation rules, respectively.

Following Wilmot-Smith et al. (2005), we define a control parameter Ω and set µ =
√
Ω and λ =

1

4

{

[ln(Ω) + 1/3] e−Ω/100
}

. We also set the other parameters, a = 3, c = −d = −0.4 and ω = 10.25,

as in Wilmot-Smith et al. (2005).

We choose two dynamical regimes of this system for comparison of the direct solution of the equa-

tions and DSS. In the first where Ω = 1.8, the dynamical system in the absence of noise yields a quasi-

periodic solution where the basic dynamo cycle is modulated on a longer timescale via interaction of the

magnetic field with the velocity (z). For the second choice Ω = 20, the system settles into a chaotic

state (in the absence of noise). Here the chaos arises through the dynamical break down of a two-torus

as discussed in Tobias et al. (1995). We shall discuss how well DSS (via solution of equations (14), (23)

and (24)) performs for these two cases below.

3.1 The low-order solar dynamo model in the quasiperiodic state

For Ω = 1.8 we integrate the dynamical system, Eq. (13) (with the stochastic terms zero), forward in

time from random initial conditions and find that the solution of the system always settles in the same

quasiperiodic orbit shown in Fig. (1). The solution takes the form of a two-torus where the amplitude

of the periodic oscillation of the magnetic field is modulated but the velocity field remains periodic, see

Fig. (1 b& c). The probability distributions, P (x), P (y) and P (z), that are shown in Fig. (1d–f), have

two peaks, which results from the periodic oscillation of the dynamo system, where the green histograms

stand for probability distributions, P (x), P (y) and P (z), and the dashed red curves are for the Gaussian

distribution with the same mean and variance for comparison purposes. The PDF of the velocity field is

asymmetric, which indicates the importance of the third order cumulant for P (z).
The dynamics of the deterministic dynamo system can be modifies by switching on the stochastic

force, fx,y,z . Illustrated in Fig. (2) is the trajectory, time series and the PDFs of the dynamo system for

Ω = 1.8 and fx,y,z ∼ N (0, 5), where in (2d–f) the green histograms are the probability distributions,

P (x), P (y) and P (z), and the dashed red curves are for the Gaussian distribution with the same mean

and variance as for P (x), P (y) and P (z), respectively. This exceptionally strong stochastic term has

significantly changed the dynamics of the dynamo system, i.e., the solution of the magnetic and velocity

field oscillate randomly about a single attractor and the PDFs of x, y and z, shown in Fig. (3), are more
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Figure 1: Illustration of the trajectory, time series for a small and large time window and the probability

distributions of the solar dynamo system in the quasiperiodic state for Ω = 1.8 and fx,y,z = 0, where

in (d)–(f), the green histograms are the probability distributions, P (x), P (y) and P (z), and the dashed

red curves are Gaussian distributions with the same mean and variance as for P (x), P (y) and P (z),
respectively.
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Figure 2: Illustration of the trajectory, time series for small and large time window and the probability

distributions of the solar dynamo system in the quasiperiodic state for Ω = 1.8 with stochastic forcing,

fx,y,z ∼ N (0, 5), where the green histograms are the probability distributions, P (x), P (y) and P (z),
and the dashed red curves are for the Gaussian distribution with the same mean and variance as for P (x),
P (y) and P (z), respectively.

similar to a Gaussian distribution than the deterministic system. Here the stochastic term completely

dominates the nonlinear dynamics.

3.2 Direct statistical simulation of the solar dynamo in the quasiperiodic states

Initially, we integrate the cumulant equation, starting from the random initial conditions, forwards in

time to obtain the statistical equilibrium of the solar dynamo system for Ω = 1.8 without and with the

stochastic force, fx,y,z . The results are summarised, and compared with the statistics accumulated from

DNS, in Table (1). In the absence of noise, we observe that the dynamics of the dynamo system in this

parameter regime can be accurately described by the CE3 approximation for a range of τd.The solution of

cumulant equations always converges the unique statistical equilibrium. In the absence of noise however

CE2 does not converge.

When stochastic driving is also included, DSS becomes even more effective. As the amplitude of the

stochastic force is increased, e.g., see Fig (1) and (2), the PDFs of the magnetic and velocity field become

more Gaussian. For σ2
x,y,z ≃ 1 the low-order statistics can be captured by both CE3 and CE2. The CE2

system has now become numerically stable — but the solution remains oscillatory. Fig., (4) shows this

behaviour for the solution of CE2 system for fx,y,z ∼ N (0, 1), where the solid curves are the solution

of CE2 and the dashed straight lines are for the statistics obtained via the ensemble average of DNS
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Figure 3: The illustrations of the PDFs, P (x), P (y) and P (z), of the dynamo system in the presence of

the stochastic forcing, fx,y,z ∼ N (0, 1) in green and N (0, 5) in blue for Ω = 1.8, where for each plot,

the Gaussian distribution shown in red curve has the same mean and variance as for the blue curve.

solution. With increasing σ2
x,y,z the solution of CE2 becomes as accurate as the CE3 approximation.

The eddy damping parameter, τd > 0, must be introduced to stabilise the numerical integrations of CE3

system, where the accurate solutions are obtained for τd within the range, O(10−2) to O(10−1). We note

that some cumulants are more accurately represented than others by the CE2 and CE3 approximations;

the second order cumulant, Czz , is the least accurately modelled by the CE2/3 approximations with

maximum error about 50%. For stronger stochastic force however, which brings the PDF of z closer to

Gaussian, this error is significantly reduced.

The CE2.5 approximation is found numerically stable for all test cases for the eddy damping param-

eter, τd, in the range from O(10−2) to O(10−1). This approximation assumes that the terms involving

the first order cumulants, Cxi
, are statistically insignificant in the governing equation of the third order

for Cxixmxn and are neglected in the numerical computation. The solution of the CE2.5 approximation

is found to be as accurate as CE3 for the case of no noise (fx,y,z = 0) but becomes progressively less

accurate as σ2
x,y,z is increased, e.g, see Table (1) for the test case of σ2

x,y,z = 20. This is understandable

as adding noise in this system increases the value of the first cumulant Cz . As CE2.5 neglects any inter-

actions with the first cumulant to determine the third cumulant, it is to be expected that the approximation

becomes less accurate as the influence of this cumulant grows.

3.3 The fixed points of the cumulant hierarchy for solar dynamo in the quasiperiodic

states

Although timestepping allows the access of the stable solutions of the cumulant equations, other fixed

points are possible solutions as discussed earlier. Here we assess the effectiveness of various methods

for accessing these fixed points.

We first study gradient based optimization methods for computing the fixed point of the CE2 approx-

imations, in the presence of noise. For σ2
x,y,z = 5, the dynamical system can be accurately approximated

by timestepping the CE2 equations and the optimal solution of Eq. (12) is the global minimal of J .

Shown in Fig. (5) is the convergence to the optimal solution for the cumulants of the CE2 approximation

of the dynamo system in the quasiperiodic state for Ω = 1.8 and fx,y,z ∼ N (0, 5) via the CG method,

where J is normalized by its value at the first iteration. The initial guess is randomly chosen and satis-

fies the statistical realisibility criteria. The optimal solution of the CE2 system always converges to the

9



fx,y,z τ−1

d Cx Cy Cz Cxx Cxy Cxz Cyy Cyz Czz

DNS 0 0 0 −0.076 0.59 0.001 0 0.56 0 0.24

CE2.5 20 0 0 −0.071 0.59 0 0 0.59 0 0.18

CE3 10 0 0 −0.078 0.58 0 0 0.58 0 0.20

CE3 20 0 0 −0.070 0.59 0 0 0.59 0 0.18

CE3 50 0 0 −0.070 0.60 0 0 0.60 0 0.16

DNS N (0, 2) 0 0 −1.41 0.53 0 0 0.52 0 1.03

CE2 0 0 −1.14 0.62 0 0 0.62 0 1.62

CE2.5 20 −0.07 −0.01 −0.92 0.46 0.02 −0.11 0.63 0.22 1.14

CE3 20 0 0 −1.40 0.64 0 0 0.64 0 1.49

CE3 50 0 0 −1.26 0.64 0 0 0.64 0 1.54

DNS N (0, 5) 0 0 −1.79 0.87 −0.03 0 0.83 0 1.37

CE2 0 0 −1.54 1.13 0 0 1.13 0 2.13

CE2.5 10 −0.15 0.05 −1.53 0.61 0.74 −0.08 0.97 0.60 0.97

CE2.5 50 −0.15 0.04 −1.26 0.53 0.07 −0.19 0.93 0.53 1.58

CE3 50 0 0 −1.69 1.16 0 0 1.16 0 2.05

DNS N (0, 20) 0 0 −2.31 2.18 −0.25 −0.01 2.25 0.01 2.44

CE2 0 0 −2.16 3.20 0 0 3.20 0 3.59

CE2.5 20 −0.25 0.26 −1.94 1.10 0.30 0.29 2.42 1.70 1.76

CE3 50 0 0 −2.35 3.30 0 0 3.30 0 3.70

Table 1: The low order statistics of the solar dynamo system in the quasiperiodic state for Ω = 1.8 with

different stochastic forcing, fx,y,z .

unique stable fixed point that is found by the time stepping method. The misfit, J , converges to zero

exponentially. For O(50) iterations, the misfit reduces by a factor of 109. For this case the quasi-newton

method performs similarly as CG in terms of the accuracy and the convergence rate. We note that the

time stepping method also converges to the stable solution of CE2 system exponentially but with a slower

rate, i.e., the misfit reduces by a factor of 109 within O(103) time steps, where the optimal time step,

dt = 10−2, is used for the numerical integration. We note that calculating the ”downhill” direction for

minimizing the misfit, J , that is directly computed via the symbolic differentiation is computationally

twice to three times as expensive as for evolving the cumulant equation one time step forward. How-

ever, for this problem, the minimization method is approximately 10 times faster than the time stepping

method to obtain the convergence, J < 10−9, where J is normalised to one at the first iteration/time

step.

We find that it is very difficult to find the stable fixed point for CE3 approximations via the gradient

based method. By taking the third order cumulant into the consideration, the misfit, J , is no longer

convex. The optimization either converges slowly to unstable or non-realizable fixed points or is trapped

by the local minima that are introduced by the third order cumulants.

As an example, we use CG to continue the stable fixed point of the dynamo system from Ω = 1.8
(found by timestepping) to Ω = 1.81 with ∆Ω = 0.01, for the same stochastic force level (fx,y,z ∼
N (0, 5)). The results are in Fig. (6) which shows the path of the low-order cumulant, Cz and Czz , as J
converges to zero and the convergence of J as the number of iterations, where the green and purple dots

in Figs. (6a & b) represent the initial guess and terminal solution of the optimization and the red dots
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Figure 4: Solution of CE2 approximation of the solar dynamo in the quasiperiodic state for Ω = 1.8
and fx,y,z ∼ N (0, 1), where the solution of CE2 is shown in solid curves and the statistics via DNS are

plotted in dashed solid lines.

are for the true solution found by timestepping. Disappointingly, the optimal solution converges to an

unstable fixed point of CE3 system. Similar performance is observed for different Ω and ∆Ω with and

without the stochastic force, fx,y,z , even for ∆Ω = 10−3.

The stable, time-invariant solution of the CE3 approximation of the quasiperiodic dynamo system

can always be obtained by the time stepping method. An interesting calculation is to determine the path

of approach to a fixed point using a nearby solution as an initial guess. Shown in Fig. (7) are the path of

the low-order cumulants, Cz and Czz , as J approaches to zero and the convergence of J as the number

of time steps for the CE3 approximation of the dynamo system. Here the initial state is that calculated at

Ω = 1.8 and we show 3 different cases with ∆Ω = 0.5, 1 and 2, where J is normalized by its value at

the first time step. For the case with stochastic forcing, the convergence of J is accelerated from that for

the dynamo system in the absence of the stochastic force. Interestingly, the path of the cumulant, e.g., Cz

and Czz , demonstrates a strong self-similarity as we evolve the CE3 equations in time to reduce J for

different ∆Ω. The form of the approach to the fixed point suggests that taking reasonably large values

of ∆Ω is the best strategy for continuation of solutions. For the cumulant system with non-negligible

third order cumulant for fx,y,z = 0, the misfit, J , is never found convex as the solution of the cumulant

equations converges to the stable fixed point. The same observations have been made for all other test

cases. We speculate that this is the reason why the minimization method fails to optimize the CE3 system.

3.4 Solar dynamo in the chaotic state

Having investigated the utility of DSS for relatively simple attractors, we move on to a case where

the solar dynamo model yields a chaotic attractor. This is achieved by further increasing the control

parameter Ω. Fig (8) illustrates the typical trajectory, time series and PDFs of the dynamo system in

the chaotic state for Ω = 20 in the absence of stochastic terms, fx,y,z = 0. Here the PDFs of x, y
and z that are shown as green histograms that are obtained via the direct numerical simulation and the

Gaussian distributions with the same mean and variance are shown in dashed red curves for comparison.

The PDFs of the magnetic field, x and y, are symmetric and narrowly distributed in the region near zero;
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Figure 5: The stable fixed point is found by minimizing J via the CG method for the CE2 approximation

of the solar dynamo for Ω = 1.8 and fx,y,z ∼ (0, 5), where (a) and (b) show the path of the cumulants,

Cz and Czz , as the solution converges to J = 0 and (c) illustrates the convergence of J as a function of

the number of iterations, n. The initial guess and the terminal solution of the minimization are shown as

green and red dots in (a) and (b). The optimal solution converges to the stable time-invariant solution of

CE2 via the time stepping method.
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Figure 6: Illustration of the path of the low-order cumulant, Cz and Czz , as J converges to zero in (a)

and (b) and the convergence of J as the number of iterations in (c), where, in (a) & (b), the red and

purple dots give the initial guess and terminal solution of the optimization and the red dots are the true

solution.

and have stronger tails than the Gaussian of the same height. The PDF of the velocity field, z, is strongly

asymmetric, which indicates the importance of the third order cumulant of P (z). Addition of stochastic

terms, fx,y,z , increase the randomness of the dynamo action but also acts to regularize the PDFs of x, y
and z to be closer to Gaussian, e.g., see Fig. (9) for Ω = 20 and fx,y,z ∼ N (0, 20). Note this is very

strong stochastic driving.

3.5 Direct statistical simulation of the solar dynamo in the chaotic states

As for the test cases in the quasiperiodic state, the solar dynamo in the chaotic states is accurately

approximated by CE3 equations for all test cases (i.e. those both with and without noise), where the

eddy damping parameter, τd, must be introduced to stabilize the numerical simulation. The most accurate

solutions occur for τd within the range from O(10−2) to O(10−1). CE2 however does not converge in

the absence of noise.

With the addition of noise, when the PDFs of x, y and z are more Gaussian for σ2
x,y,z > 1, the CE2

equations become stable and accurately represent the statistics of the dynamo action. Detailed results are

found in Table (2).

We also observe that the second order cumulant, Czz , is least accurately modelled by the CE2/3

approximations with maximum error over 50% for fx,y,z = 0. By increasing the randomness of the
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Figure 7: The migration of the stable and time-invariant solution from Ω = 1.8 to 1.8 + ∆Ω for the

dynamo system for fx,y,z ∼ N (0, 5) and fx,y,z = 0 via the time stepping method, where (a)-(b) &

(d)-(e) show the path of the low-order statistics, Cz and Czz as the misfit, J , tends to zero and (c) & (f)

are the illustrations of the exponential convergence of the misfit as the number of iterations.

stochastic force, the PDF of z becomes more Gaussian and the error of Czz is significantly reduced.

Again the CE2.5 approximation is found numerically stable for all test cases with the eddy damping

parameter, τd, within the range from O(10−2) to O(10−1). When σ2
x,y,z becomes large, the terms that

involves the first order cumulants, Cxi
, are no longer negligible in the third order equations and hence in

this limit the CE2.5 approximation becomes less accurate.

3.6 The fixed points of the solar dynamo in the chaotic state

The gradient based methods have demonstrated a great efficiency and accuracy for computing the sta-

ble fixed point for CE2 approximation as compared with those obtained via the time stepping method.

Fig. (10) illustrate the typical example for computing the fixed point for the solar dynamo in the chaotic

state for Ω = 30 and fx,y,z ∼ N (0, 20) via the CG and time stepping method, where the initial condi-

tion/guess that are shown in green dots in Fig. (10 a, b) are taken from the stable fixed point of Ω = 20
and the terminal solution shown in red dots agrees perfectly with the time stepping method. For both

methods, the misfit, J , converges to zero exponentially, however the CG method is approximately 10 to

102 times faster than the time stepping method to achieve the same numerical accuracy.

As before, for the CE3 approximations the solution of the gradient based optimization method either

converges to other (unstable) fixed point or gets stuck in a local minimum. Fig. (11) shows the com-

parison of CG method and time stepping method for computing the fixed point of CE3 equations of the

dynamo system in the chaotic state for Ω = 21 and fx,y,z = 0, where the initial condition (shown as
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Figure 8: The plots of the trajectory, time series and the PDFs of the solar dynamo in the chaotic state

for Ω = 20 without the stochastic force, i.e., fx,y,z = 0, where the statistics obtained via the ensemble

average of DNS are shown in green histogram and the Gaussian distribution with the same mean and

variance are in dashed red.
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Figure 9: The plots of the trajectory, time series and the PDFs of the solar dynamo in the chaotic state

for Ω = 20 and fx,y,z ∼ N (0, 20).

the green dots in Fig. (11a & b)), are taken from the stable fixed point for Ω = 20. Here the stable

fixed point obtained by the time stepping method is shown as red dots and purple dots show the terminal

solution for the CG method. In this case, after a few iterations, the solution of CG is trapped by the local

minima, while the time stepping method successfully finds the stable fixed points.

Hence, for CE3, the stable fixed point can be accurately computed by the time stepping method. Fig.

(12) illustrates the fixed points of the CE3 equations of the dynamo system found by the time stepping

method for Ω = 21, 25 and 30 with and without the stochastic force, where the initial condition is taken

from the fixed point of Ω = 20. The convergence rate of J is exponential for all cases. The effect of

noise is to increase the convergence rate of the timestepping method over that for the case with no noise.

4 The self-excited disc dynamo

We now turn our attention to a low-order model that has very different dynamics. This model was

proposed by Chui and Moffatt (1993) to study the chaotic nature of the self-excited dynamo system

and replicate some of the dynamics of the geodynamo with irregular reversals on a long timescale.

The dynamo system comprises two mutually induced Faraday (Bullard) disks that are powered by the

thermally driven convecting flow. The governing equation set is defined as

(dt + αη)x = αωyz,

(dt + η) y = ωxz,

(dt + κ) z = κ(u− xy),

(dt + 1)u = ξz − vz,

(dt + 1) v = uz. (15)
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F τ−1

d Cx Cy Cz Cxx Cxy Cxz Cyy Cyz Czz

DNS 0 0 0 −0.25 1.92 0.11 0 1.76 0 1.72

CE2.5 20 0 0 −0.20 2.02 0 0 2.02 0 0.58

CE3 15 0 0 −0.19 2.01 0 0 2.01 0 0.60

CE3 50 0 0 −0.20 2.02 0 0 2.04 0 0.49

DNS N (0, 5) 0 0 −1.10 2.30 −0.30 −0.01 2.14 0 1.79

CE2 0 0 −1.00 2.17 0 0 2.17 0 2.40

CE2.5 50 0.17 0.04 −0.63 1.73 0.04 −0.25 2.16 0.57 1.67

CE3 50 0 0 −1.13 2.24 0 0 2.24 0 2.23

DNS N (0, 20) 0 0 −1.85 3.02 −0.63 −0.02 3.31 0.03 2.76

CE2 0 0 −1.83 4.15 0 0 4.15 0 3.93

CE2.5 10 −0.34 0.32 −1.21 2.11 0.18 0.43 3.70 1.92 2.28

CE2.5 50 −0.44 0.16 −1.27 2.01 0.22 −0.20 3.44 1.95 2.68

CE3 50 0 0 −2.07 4.20 0 0 4.20 0 3.88

CE3 100 0 0 −1.95 4.18 0 0 4.18 0 3.85

CE3 500 0 0 −1.86 4.16 0 0 4.16 0 3.91

Table 2: The low-order statistics of the solar dynamo system in the chaotic state for Ω = 20 with different

stochastic force, fx,y,z .

Here the dimensionless functions, x and y represents the magnetic field, z is the velocity field and u and

v represent the temperature field. The set of control parameters is given by α, the magnetic inductance,

ω, a geometric factors, whilst κ and η measure the diffusivity of the temperature and magnetic field and

ξ measures the thermal driving. In the absence of magnetic field (for x = y = 0), the low-order disc

dynamo system is identical to the Lorenz63 system Lorenz (1963). The magnetic field can itself display

extremely complicated dynamics — including reversals. For this section, we omit the stochastic driving.

As in the previous section, we shall use the cumulant equations to study the long-term evolution of

the statistics of the disc dynamo and compare these with those obtained from DNS. We use the symbolic

package to derive the cumulant expansions of the governing dynamics defined in Eqs. (15) up to the third

order. The first order cumulant equations read as follows,

(dt + αη)Cx = αω(CyCz + Cyz),

(dt + η)Cy = ω(CxCz + Cxz),

(dt + κ)Cz = κ(Cu − CxCy − Cxy),

(dt + 1)Cu = −CvCz − Czv + ξCz,

(dt + 1)Cv = CuCz + Czu. (16)

The second order expansion consists of fifteen equations and are listed in Appendix C. The cumulant

equations may then be further truncated according to CE2/2.5/3 truncation rules, respectively.

We focus our studies on the chaotic state of the dynamo system, i.e., ξ > 40, where the other control

parameters remain the same as those in Chui and Moffatt (1993), i.e., ω = κ = 1 and η = 4. We vary

the magnetic inductance, α, to control the dynamo process. For α > 1, the magnetic field oscillates

chaotically but with an unique polarity (y > 0) for all time; reducing the inductance to 0 < α < 1, the

magnetic field reverses directions aperiodically.
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Figure 10: Illustration of the migration of Cz and Czz from Ω = 20 to 30 via the time stepping and CG

method for CE2 equations, where shown in (a) & (b) are the path of the low-order statistics as J tends to

zero and (c) illustrates the exponential convergence of J as the number of time steps/iterations, where the

stochastic force is fx,y,z ∼ N (0, 20). The green dots in (a) and (b) stand for the initial condition/guess

for the time stepping and CG method and the terminal solutions of CG shown in red dots that agrees

perfectly with the time-invariant solution that obtained via the time stepping method.

Illustrated in Fig. (13) is a typical solution of the self-excited disc dynamo system in the chaotic state

with the unique magnetic polarity. Here α = 1.5 and the thermal force is chosen to be ξ = 100. The

trajectory of the thermal convection in the subspace z − u − v is almost identical to a typical solution

of the Lorenz63 system in the chaotic state (Fig. 13b) and the magnetic field follows a similar patterns

(Fig. 13a). The time series shown in Fig. (13c & d) appear to be similar to Lorenz63 in the chaotic state

Li et al. (2021); The system consists of two sets of strange attractors.

The PDFs of the magnetic field, y, and the temperature field, v are bimodal. In Fig. (13e-i), the red

curves represent the Gaussian distribution with the same mean and variance as those obtained in DNS in

green histograms. The dynamo system behaves similarly for 0 < α < 1, except for the magnetic field,

y, that changes sign irregularly in time, see Fig, (14) for details.

4.1 Direct statistical simulation of the disc dynamo in the chaotic state

We timestep the CE2.5/3 equations for the disc dynamo system to obtain the stable time-invariant solu-

tions for different thermal forcings, ξ, and magnetic inductance, α. For all the test cases, we find that

both the CE2.5 and CE3 approximations converge in time. For both approximations, the eddy damping

parameter, τd, must be applied to stabilize the numerical computation, where the most accurate solution

occurs for τd in the range of O(10−2) to O(10−1) (see Table 3). In the absence of noise, we find that

the CE2 approximation is instantaneously unstable as we forward evolve CE2 equations in time for all

τd (as for the solar dynamo case).

In this system the dynamics is such that the induced magnetic field is highly sensitive to the value

of the second order cumulants, Cxz and Cyz . Owing to the truncation of the cumulant hierarchy for the

non-Gaussian distribution, it is therefore the mean of the magnetic field that is sensitive to Cxz and Cyz

that is least accurately approximated by CE2.5/3; Cy is over estimated by 15 to 20 percent for ξ = 100
and α = 1.5. However, increase of the thermal force, ξ, leads to a significant reduction of this error. For

ξ = 150 and α = 1.5, all components of the mean trajectory of the magnetic, velocity and temperature

field are accurately approximated with the maximum error about 5%. Listed in Table (3) are the first

order cumulants of the disc dynamo for different thermal forcing, ξ and magnetic inductance, α. Note
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Figure 11: The migration of Cz and Czz from Ω = 20 to 21 via the time stepping and CG method for CE3

equations in (a) & (b) and the convergence of J as the number of time steps/iterations in (c), where the

stochastic force is zero, i.e., fx,y,z = 0, the green dots in (a) and (b) stand for the initial condition/guess

for the time stepping/CG method, the red dots are for the time invariant solution found by time stepping

method and the purple ones are for the terminal solution of CG.

that because of the symmetry in the magnetic field — under the transformation x → −x and y → −y, the

solution of the velocity and temperature field remains invariant — it is convenient to report the absolute

value, ‖Cx‖ and ‖Cy‖ in Table (3).

The second order cumulants are plotted in Fig. (15), where the index (i, j) are the collective index of

(xi, xj) for i ≤ j, e.g., the 1st point in Fig. (15a & b) represents the term, Cxx, and the 10th element is

for Cuu. CE2.5 and CE3 provides good estimates of the second cumulants, though we note that the two

variances, Cuu and Cvv, that are approximately 5 to 10 percent overestimated, are the most inaccurate

terms among all second order terms.

4.2 The fixed points of the disc dynamo in the chaotic state

We use the gradient based method to compute the fixed points of the CE2.5 approximation of the disc

dynamo system. However, rather than finding the stable fixed points located by timestepping, we find

that the gradient based optimization always converges to another (unstable) fixed point of the CE2.5

solution. Shown in Fig. (16) is a typical solution of the CG method as compared with the solution via

the time stepping method for the CE2.5 approximation of the disc dynamo. Here the thermal forcing is

ξ = 100 and α = 1.5. In this test case, we attempt to compute the stable fixed point of the dynamo

system for ξ = 101 and α = 1.5. The initial condition/guess are taken from the stable fixed point of the

system for ξ = 100 and α = 1.5 that are shown in green dots in Fig. (16a & b). The solution for ξ = 100
is then calculated two ways; the stable fixed points computed by the time stepping method is shown as

a red dot whilst the solution found by the CG method is shown as a purple dot. It is clear that the CG

method is locating an unstable fixed point. Moreover, the convergence rate of CG is much slower than

the time stepping method. For CE3 approximations, we always observe that after a few iterations, the

CG method converges to a local minima of J and fails to optimize the CE3 equations.

Using the time stepping method, we always find the stable fixed point of the disc dynamo system,

e.g., see Fig. (17) for the illustration of the path of the low-order statistics as the misfit, J , converges

to zero for the disc dynamo from ξ = 100 to ξ = 101, 110 and 150 for α = 1.5 and α = 0.3. The

convergence rate is always exponential.

We note here that other minimization methods, such as SLSQP or trust-region, have some limited
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Figure 12: Illustration of the fixed points of the CE3 approximation of the solar dynamo system for

different Ω found by the time stepping method, where (a) & (b) and (d) & (e) show the path of Cz and

Czz as J tends to zero for fx,y,z = 0 and fx,y,z ∼ N (0, 5), respectively and (c) and (f) show the

exponential convergence of J as the number of iterations.

power for computing the stable fixed point of the cumulant equations. Shown in Fig. (18) is the optimal

solution found by SLSQP method for the disc dynamo in the chaotic state for ξ = 101 and α = 1.5,

where the initial guess for the optimization is taken from the stable fixed point of the dynamical system

for ξ = 100 and α = 1.5. The first order cumulant, Cy, obtained by SLSQP method is only 0.3% less

than the true value obtained via the time stepping method. But for Cvv, the error increases to 1%. The

misfit, J , saturates at the level of O(10−4).

5 Conclusion

In this paper, we have implemented direct statistical simulation (DSS) of two simple models of dynamo

action that yield a range of dynamical behaviour from periodic or quasiperiodic behaviour to complicated

chaotic dynamics. The first low-order ODE model of the solar dynamo has cubic nonlinearities and

modulation of the basic dynamo cycle occurs on a long timescale determined by interaction with the

velocity. The second model involves the dynamics of a disc dynamo driven by a convective loop; here

the complicated dynamics is reminiscent of that of the Lorenz63 system and involves aperiodic reversals

either of the convective motion or the dynamo-generated magnetic field. We also consider the case where

stochastic driving can be added to the deterministic dynamics of the first of these models.

In the absence of a stochastic force, the probability distributions of both dynamo systems in all dy-

namical states are strongly non-Gaussian, which is expected to cause problems for variants of direct

statistical simulation that are severely truncated. We find that even for these highly non-Gaussian dis-
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Figure 13: Illustration of the self-excited disc dynamo system in the chaotic state with the unique mag-

netic polarization for α = 1.5 and ξ = 100. The projections of the trajectory in x− y− z and z − u− v
subspace are shown in (a) and (b), the time series of the magnetic induction and the thermal convection

are in (c)-(d) and the PDFs obtained via the ensemble average of DNS of the dynamo system are plotted

in (e)-(i), where the red curves stand for the Gaussian distribution with the same mean and variance as

those obtained in DNS in green histograms.

tributions DSS is accurate if the cumulant equations are truncated at third order. Both CE2.5 and CE3

approximation are found numerically stable and accurately computes the long-term evolution of both

systems, where the most accurate solutions are obtained for the eddy damping parameter, τd, in the range

from 10−2 to 10−1. As expected the first cumulants are more accurately computed by the truncation than

the second cumulants, which may exhibit 20% relative error due to the strong asymmetry of the PDFs.

We find that the accuracy of the solution of the cumulant equations increases as increasing the chaoticity

of the dynamo system.

In the presence of stochastic terms the PDF for the solar dynamo system is regularised and closer to

Gaussian. For σ2
x,y,z > 1, the solar dynamo model is closer to Gaussian and may be accurately solved by

the CE2 approximation — the most severe truncation of DSS. All of the above conclusions are obtained

by timestepping forward the cumulant hierarchy equations to find stable fixed points for DSS.

We have also attempted to find directly the fixed points (both stable and unstable) of the cumulant

hierarchy systems. We find that, when the CE2 approximation is applicable, gradient based optimiza-

tion works much more efficiently than a timestepping method to locate the stable fixed point; here the

solution is as accurate as that obtained via the time stepping method. However increasing the order of

the cumulant hierarchy introduces the possibility of many unstable fixed points — this is true both for

CE2.5 and CE3. We find that for the CE2.5 approximation, the gradient based method converges to a

fixed point that is either statistically unrealizable or unstable. The convergence is also slower than that

for the timestepping method. Interestingly for CE3 the gradient method never succeeds in converging to

a fixed point. We find that other optimization methods, such as SLSQP, may also converge to the correct

fixed point, but with larger numerical error than the time stepping method.

We conclude by commenting on the consequences of our findings for DSS of more complicated
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Figure 14: Illustration of the self-excited disc dynamo system in the chaotic state with the magnetic

reversal for α = 0.3 and ξ = 100. The projections of the trajectory in x − y − z and z − u − v
subspace are shown in (a) and (b), the time series of the magnetic induction and thermal convection are

in (c)-(d) and the PDFs obtained via the ensemble average of DNS of the dynamo system are plotted in

(e)-(i), where the red curves stand for the Gaussian distribution with the same mean and variance as those

obtained in DNS in green histograms.

models involving systems of PDEs that lead to turbulent dynamo action (e.g. Squire and Bhattachar-

jee (2015)). The problems we have looked at in this paper, although described by a system of low-order

ODES, are extremely nonlinear and the PDFs associated with the attractors are far from Gaussian. More-

over in some of the cases they have zero or very small first cumulants. For all these reasons one expects

that DSS based on low order cumulant truncations should perform poorly. Nonetheless we have de-

termined that sufficiently high-order DSS is able to predict the values of the low-order cumulants. We

believe that turbulent systems in general will be less nonlinear and more stochastic than these low-order

models; it is therefore to be hoped that cumulant hierarchies based on perturbations away from CE2

will give an accurate descriptions. In that case, our results show that either timestepping or CG meth-

ods should be an efficient method for determining the stable fixed points and continuing solutions in

parameter space. .
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A The cumulant expansion of the quadratic and cubic nonlinear terms

In this section, we derive the cumulant expansions of the cubic and quadratic nonlinear terms, xjxkxl
and xjxk. The first order cumulant expansion of xjxkxl is defined as the statistical average, 〈xjxkxl〉,
i.e.,

〈xjxkxl〉 =
〈

(Cxj
+ δxj)(Cxk

+ δxk)(Cxl
+ δxl)

〉

= Cxj
Cxk

Cxl
+ Cxj

Cxkxl
+ Cxjxk

Cxl
+ Cxjxl

Cxk
+ Cxjxkxl

. (17)

Following the definition of the higher order cumulant, the second and the third order cumulant expansions

are found to satisfy the following equation,

〈δxm[xjxkxl − 〈xjxkxl〉]〉 = Cxjxkxlxm + Cxj
Cxkxlxm + CxjxkxmCxl

+ CxjxlxmCxk

+ Cxj
Cxk

Cxlxm + Cxj
CxkxmCxl

+ CxjxmCxk
Cxl

− Cxjxk
Cxlxm − Cxjxl

Cxkxm − CxjxmCxkxl
(18)
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and

〈δxmδxn[xjxkxl − 〈xjxkxl〉]〉 = Cxj
Cxk

Cxlxmxn + Cxj
CxkxmxnCxl

+ CxjxmxnCxk
Cxl

− Cxj
Cxkxl

Cxmxn − Cxjxk
Cxl

Cxmxn − Cxjxl
Cxk

Cxmxn − Cxjxkxl
Cxmxn

+ Cxj
(−Cxkxl

Cxmxn + Cxkxlxmxn − CxkxmCxlxn − CxkxnCxlxm)

+ Cxk
(−Cxjxl

Cxmxn + Cxjxlxmxn − CxjxmCxlxn − CxjxnCxlxm)

+ Cxl
(−Cxjxk

Cxmxn + Cxjxkxmxn − CxjxmCxkxn − CxjxnCxkxm)

+ 〈δxjδxkδxlδxmδxn〉, (19)

where xm and xn are the arbitrary components of the low-order solar dynamo system and the last term

in Eq. (19) is the 5-point correlation and is set to zero in our study.

Similarly, the expressions of the first, second and third order cumulant expansion of the quadratic

nonlinear term, xjxk, are determined as follows,

〈xjxk〉 =
〈

(Cxj
+ δxj)(Cxk

+ δxk)
〉

= Cxj
Cxk

+ Cxjxk
, (20)

〈δxm[xjxk − 〈xjxk〉]〉 = Cxj
Cxkxm + CxjxmCxk

+ Cxjxkxm (21)

and

〈δxmδxn[xjxk − 〈xjxk〉]〉 = Cxjxkxmxn + Cxj
Cxkxmxn + CxjxmxnCxk

− 2Cxjxk
Cxmxn − CxjxmCxkxn − CxjxnCxkxm , (22)

where xm and xn are the arbitrary components of the low-order dynamical system.

B The cumulant expansion of the solar dynamo up to the third order

Following the definition of the second order cumulant, we obtain six second order equations for the disc
dynamo system, i.e.,

dtCxx = 6d(C
2

xCxx + CxCxxx − 2CxCxyCy − CxCxyy + C
2

xx − CxxC
2

y − 2CxxyCy − CxxCyy − 2C
2

xy),

+ 2a(CxCxz + CxxCz + Cxxz) + 2λCxx − 2ωCxy,

dtCxy = 3d(2C
2

xCxy + 2CxCxxCy + 3CxCxxy − 2CxCyCyy − CxCyyy + 4CxxCxy + CxxxCy − 2CxyC
2

y − 4CxyCyy − 3CxyyCy),

+ a(CxCyz + 2CxyCz + 2Cxyz + CxzCy) + ωCxx + 2λCxy − ωCyy

dtCyy = 6d(C
2

xCyy + 2CxCxyCy + 2CxCxyy + Cxxy ∗ Cy − C
2

yCyy − CyCyyy − C
2

yy + CxxCyy + 2C
2

xy)

+ 2a(CyCyz + Cyyz + CyyCz) + 2λCyy + 2ωCxy,

dtCxz = 3d(C
2

xCxz + CxCxxz − 2CxCyCyz − CxCyyz + CxxCxz − 2CxyCyz + CxzCyy − 2CxyzCy − CxzC
2

y)

+ a(CxCzz + CxzCz + Cxzz) + 3c(CxzC
2

z + CxzCzz + CxzzCz) − Cxzz − Cxxx − 2CxyCy − Cxyy − 2CxCxx − 2CxzCz + λCxz − ωCyz ,

dtCyz = 3d(C
2

xCyz + 2CxCxyz + 2CxCxzCy + CxxzCy − C
2

yCyz − CyCyyz − CyyCyz + CxxCyz + 2CxyCxz)

+ a(CyCzz + CyzCz + Cyzz) + 3c(CyzC
2

z + CyzCzz + CyzzCz) − 2CxCxy − Cxxy − 2CyCyy − Cyyy − 2CyzCz − Cyzz + λCyz + ωCxz ,

dtCzz = 6c(C
2

zCzz + CzCzzz + C
2

zz) − 4CxCxz − 2Cxxz − 4CyCyz − 2Cyyz − 4CzCzz − 2Czzz , (23)
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and ten third order equations,

dtCxxx = 3d(C
2

xCxxx + 6CxC
2

xx + 3CxCxxCyy − 6CxCxxyCy − 3CxCxxCyy − 6CxC
2

xy − CxxCxxx + 3CxxCxyy

− −3CxxxC
2

y − 12CxxCxyCy + 3a(CxCxxz + 2CxxCxz + CxxxCz) + 3λCxxx − 3ωCxxy ,

dtCyyy = 3d(3C
2

xCyyy + 12CxCxyCyy + 6CxCxyyCy − 3CxxCyCyy − 3CxxyCyy − 3C
2

yCyyy − 6CyC
2

yy

+ 9CyCxxCyy + 6CyC
2

xy + CyyCyyy + 3a(CyCyyz + 2CyyCyz + Cyyy ∗ Cz) + 3ωCxyy + 3λCyyy,

dtCzzz = 3c(3C
2

zCzzz + 6CzC
2

zz − CzzCzzz) − 6CxCxzz − 6C
2

xz − 6CyCyzz − 6C
2

yz − 6CzCzzz − 6C
2

zz ,

dtCxxy = d(9C
2

xCxxy + 24CxCxxCxy + 6CxCxxxCy − 12CxCxyCyy − 12CxCxyyCy + 6C
2

xxCy

− 3CxxCxxy + 3CxxCyCyy + CxxCyyy − 9CxxyC
2

y + 12C
2

xyCy + 6CxyCxyy − 15CyCxxCyy

+ 30CyC
2

xy − 2CxxxCxy) + a(2CxCxyz − CxxCyz + 3CxxyCz + CxxzCy − 2CxyCxz + 3aCxxCyz + 6aCxyCxz)

+ 3λCxxy + ω(Cxxx − 2Cxyy),

dtCxyy = d(9C
2

xCxyy − 3CxCxxCyy + 12CxCxxyCy − 12CxC
2

xy − 6CxCyCyyy − 6CxC
2

yy + 12CxxCxyCy − CxxxCyy

− 6CxxyCxy − 24CxyCyCyy + 2CxyCyyy − 9CxyyC
2

y + 3CxyyCyy + 15CxCxxCyy + 30CxC
2

xy)

+ a(CxCyyz − 2CxyCyz + 3CxyyCz + 2CxyzCy − CxzCyy + 6CxyCyz + 3CxzCyy) + ω(2Cxxy − Cyyy) + 3λCxyy,

dtCxxz = d(6C
2

xCxxz + 12CxCxxCxz − 2CxCxxx − 12CxCxyzCy + 6CxCxzCyy − 2CxxxCxz − 6CxxzC
2

y + 12CxyCxzCy

+ 6CxyyCxz − 12CxCxyCyz − 6CxCxzCyy − 12CyCxxCyz − 24CyCxyCxz)

+ a(2CxCxzz − 2C
2

xz + 2CxxzCz + 2CxxCzz + 4C
2

xz) + c(3CzCxxCzz + 6CzC
2

xz − 3CxxCzCzz − CxxCzzz

+ 3CxxzC
2

z ) − 2C
2

xx − 2CxxyCy − 2CxxzCz − 2C
2

xy − 2C
2

xz + 2λCxxz − 2ωCxyz ,

dtCxyz = d(6C
2

xCxyz − 3CxCxxCyz + 6CxCxxzCy − 6CxCxyCxz − 6CxCyCyyz − 6CxCyyCyz + 6CxxCxzCy − CxxxCyz − 3CxxyCxz

+ 6CxyCyCyz + 3CxyyCyz − 6CxyzC
2

y + 3CxzCyCyy + CxzCyyy + 9Cx(CxxCyz + 2CxyCxz) − 9Cy(2CxyCyz + CxzCyy)

+ c(3CxyzC
2

z − 3CxyCzCzz − CxyCzzz) + 3cCz(CxyCzz + 2CxzCyz)

+ a(CxCyzz + 2CxyzCz − 2CxzCyz + CxzzCy + 2CxyCzz + 4CxzCyz)

− 2CxCxxy − 2CxxCxy − 2CxyCyy − 2CxyyCy − 2CxyzCz − 2CxzCyz + ω(Cxxz − Cyyz) + 2λCxyz

dtCyyz = d(6C
2

xCyyz − 12CxCxyCyz + 12CxCxyzCy + 12Cx(2CxyCyz + CxzCyy) − 6CxxCyCyz − 6CxxyCyz

− 12CyCyyCyz + 6Cy(CxxCyz + 2CxyCxz) + 2CyyyCyz − 6C
2

yCyyz)

+ c(−3CyyCzCzz − CyyCzzz + 3CyyzC
2

z + 3Cz(CyyCzz + 2C
2

yz)) + a(2CyCyzz + 2CyyzCz − 2C
2

yz + 2(CyyCzz + 2C
2

yz))

− 2CxCxyy − 2C
2

xy − 2CyCyyy − 2C
2

yy − 2CyyzCz − 2C
2

yz + 2ωCxyz + 2λCyyz

dtCxzz = d(3C
2

xCxzz − 3CxCxxCzz − 6CxCyCyzz + 3CxCyyCzz − CxxxCzz + 6CxyCyCzz + 3CxyyCzz − 3CxzzC
2

y + 3CxCxxCzz

+ 6CxC
2

xz − 3CxCyyCzz − 6CxC
2

yz − 6CyCxyCzz − 12CyCxzCyz)

+ a(CxCzzz + 2CxzCzz + CxzzCz) + 2c(6CxzCzCzz − CxzCzzz + 3CxzzC
2

z ) − 4CxCxxz − 4CxxCxz

− 4CxyCyz − 4CxyzCy − 4CxzCzz − 4CxzzCz + λCxzz − ωCyzz ,

dtCyzz = (3C
2

xCyzz − 6CxCxyCzz + 6CxCxzzCy − 3CxxCyCzz − 3CxxyCzz − 3C
2

yCyzz + 3CyCyyCzz + CyyyCzz + 6CxCxyCzz

+ 12CxCxzCyz + 3CyCxxCzz + 6CyC
2

xz − 3CyCyyCzz + 6CyC
2

yz)

+ 2c(6CyzCzCzzc − CyzCzzz + 3CyzzC
2

z ) + a(CyCzzz + 2CyzCzz + CyzzCz)

− 4CxCxyz − 4CxyCxz − 4CyCyyz − 4CyzCzz − 4CyzzCz − 4CyyCyz + λCyzz + ωCxzz . (24)
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C The second order cumulant expansion of the self-excited disc dynamo

The second order cumulant expansion of the disc dynamo consists of fifteen equations as

(dt + 2αη)Cxx = 2αω(CxyCz + Cxyz + CxzCy) (25)

(dt + 2η)Cyy = 2ω(CxCyz + CxyCz + Cxyz)

(dt + 2κ)Czz = 2κ(−CxCyz − Cxyz − CxzCy + Czu)

(dt + 2)Cuu = 2(−Cuv ∗ Cz − CvCzu − Czuv) + 2ξCzu

(dt + 2)Cvv = 2(CuCzv + CuvCz + Czuv)

(dt + αη + η)Cxy = ω(CxCxz + CxxCz + Cxxz) + αω(CyCyz + CyyCz + Cyyz)

(dt + αη + κ)Cxz = κ(−CxCxy + Cxu − CxxCy − Cxxy) + αω(CyCzz + CyzCz + Cyzz)

(dt + η + κ)Cyz = κ(−CxCyy − CxyCy − Cxyy + Cyu) + ω(CxCzz + CxzCz + Cxzz)

(dt + αη + 1)Cxu = −CvCxz − CxvCz + ξCxz + αω(−Cxzv + CyCzu + CyuCz + Cyzu)

(dt + η + 1)Cyu = ω(CxCzu + CxuCz + Cxzu)− Cv ∗ Cyz − CyvCz + ξCyzi− Cyzv

(dt + κ+ 1)Czu = κ(Cuu − CxCyu − CxuCy − Cxyu)− CvCzz − CzCzv − Czzv + ξCzz

(dt + αη + 1)Cxv = CuCxz + CxuCz + Cxzu + αω(CyCzv + CyvCz + Cyzv)

(dt + η + 1)Cyv = ω(CxCzv + CxvCz + Cxzv) + CuCyz + CyuCz + Cyzu

(dt + κ+ 1)Czv = κ(Cuv − CxCyv − CxvCy − Cxyv) + CuCzz + CzCzu + Czzu

(dt + 2)Cuv = CuCzu + CuuCz − CvCzv − CvvCz + Czuu − Czvv + ξCzv,

where the third order terms are kept in the equations.
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