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Abstract

Speech and language based automatic dementia detection is of

interest due to it being non-invasive, low-cost and potentially

able to aid diagnosis accuracy. The collected data are mostly

audio recordings of spoken language and these can be used di-

rectly for acoustic-based analysis. To extract linguistic-based

information, an automatic speech recognition (ASR) system is

used to generate transcriptions. However, the extraction of re-

liable acoustic features is difficult when the acoustic quality of

the data is poor as is the case with DementiaBank, the largest

opensource dataset for Alzheimer’s Disease classification. In

this paper, we explore how to improve the robustness of the

acoustic feature extraction by using time alignment informa-

tion and confidence scores from the ASR system to identify

audio segments of good quality. In addition, we design rhythm-

inspired features and combine them with acoustic features. By

classifying the combined features with a bidirectional-LSTM

attention network, the F-measure improves from 62.15% to

70.75% when only the high-quality segments are used. Fi-

nally, we apply the same approach to our previously proposed

hierarchical-based network using linguistic-based features and

show improvement from 74.37% to 77.25%. By combining

the acoustic and linguistic systems, a state-of-the-art 78.34%
F-measure is achieved on the DementiaBank task.

Index Terms: Dementia detection, automatic speech recogni-

tion, confidences score, acoustic feature

1. Introduction

Alzheimer’s disease (AD) is the most common cause of

neurodegenerative dementia, resulting in decline of memory,

speech and other cognitive abilities. The number of people liv-

ing with AD is increasing rapidly all around the world in the

ageing society [1]. Spoken language, as one of the most im-

portant communication styles, can reveal an individual’s cogni-

tive ability. The research on patients’ language and speech has

revealed that language impoverishment and speech vagueness

appear even at the early stage of dementia [2, 3].

From a linguistic point-of-view, people living with demen-

tia present with symptoms at word-level such as having smaller

vocabularies and Part of Speech (POS) misuse; sentence-level

symptoms include incomplete sentences [4]. In addition to

the linguistic impoverishment, people living with dementia also

suffer from speech degeneration. The symptoms include, but

are not limited to, phonological and articulatory impairments

[5], high hesitation ratio, change in speech rhythm [6], and dif-

ference in fundamental frequency [7]. Automatic approaches

to cognitive assessment rely on a combination of linguistic and

acoustic information to detect symptoms more comprehensively

[8]. Automatic system will typically work on audio recordings

and all processing steps must be done automatically, including

the acoustic feature extraction and the speech-to-text transcrip-

tion by an Automatic Speech Recognition (ASR) system.

For acoustic feature extraction, the conventional approach

is to calculate the features across the full audio recording. How-

ever, segments with high pause rates and/or high background

noise in the recording may adversely affect the quality of the

calculated features. Therefore, manual or automatic selection

of sub-segments of the recordings with a higher acoustic quality

may improve the performance of the extracted features [9, 10].

Confidence scores have been shown to improve the reliability of

the automatic transcripts [11, 12] lending evidence to the ben-

efit of relying more on high quality speech segments and tran-

scribed words selection for automatic cognitive assessment.

Another output from the ASR decoding process is the time

alignment, which can also be used for acoustic feature extrac-

tion. Rhythm is a speech property to do with the temporal or-

ganization of sounds [13]. It can be partially described by re-

lated statistical parameters such as speech unit duration, and the

number and duration of pauses. It is known that speech rhythm

varies significantly between healthy controls (HC) and people

with AD [6, 13–17]. To extract the rhythmic parameters, man-

ually identifying the word location is both time consuming and

error prone, especially when done at scale. ASR information

such as word alignment and confidence scores have been used

for automatic rhythm feature construction [16, 18–20].

In this paper, DementiaBank, the largest open-source

datasets for dementia classification [21], is used. The contri-

butions of this paper are as follows: (1) A set of new rhythm-

inspired features is proposed by utilizing the ASR decoding

information (confidence scores and alignment). (2) we show

that using ASR decoding information for selecting high-quality

speech segments for robust acoustic feature extraction improves

results. Further improvements are seen when combining with

the rhythm-inspired features. (3) Applying the proposed tech-

nique to our linguistic-based system proposed in [22] also im-

proves that system. (4) Finally, combining our acoustic and lin-

guistic systems achieves a further improvement. To the best of

our knowledge, the resulting F-measure of 78.34% is the high-

est achieved for the automatic-based DementiaBank task.

In the remainder of this paper, Section 2 presents the

background and related work, Section 3 presents the proposed

methodology, Sections 4 and 5 describe the experimental setup

and results, and finally, the conclusions are given in Section 6.
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2. Background

DementiaBank, recorded between 1983 and 1988, is the most

widely used opensource dataset for dementia detection. It con-

tains acoustic recordings of people describing the cookie theft

picture. The high background noise, variations in audio quality

and the limited number of recordings increase the difficulties

of speech analytics-based research investigating acoustic cues.

Developing approaches that are robust to such challenges are es-

sential for automatic systems to eventually make the leap from

a lab setting to being reliable in-the-wild.

Electroencephalography (EEG) recordings from AD and

HC shows a close link between the average duration of speech

units and the frequency range of cortical oscillations that can

be influenced by cognitive decline [13]. The change of speech

and pause duration is constructed into rhythm features for AD

detection. In addition to speech rhythm [15], duration features

[13], speech fluency [14], semantic fluency [16], or pause loca-

tion [6, 17] are also adopted to describe similar symptom in the

literature. While modelling the rhythm characters, most of the

research regards syllables or words equally without taking their

quality into consideration. However, some symptoms of speech

articulation disorders, like phonological errors or unclear pro-

nunciations can also be found in AD [5]. Rhythm features, used

for describing the organization of the sound, can be more robust

if the adverse affect of the speech quality handled better.

In an ASR system, the acoustic segments tend to be diffi-

cult to recognize if the word articulation is ’blurred’ or there is a

lot of background noise, resulting in a low confidence score for

the recognized word. In this paper, we propose to use the con-

fidence score as a proxy measure for the quality of the spoken

segments and the reliability of the recognized words. Specif-

ically, a set of more informative and robust rhythm features is

designed by utilizing word confidence scores for the speech pat-

tern description. Additionally, the higher quality spoken seg-

ments and transcribed words are identified for extracting acous-

tic and linguistic information for the automatic system.

The extracted features can be classified by either the tra-

ditional linear classifiers, like Support Vector Machine (SVM)

and Logistic Regression (LR), or neural networks (NNs), like

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs). Compared with the traditional linear clas-

sifiers, the NNs are generally more powerful on feature repre-

sentation and classification. Among them, RNNs are good at

capturing the temporal evolution of input signals and model the

sequence information [23], which is suitable for the acoustic

and rhythm feature modelling. The attention mechanism has

lately been used in different fields and achieved a great deal of

success [22,24]. The main idea behind the attention mechanism

is applying a higher attention weight to the more critical parts

of the input for classification. In this paper, to explore the time

sequence information embedded in the acoustic and rhythm fea-

tures, a bidirectional-LSTM (bi-LSTM) with attention mecha-

nism is applied for classification.

3. Methodology

3.1. Data Analysis

Before describing the classification results, it is worth analysing

the information output from the ASR decoding of Dementia-

Bank and how this might vary for the AD and HC group. The

ASR system (more information in Section 4.2) provides word

identities, confidence scores, and word alignments. This infor-

mation is used to calculate a number of parameters listed in Ta-

ble 1. As shown, both the word and pause duration is longer

on average in the AD group than in HC, while the number of

words per transcript is lower in AD than in HC, which is con-

sistent with the analysis in [6]. At the same time, the confidence

score is higher for the HC group than the AD group. The dis-

crepancy of these parameters indicate that using ASR decoding

output might be informative for AD/HC classification.

Table 1: The parameters analysis for the recordings and auto-

matic transcripts from HC and AD of DementiaBank dataset.

parameters (mean&var) HC AD

word duration (s) .535 (0.984) .642 (1.632)

pause duration (s) .545 (1.091) .663 (1.835)

#words/transcript 97 (3193) 84 (2476)

confidence score .916 (0.029) .882 (0.038)

A part of the waveform from the DementiaBank acoustic

recordings is plotted in Figure 1, together with its correspond-

ing manual and automatic transcripts. It is clear that the seg-

ment contains a lot of noise and has a long pause. Acoustic fea-

tures are often extracted across the full signal (speech+pause),

although some will try to identify and exclude the pause part.

We propose to additionally exclude the parts of the speech with

a low confidence score. On the figure, comparing the manual

to the ASR transcript it can be seen that the word I has been

mis-recognised as let’s, and this word also has an associated

low confidence score. Our approach would exclude this part of

the speech as well (using the word alignments and identified by

thresholding the confidence score).

Specifically, to get the high confidence/quality segments,

the pause between two high confidence words is neglected if

the duration is shorted than 0.1s, like the pause between what

and is, and between she and doing. Finally, two audio seg-

ments and their corresponding transcribed words such as see the

mother and what’s she doing are selected for further processing.

To measure the rhythm information embedded in the record-

ings, the start time, end time and the number of words for the

high confidence segments are recorded as the three-dimensional

rhythm features for the corresponding segment.

manual transcript

automatic transcript

low confidence

high confidence

pause

I see the mother,                                                                            what is she doing

speech wave

let't see the mother,                                                                          what is she doing

Figure 1: Example of the high quality acoustic segments and

automatic transcript selection; conf is set equal to 0.95.

To represent the acoustic information, IS10, which achieved

the best result on DementiaBank reported in [10], is adopted as

the frame-level feature set. Then, the suprasegmental acoustic

feature vector for each segment are generated by averaging the

frame-level features over the high confidence segment.
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3.2. Acoustic Features Classification

To classify the acoustic features of each recording composed

into the suprasegmental feature vectors, a bi-LSTM with an at-

tention mechanism is built as shown in Figure 2. The bi-LSTM

contains two sub-networks for the forward and backward se-

quence information modelling. The output of the ith segment

hi is represented by an element-wise sum on the outputs of the

two sub-networks, and works as the input of the attention layer.

h1 h2 h3 hT

h1 h2 h3 hT

x1 x2 x3 xT

h1 h2 h3 hT

h3

y

+

...

...

...

Output
Layer

Attention
Layer

Bi-LSTM
Layer

Input
Layer

Figure 2: Bidirectional LSTM model with attention

The attention function is defined as follows:

ui = tanh(Whi + b)

αi =
exp(uT

i u)∑
i
exp(uT

i
u)

y =
∑

i

αihi.

(1)

where ui can be regarded as the hidden representation of hi

through a one-layer MLP. The importance of each hidden rep-

resentation is measured by the normalized similarity between

ui and u. The vector u can be regarded as a high-level repre-

sentation of the fixed query ”what is the important information

in the fixed input” [25]. It is randomly initialized and jointly

learned during the training process. The final recording-level

feature vector y is classified on a dense layer with a sigmoid

function.

4. Experiment Setup

4.1. Dataset

Our experimental task is the binary classification based on the

DementiaBank dataset. Originally, there were 551 recordings

from 293 speakers, but the diagnostic class for some of the

participants changed during their follow-up (mostly for people

with mild cognitive impairment (MCI) converting to AD). Af-

ter removing them, 222 samples from 89 HC and 255 from 168
AD were selected. To evaluate our proposed method, speaker-

independent 10-fold cross-validation (CV) was used. 8 folds

were used for training (training set), 1 fold for evaluation (de-

velopment set) and 1 fold for testing (test set). More informa-

tion about the selected recordings and the 10-fold split were de-

scribed in the paper [22] and the lists are available in GitHub1.

4.2. Automatic Speech Recognition

To train the ASR, a 10-fold CV approach was also used with

9 folds of DementiaBank used for training and 1 for testing.

1https://github.com/YilinSpeechandNLP/Automatic-Hierarchical-
Attention-Neural-Network-for-Detecting-AD

The Kaldi’s Librispeech [26] recipe was followed to train a base

Time delay neural network (TDNN) acoustic model. Then us-

ing the transfer learning technique proposed by [27], ’transfer-

ring all layers’, the acoustic model was adapted to the data in

each fold (we followed a similar approach to [28] using only

one epoch of training to get the best results). The language

models were trained using the four-grams models gained from

the transcripts in each fold interpolated with the four-gram of

the Librispeech data set. To boost both the acoustic and lan-

guage models, we added an extra dataset to the training set in

each fold (the Hallamshire dataset [29]; 64 hours conversational

recordings between doctors and patients). We achieved an aver-

age 32.3% WER for the ASRs, compared with 41.6% in [22].

4.3. Pre-Processing of Audio and ASR Transcripts

As in [22], though automatically adding punctuation can de-

crease the performance compared with manually punctuation,

it can benefit the results compared with using the ASR tran-

scripts directly without considering the sentence boundary. To

add punctuation in the ASR transcripts, the toolkit shared in

github2 was used and more information can be found in [30].

After punctuation, only the words with confidence higher than

the conf threshold were left in the transcripts. For the acous-

tic features, the 76 dimensional IS10 frame-level features were

extracted with the OpenSMILE toolkit [31] from the selected

segments, before calculating the mean vector across time. The

3-dimension rhythm feature was extracted from each segment.

4.4. Acoustic Classifier Configuration

For each fold, the bi-LSTM attention system described in Sec-

tion 3.2 was trained with a 8-fold training set on a fixed num-

ber of epochs (20) and evaluated on the 1-fold development set

at each epoch. The best model was selected based on the F-

measure of the development set. All the results reported in our

experiment were averaged across the 10-fold CV of the test set.

The bi-LSTM units were set to 50 and attention layer dimension

was 10. The batch size was set to 20. The maximum number

of segments in each recording was set as 50 and zero-padding

was used for recordings with fewer than 50 segments. Dropout

with a rate of 0.5 was applied after the bi-LSTM and attention

layer to avoid over-fitting. The network was optimized using

Adam [32] with L2 regularization (λ = e−6). For fairness a

constant random seed was used. In the final combined system,

the fusion was achieved by concatenating the output of the at-

tention layer with the linguistic document-level representation

trained by the second attention layer described in [22]. For

the combination system, apart from using a different number

of epochs (30) and dropout rate (0.3), all other parameters were

kept unmodified as in the hierarchical attention network [22]

and the acoustic system described in Section 4.4.

5. Result

5.1. Analysis of Rhythm-related Features

To analyse the relationship between the designed rhythm fea-

tures at different thresholds and the diagnostic class, Pearson’s

correlation value (r-value) and p-value are adopted as the cri-

teria for the analysis shown in Table 2. The conclusions are

summarized as follow:

1. The three-dimensional rhythm features (duration of in-

cluded segments, duration of excluded segments, and num-

2https://github.com/ottokart/punctuator2
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Table 2: The Pearson’s correlation between the rhythm features with diagnostic class at different threshold; all p-values are < 0.01.

Rhythm feature threshold=0 threshold=0.5 threshold=0.8 threshold=0.9 threshold=0.95 threshold=0.99

Include duration (in s) 0.075 0.063 0.045 0.044 0.040 0.037

Exclude duration (in s) 0.136 0.153 0.183 0.171 0.173 0.169

Number of words included -0.045 -0.071 -0.114 -0.137 -0.151 -0.176

ber of words in included segments) are all related to the

confidence threshold as per their r-value.

2. For higher thresholds, the correlation increases between the

number of words in the included segments and the diagnos-

tic class, indicating that this features becomes more infor-

mative for classification in high-quality segments.

3. Compared with the duration of the excluded segments, the

duration of the included segment is not that informative for

classification. This should inform the rhythm feature ex-

traction approach. In particular, more attention should be

given to duration of pauses and the less clear words than

the duration of the clearly spoken words.

4. Although the three-dimensional rhythm-related features

show a different correlation between the threshold and the

diagnostic class, increasing the threshold can increase the

correlation between their absolute value addition and the

diagnostic class.

5.2. Acoustic based Results

For evaluating the influence of the confidence score thresh-

old on the classification performance, the relationship between

the threshold and F-measure for the development & test set is

shown in Figure 3 for the combination of IS10 and rhythm-

related features and for IS10 only.

Figure 3: The relationship between F-measure and word confi-

dence threshold on evaluation set and test set.

The conclusions are summarized as follows:

1. By comparing the results from the same feature sets, we

find that increasing the threshold within a certain range can

benefit the classification. The best F-measures on the devel-

opment set is achieved with a threshold set to 0.8 and 0.95
on IS10 and IS10+rhythm feature sets respectively.

2. Comparing the red and blue lines with the same threshold

proves the efficiency of the proposed rhythm features. The

best test result improves from 62.15% to 70.75% after the

three-dimensional rhythm-related features are included.

The results in Figure 3 show the benefit of the segment-

selection approach on the acoustic features extraction. We fur-

ther returned to our linguistic-based system in [22] to explore

whether that system would also benefit. In the following exper-

iment, the threshold is fixed at 0.95.

Table 3: The result of linguistic-based system with/without

acoustic-based system.

Linguistic Acoustic F-measure

(dev)

F-measure

(test)

Original transcripts - 78.92% 75.55%

High conf transcripts - 84.75% 77.25%

High conf transcripts IS10+rhythm 84.73% 78.34%

The transcripts produced by the ASR system are tested by

the hierarchical system proposed in [22]. The result is shown in

Table 3. Firstly, the system was rerun using the improved ASR

system which saw the performance increase by 1.18% (from

74.37% [22] to 75.55%). After applying the segment selection

approach proposed in this paper, the system using these tran-

scripts with only high confidence words achieved an F-measure

of 77.25%. The result demonstrates that low confidence words

can decrease the quality of the transcripts for classification, and

that is it better to ignore such segments. The last row of Ta-

ble 3 reports the performance of the result of combining the

two systems (acoustic and linguistic). After fusion, the sys-

tem achieves a state-of-the-art result of 78.34%. Though better

results were reported in [8, 33], those systems were not fully

automatic. To the best of our knowledge, only the 67.21% F-

measure (weighted average) and 62% F-measure (weighted av-

erage) reported in [9, 34] were achieved without any manual

information included.

6. Conclusions

In this paper, a three-dimensional rhythm-related feature set was

designed using the ASR decoding (confidence scores and align-

ment) information. Increasing the confidence score threshold

within some range for segment selection was proven to be ben-

eficial for the performance of the acoustic features extracted

from the selected high-quality segments. Combining the de-

signed rhythm features with acoustic features further improved

the performance of the acoustic system. Finally, a state-of-the-

art automatic system for the DementiaBank dataset was com-

posed by utilizing the acoustic information and linguistic infor-

mation selected by the confidence score threshold. In the future,

the knowledge learned on DementiaBank is expected to be ap-

plied to other datasets for more practical applications.
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