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Abstract

Speech-based automatic approaches for detecting neurodegen-

erative disorders (ND) and mild cognitive impairment (MCI)

have received more attention recently due to being non-invasive

and potentially more sensitive than current pen-and-paper tests.

The performance of such systems is highly dependent on the

choice of features in the classification pipeline. In particular for

acoustic features, arriving at a consensus for a best feature set

has proven challenging. This paper explores using deep neural

network for extracting features directly from the speech signal

as a solution to this. Compared with hand-crafted features, more

information is present in the raw waveform, but the feature ex-

traction process becomes more complex and less interpretable

which is often undesirable in medical domains. Using a Sinc-

Net as a first layer allows for some analysis of learned features.

We propose and evaluate the Sinc-CLA (with SincNet, Convo-

lutional, Long Short-Term Memory and Attention layers) as a

task-driven acoustic feature extractor for classifying MCI, ND

and healthy controls (HC). Experiments are carried out on an in-

house dataset. Compared with the popular hand-crafted feature

sets, the learned task-driven features achieve a superior classi-

fication accuracy. The filters of the SincNet is inspected and

acoustic differences between HC, MCI and ND are found.

Index Terms:Neurodegenerative disorders, Mild cognitive im-

pairment, feature interpretability, SincNet

1. Introduction

Neurodegenerative disorders (ND) are caused by slow progres-

sive loss of neurons in the central nervous system leading to an

irreversible selective loss of brain functions causing dementia.

With an aging society, the number of people living with ND is

increasing rapidly. Before being diagnosed as ND, people with

early signs of cognitive decline often get diagnosed with Mild

Cognitive Impairment (MCI). They exhibit symptoms worse

than those expected from normal aging but not severe enough

to be diagnosed as dementia [1]. About 10% to 15% of people

living with MCI will convert into having Alzheimer’s Disease

(the most common type of dementia) per year [2]. Accurate and

early detection of MCI and ND is of great importance.

Current clinical practice uses patient history and cognitive

screening instruments plus structural brain imaging to exclude

other causes - also known as a rule-out approach. The avail-

ability of expert neuropsychological testing is variable and is

subject to long delays. Thus it is not feasible for wide-scale

screening. In research settings and in some specialist centres

some ’rule-in’ diagnostic tests are used but these are either ex-

pensive and/or invasive, such as Positron Emission Tomography

scanning for amyloid (Amyloid-PET) or analysis of the cere-

brospinal fluid for biomarkers.

Even though memory impairment is the main symptom of

MCI and ND, language and speech are also affected – even

decades before diagnosis [3]. Recently, automatic approaches

to analysing a person’s speech and language have gained trac-

tion. Language-based analysis is mostly carried out on ei-

ther the manual or automatic transcripts [4, 5], whereas speech-

based analysis would normally be based on the acoustic signal

[6–11]. In both cases, the performance of a typical classifica-

tion pipeline is highly dependent on the quality of the front-end

features. This paper focuses on finding better acoustic features.

Conventional hand-crafted acoustic features can be classified

into two classes: a group of general features, like MFCC [9] ,

F 0 [6], Jitter and Shimmer [7], and more specifically designed

features informed by medical knowledge, like the features pro-

posed in [10]. The general acoustic features contain informa-

tion about voice quality, but cannot describe task-specific symp-

toms well often resulting in researcher opting to extract very

long lists of features (often in the thousands) but still achiev-

ing unsatisfactory performance. On the other hand, the spe-

cially designed features require an exact translation from hu-

man’s medical knowledge into mathematical expression, which

can be challenging.

There are very few publicly available datasets for investi-

gating cognitive decline, and most research is carried out on

self-collected datasets which introduces a large variation in ac-

cents, background noise and the collecting device. As a result,

feature sets found to be optimal for one dataset cannot necessar-

ily display a stable performance on other datasets. Task-driven,

learned features can be a better choice when the aim is general-

isation. Neural networks (NNs) have proven their efficiency in

various tasks as a front-end feature extractor [12, 13] compared

with traditional hand-crafted acoustic features. However, most

of the NNs appear as a black box, which means it is harder to

analyse and interpret any learned representations which could

have led to meaningful insights. In this paper we introduce the

SincNet as a first NN layer in order to addressed this.

The contributions of this paper are as follows: (1) a feature

extractor is constructed with a SincNet-fronted NN architecture

for generating task-driven acoustic features; the performance on

classifying MCI and ND from HCs (healthy controls) is much
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improved compared with the baseline feature sets. (2) an anal-

ysis of the SincNet reveals what information has been learned

while training for classification. (3) to the best of our knowl-

edge, this is the first study that explores the critical acoustic

information for cognitive decline detection from a perspective

of deep learning.

In the remainder of this paper, Section 2 presents the back-

ground. Section 3 presents the designed feature extractor. Sec-

tions 4 and 5 describe the experimental setup and results, and

finally, the conclusions are given in Section 6.

2. Background

Feature extraction is crucial for the performance of a classifica-

tion system. Depending on the task and dataset, hand-crafted

features might not always be the best choice. For example, the

Mel-scale filter bank designed to mimic auditory and physio-

logical evidence of how humans perceive speech signals [14] is

used broadly but cannot always guarantee to be the best filter

bank for the target task. Compared with hand-crafted features,

the raw wave includes more information. Extracting the tar-

get information directly from the raw waveform by NNs has

been an active and promising area of research, especially for

mainstream speech research fields like speech recognition [15],

speaker recognition [16] and emotion recognition [17].

Convolutional neural networks (CNNs), deep neural net-

works (DNNs), and recurrent neural networks (RNNs) (long

short-term memory (LSTM) and gated recurrent units (GRU))

are three of the most popular NN structures for speech pro-

cessing applications. They have different advantages. CNNs

have demonstrated their ability to extract robust and invariant

representations when facing the typical frequency variations of

acoustic recordings by applying local filters and pooling net-

works [18]. RNNs are good at capturing the temporal evolution

of speech signals and model the sequence information [19]. In

comparison, DNNs are generally used for mapping the features

from one feature space into a more separable space. In [20],

it was found that combining CNNs, LSTMs, and DNNs for

speech processing in a unified architecture allowed for the ex-

ploitation of their complementary natures. The attention mech-

anism has lately been used in different fields and achieved a

great deal of success [4, 21, 22]. The main idea behind the at-

tention mechanism is to apply a higher attention weight to the

more critical parts of the input for classification.

The first layer is always significant for the performance of

the raw wave input system as it deals with the high-dimensional

and noisy input [23]. Commonly used CNNs work as a task-

specific finite impulse-response filterbank followed by a non-

linearity [13]. A novel CNN structure named SincNet has been

proposed. It benefits from having fewer parameters to learn.

The filters are defined with a set of parametrized sinc functions

and fewer paramaters need to be trained, making it more inter-

pretable and the ability to converge faster [16]. These charac-

teristics make it suitable for the first layer in our system.

This paper aims at building a system that can make use of

the benefits of different kinds of networks for classifying ND

and MCI from HCs. The dataset is a small-scale, self-collected

dataset named IVA. It comprises of audio recordings of HCs and

people living with MCI and ND as they interact with an Interac-

tional Virtual Agent that asks them memory-probing questions

(please, see Section 4.1 for more details about the data). In the

system, a SincNet is applied as the first layer of our network

followed by CNN (C), LSTM (L) and the attention mechanism

(A); we refer to this network as Sinc-CLA in the following. Our

Raw 
speech 
chunk 

SincNet maxP Layer
Norm

conv-
1D maxP

dense
(1024)

Bi-
LSTM

dense layer
feature

attention layer
feature

linear
classifer
training

or

Layer
Norm

Attention
(100)

Feature
extractor
training 

Classification
with data-driven
features

predict
label

true 
label

minimum
loss

BP

Figure 1: The structure of the Sinc-CLA feature extractor.

results show that the network-learned features can be more dis-

tinctive and informative compared to the INTERSPEECH 2010

Paralinguistic Challenge (IS10) feature set [24] as well as the

ComParE 2013 feature set [25]. The structure of the Sinc-CLA

system is illustrated in Figure 1.

3. Task-driven Feature Extraction

In this section, the process of task-driven feature extraction is

described in details. The first functional layer of the model is

the SincNet layer, followed by max pooling and layer normal-

ization. The output of the SincNet layer for filter ith, i ∈ [1, N ]
in the SincNet layer is defined as follows:

hi[n] = x[n] ∗ g[n, fi1, fi2]

= x[n] ∗ [2fi2sinc(2πfi2n)− 2fi1sinc(2πfi1n)]
(1)

where x[n] is the nth chunk of the signal. g[n, fi1, fi2]
is used to represent the function of the ith filter-bank. fi1
and fi2 are the low and high cut-off frequencies that need

to be learned while training. The sinc function is defined as

sinc(x) = sin(x)/x. To avoid the ripples in the passband and

attenuation in the stop band, a Hamming window [26] is applied

on g[n, fi1, fi2]. In Eq. 1, the filters are initialized with the cut

off frequencies of the Mel-scale filter-bank, which has taken the

human perception into consideration.

The second part of this layer is a standard 1-D convolutional

layer, a max pooling layer and the layer normalization. The out-

put H[n] of the normalization layer is used as the input to the

third part, the bidirectional LSTM, which can utilize both the

forward and backward information of the input. Then, an atten-

tion layer and a dense layer are applied for feature weighting

and mapping. The function of the attention layer is defined as:

ut[n] = tanh(Wht[n] + b)

αt =
exp(ut[n]

Tu)∑
t
exp(ut[n]Tu)

y[n] =
∑

t

αtht[n].

(2)

where ht[n] is the tth component of H[n] output by LSTM.

ut[n] can be regarded as the hidden representation of ht[n]
through a one-layer MLP. The importance of each hidden rep-

resentation is measured by the normalized similarity between

ut[n] and u. The vector u can be regarded as a high-level repre-

sentation of the fixed query ”what is the important information

in the fixed input” [27]. The system training is based on mini-

mizing the loss between the predicted label and the ground-truth

label. After training, the complete system can be regarded as the

combination of the front-end feature extractor and the back-end

feature classifier. To test the feature representation ability of
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the feature extractor, as illustrated in Figure 1 we evaluated fea-

tures extracted from either the dense layer or the attention layer.

More details can be found in Section 4.3.

4. Experiment Setup

4.1. Dataset

The IVA dataset was collected at the Department of Neurology,

University of Sheffield based at the Royal Hallamshire Hospi-

tal in a real clinical setting during 2016, 2017 and 2018 [10].

A Digital Doctor (or Intelligent Virtual Agent) presented on a

laptop asks a series of conversational questions and administers

a series of verbal tests. The questions are designed to mimic the

neurologist-patient conversation happening as part of routine di-

agnostic assessments. The speech sampling rate is 16KHZ. In

our experiment, only the audio recordings from the participants

diagnosed with ND, MCI, and HCs are used. Further informa-

tion about the data is given in Table 1 and in [10]. The average

duration of the recordings in the IVA dataset is about 9 minutes

which is too long to utilise directly as the input of the Sinc-CLA

feature extractor. A similar problem is described in [8] and they

chose to segment the input with manual information. As we are

aiming for a fully automatic system, we instead chose to cut the

recording into 2 second chunks. Each chunk is assigned a label

corresponding to its diagnostic category.

Table 1: IVA Dataset information; number of speakers, number

of recordings and total duration for each diagnostic category.

Diagnostic category # Spk # Rec Duration

MCI 24 29 3h13min

ND 21 24 4h35min

HC 25 35 4h43min

4.2. Evaluation Setting

To provide a reliable result, 10 fold cross-validation (CV) is

used on the relatively small dataset and each fold is fixed for all

the experiments we present. The number of recordings in the

three partitions (training, development, and test) of each fold

is as balanced as possible in terms of the diagnostic category.

In addition, as can be seen from Table 1, some speakers con-

tributed more than one recording and these were kept in the

same partition (speaker independent).

A typical classification pipeline is used to evaluate the ex-

tracted features. The front-end features are either the baseline

feature sets or the features learned by Sinc-CLA, followed by

the back-end classifier. Logistic Regression (LR) and Support

Vector Machine (SVM), the most commonly used classifiers in

acoustic-based cognitive decline detection fields, are adopted.

The parameters in SVM are set as C = 0.01, kernel type=rfb.

For each data fold, the features from training and development

sets (9 folds) are used to train the back-end classifier and the

test set is used for evaluation. The presented result is averaged

across the 10 fold test set. Both the chunk-level and recording-

level results are evaluated. The chunk-level result is calculated

as majority voting over the predicted label output for each chunk

by the classifier. To verify our system, the classification tasks

include HCs vs. ND, HC vs. MCI and HC vs. people living with

either ND or MCI.

4.3. Model Configuration

In the feature extraction part, the segmented chunks in the train-

ing set are fed into the designed feature extractor (Sinc-CLA).

The SincNet layer is composed of N=80 filters of length L=125
samples . The parameters for the filters in the SincNet layer are

initialized with the cut-off frequencies of the Mel-scale filter-

bank as introduced in [16]. The standard convolutional layer

uses 60 filters of length 5. The max-pooling size of the two

convolutional layers is 3. The number of units in the bidirec-

tional LSTM is 50. The output of the Bidirectional LSTM layer

is the 100 dimensional feature, which is the concatenation of

the two 50 unidirectional LSTM outputs. The dimension of the

attention matrix is set as 30. The output of the attention layer is

the 100 dimension vector. The dense layer composes 1024 neu-

ron units. In the model, all hidden layers use leaky-ReLU [28]

non-linearities. rmsprop [29] is applied as the optimizer with

a learning rate of 0.01. While training, the mini-batch size is set

to 30 and the epoch is set to 40. All the parameters of the net-

work are selected according to the development set. F-measure

is used as the criteria. After the feature extractor is trained, the

2 second chunks are input into the Sinc-CLA feature extrac-

tor. The features output by the attention layer and dense layer

(named as ‘attention feature’ and ‘dense feature’ in the follow-

ing) are used for the classification experiments.

4.4. Baseline Features

Research has shown promising results for using features ini-

tially proposed for emotion recognition in systems for auto-

matic assessment of cognitive decline [8,30,31]. IS10 and Com-

ParE features, which have achieved outstanding results [30,31],

are adopted as the baseline feature sets in our experiment. The

features are extracted by the OpenSMILE [25] toolkit. Com-

pared with frame-level features, the statistic suprasegment fea-

ture can provide better performance on our task. To get the

suprasegment feature for each 2 second chunk, the mean, maxi-

mum, minimum, median, and standard deviation are calculated

across time on the frame-level feature matrix as in [9]. Then a

list of 380 (76 × 5) features based on IS10 and 650 (130 × 5)

features based on ComParE are generated.

Figure 2: Cumulative frequency response of SincNet filters on

the three classification tasks. Bold lines are the average re-

sponse for the 10-fold CV and thin lines are the response for

every fold trained network.

5. Results

5.1. Filter Analysis

Before describing the classification results, it is interesting to

analyse the learned SincNet filters. Figure 2 shows the ini-

tialized and the three learned cumulative frequency responses
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(a) The HC vs. ND classification task (b) The HC vs. MCI classification task (c) The HC vs. MCI+ND classification task

Figure 3: The average representation of the SincNet output, only the recordings from the first fold training set are shown.

(CFRs) of the SincNet layer. The black line corresponds to the

initialised CFR, and the different coloured lines refer to differ-

ent classification tasks after training.

The filter sum is normalized by the highest response. The

conclusion can be summarized as:

1. Compared with the initialised CFRs, more details are

shown in the learned CFRs. This shows that while train-

ing the filters, task specific information has been learned. It

may also explain why Mel-scale filter bank based features

are less suitable for our specific task.

2. By observing the CFRs of the three tasks, it can be seen that

the frequency responses concentrate on the low frequencies,

which is consistent with prior knowledge [6,9]. Though the

low frequency information has been taken into considera-

tion for some hand-crafted feature designation, they cannot

achieve as good results as the features learned by our de-

signed feature extractor (shown in Section 5.2).

3. Furthermore, compared with the other two tasks, the CFRs

of the low frequency zone is higher for the HC vs. ND clas-

sifier. This may mean that for more severe symptoms, as

seen in the ND cohort, more concentration should be put on

low frequencies for classification.

The output of the SincNet layer is a H ∈ [frame num×
filter num] matrix. As opposed to the CNN, the learned fil-

ters in a SincNet are ordered according to the frequency (from

low to high, due to the Mel-scale initialization). The benefits

of that is that the analysis of the SincNet output can help us

better interpret the frequency related information which may be

informative for cognitive decline assessment. To this end, the

average filter num (80) dimensional vector for each record-

ing is calculated by averaging H over time. In Figure 3 only

the first 5 out of 80 dimensions of the average vector is plotted

as they are more distinctive. Each row corresponds to the filter

response of one recording. As described in [32], the increase in

the power of low frequency ranges can be a result of cognitive

decline. The high values and main differences are concentrated

in the first several filters for the three tasks.

5.2. Classification Result

The classification results on the baseline feature sets (IS10 and

ComParE), and the dense and attention features are calculated

by averaging across the 10 fold CV. Both the chunk-level and

recording-level F-measure is calculated and presented in Ta-

ble 2 and Table 3 respectively. In Table 2, comparing with

the IS10 and ComParE feature sets, the classification results of

the learned dense feature and attention feature are superior for

the three classification tasks we performed. For example, for

the HC vs. ND task, the best chunk-level classification perfor-

mance is 88.39% achieved by dense feature classified by LR,

compared with 81.34% achieved by IS10 classified by LR as

the best baseline result. The performance of the dense and at-

tention features do not differ much for either of the two classi-

Table 2: The F-measure for chunk-level classification.

Classifier Feature HC vs.

ND

HC vs.

MCI

MCI+ND

vs. HC

LR

ComParE 77.08% 68.33% 75.15%

IS10 81.34% 70.08% 77.51%

dense 88.39% 78.19% 84.26%

attention 88.15% 77.87% 84.18%

SVM

ComParE 72.58% 67.26% 70.70%

IS10 78.28% 70.04% 75.64%

dense 88.21% 79.27% 84.23%

attention 88.35% 78.88% 84.56%

fiers. Comparing the two tables, the performance of the features

and classifiers at the recording-level is better but consistent with

the performance under the same situation after majority voting

on the chunk-level labels.

Table 3: The F-measure for recording-level classification.

Classifier Feature HC vs.

ND

HC vs.

MCI

MCI+ND

vs. HC

LR

ComParE 88.09% 81.18% 81.60%

IS10 93.25% 81.60% 84.31%

dense 98.29% 84.09% 93.18%

attention 96.58% 85.74% 93.18%

SVM

ComParE 89.83% 77.21% 77.13%

IS10 93.25% 81.28% 82.57%

dense 96.58% 85.61% 92.06%

attention 96.58% 87.27% 93.18%

6. Conclusion

In this paper, a feature extractor named (Sinc-CLA) was de-

signed for extracting task-driven features from the raw wave

to classify recordings of people with neurodegenerative related

disorders (ND, and HC). Compared with the IS10 and ComParE

feature sets, the task-driven features achieved superior perfor-

mance. Analyzing the CFRs of the SincNet layer gave us evi-

dence that low-frequency information is critical for classifying

MCI and ND from HC. The intuition of the learned filters and

their output made the result more convincing.
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