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Abstract

Microorganisms live in environments that inevitably fluctuate between mild and harsh conditions. As

harsh conditions may cause extinctions, the rate at which fluctuations occur can shape microbial communities

and their diversity, but we still lack an intuition on how. Here, we build a mathematical model describing

two microbial species living in an environment where substrate supplies randomly switch between abundant

and scarce. We then vary the rate of switching as well as different properties of the interacting species, and

measure the probability of the weaker species driving the stronger one extinct. We find that this probability

increases with the strength of demographic noise under harsh conditions and peaks at either low, high,

or intermediate switching rates depending on both species’ ability to withstand the harsh environment.

This complex relationship shows why finding patterns between environmental fluctuations and diversity

has historically been difficult. In parameter ranges where the fittest species was most likely to be excluded,

however, the beta diversity in larger communities also peaked. In sum, how environmental fluctuations affect

interactions between a few species pairs predicts their effect on the beta diversity of the whole community.
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1 Introduction

Natural environments are not static: temperature, pH, or availability of resources change over time. Many

studies in microbiology, ecology and evolution have focused on responses to fluctuations in resource abundance

in the regime of feast and famine periods (Hengge-Aronis, 1993; Vasi et al., 1994; Srinivasan and Kjelleberg,

1998; Xavier et al., 2005; Merritt and Kuehn, 2018; Himeoka and Mitarai, 2019). These models capture the

dynamics within many natural ecosystems. For example, the gut microbiome of a host is exposed to fluctuating

resources that depend on its host’s feeding rhythm, which may affect microbiota diversity (Cignarella et al.,

2018; Li et al., 2017; Thaiss et al., 2014). In addition to their magnitude, environmental fluctuations can also

differ in their time scales – for the gut microbiota, a host’s feeding rhythm may vary from hourly to daily, or

even monthly if feeding depends on seasonal changes (Davenport et al., 2014; Smits et al., 2017) – or in the

type of substrates taken up, which can be nutritious or harmful for the microbiota.

How environmental fluctuations (EFs) affect species diversity has been a highly contested topic in ecol-

ogy. Here, EFs refer to changes that are not caused by the organisms themselves, but nevertheless affect their

dynamics (e.g., abiotic resource supplies). The intermediate disturbance hypothesis argues that intermediate

intensity and frequency of disturbances maximize species diversity (Connell, 1978; Grime, 1973) because highly

competitive species dominate at a low level of disturbance, while only species that have adapted to the dis-

turbance dominate at high disturbance (Grime, 1977). This hypothesis is controversial (Fox, 2013) and other

relationships between disturbance and species diversity have been reported both empirically and theoretically

(Mackey and Currie, 2001; Miller et al., 2011).

Another framework that is used to predict species diversity under EFs is the modern coexistence theory

(Chesson, 1994), which explains the maintenance of diversity through species’ differing responses to and pref-

erences for environmental conditions, which can vary over spatial and/or temporal scales through fluctuations

(Amarasekare, 2019; Chesson, 2000a,b; Letten et al., 2018b; Barabás et al., 2018; Ellner et al., 2019). The

modern coexistence theory divides environmental factors into those that are independent of species abundances

(e.g., temperature) and those that depend on them (e.g., amounts of resources). The latter environmental

factors mediate the sign and/or magnitude of interspecific interactions (Hoek et al., 2016; Piccardi et al., 2019;

Zuñiga et al., 2019), and whether species tend to cooperate or compete can, in turn, drive community diversity

and stability (Mougi and Kondoh, 2012; Coyte et al., 2015; Marsland III et al., 2019; Butler and O’Dwyer, 2018,

2020). Microbial communities often experience extreme environmental fluctuations that can alter interactions

between species and hence affect species diversity (Rodŕıguez-Verdugo et al., 2019; Nguyen et al., 2020b).

Another important factor potentially influencing the outcome of interactions between species is demographic

noise (DN) arising from randomness in birth and death events in finite populations. DN is negligible in large

populations but strong in small ones, where it can lead to species extinction or fixation, and affect community

composition (Roughgarden, 1979; Ewens, 2004). As EFs affect population sizes, they modulate the strength of

demographic noise, leading to a coupling of EFs and DN. This interdependence has been understudied until

recently, despite its potentially important consequences on eco-evolutionary dynamics (Wienand et al., 2017,
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2018; West and Mobilia, 2020; Taitelbaum et al., 2020).

To understand how the interplay between EFs and DN affect community diversity, we set up a stochastic

model of multiple species subject to a varying supply of nutrients and/or toxins. Our model then allows us to

ask: How do EFs, coupled to DN, affect species interactions and diversity?

We include toxins in our model as they are important in natural communities, but often missed in similar

models. Toxins that typically come to mind are pesticides or antibiotics (Pérez et al., 2005; Xu et al., 2011),

but in principle they can be anything that inhibits microbial growth compared to some optimal condition. For

example, oxygen is harmful to anaerobic microbes (Guittar et al., 2021) and bile acids are toxic to microbes

in the human gastrointestinal tract (Ruiz et al., 2013; Molinero et al., 2019). These toxins can, however, be

degraded by microbes. In the example of bile acids, Lactobacillus and Bifidobacterium strains degrade them

by producing bile-salt hydolases and other extracellular enzymes (Ruiz et al., 2013; Molinero et al., 2019).

Such degradation of toxic compound by microbes is expected to be quite common, as microbes will be selected

to become resistant to toxins by diminishing environmental toxicity. In our model then, toxins contribute to

environmental harshness and reduce population sizes, which can modulate the strength of DN. We also expect

toxins to affect inter-species interactions, as species that absorb or degrade them can potentially facilitate the

growth of others (Hoek et al., 2016; Piccardi et al., 2019; Zuñiga et al., 2019).

The next section describes our theoretical model, explaining how DN and EFs are implemented and how

species interactions and diversity are measured (section 2). We first use it to explore how often one single

species goes extinct due to environmental switching coupled with DN (section 3.1). We then add a second

slower-growing species, still focusing on the behavior of the first, and ask how its extinction probability is

affected by the slower-grower, and how different properties of the two species change the effects of the switching

rate (section 3.2). We find that sensitivity to toxins increases the strength of DN because it decreases species

abundances. At toxin sensitivities that are high enough to increase DN but low enough that either species is

likely to survive, the slower-growing species can outcompete the fast-growing one (we call this phenomenon

exclusion of the fittest, sections 3.3 and 3.4), a result that is a direct consequence of coupling DN and EFs.

Finally, we expand our model to larger communities and show that our first analysis of the exclusion of the fittest

species predicts beta diversity patterns in larger communities (section 3.5): community composition is the most

diverse when strong species are most likely to be excluded. Section 4 discusses the importance of coupling EFs

and DN on species interactions and diversity. Finally, we compare our results with the intermediate disturbance

hypothesis and the modern coexistence theory. Technical and computational details are given in a series of

Appendices.

2 Model & Methods

In order to investigate the interdependence of EFs and DN on species interactions and diversity, we study an

idealized chemostat model that combines DN and environmental switching (Fig. 1). The chemostat is meant

to represent natural ecosystems subject to in- and outflow, such as a gut or a river. Within the chemostat,
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we consider a well-mixed population consisting of N species of bacteria, and N/2 types of resources as well as

N/2 types of toxins (without loss of generality, N is assumed to be even). Our system can exhibit different

levels of species richness at equilibrium depending on parameter values: only one species may persist as species

interact with all resources and toxins, or all species may coexist as the environment has as many limiting factors

(resources and toxins) as the number of species. The special case of a model with a single resource and a single

toxin in a mono-culture is considered for completeness in Section 3.1. Although many models ignore the role

of toxins, they play two important roles in our model: first, sensitivities to toxins changes the strength of DN

because population sizes of sensitive species are low. Second, toxins can enable a pair of species to facilitate

each other (Piccardi et al., 2019) because toxin absorbance or degradation decreases the death rate of other

species. In this manuscript, we consider toxins that are not released from cells when they die, e.g., antibiotics

that inhibit DNA or RNA synthesis (Cangelosi and Meschke, 2014), although the release of toxins from dead

cells could be introduced with a small modification of our model (see Huang et al. (2013) for example). The

absence of toxins is similar to having a low toxin sensitivity (Fig. A.22).

In our model, communities follow a continuous-time multi-variate birth-and-death process (see, e.g. Novozhilov

et al. (2006); Allen (2010)) in a time-fluctuating binary environment (see, e.g., Wienand et al. (2017, 2018);

West and Mobilia (2020); Taitelbaum et al. (2020)). More specifically, we consider that at time σ the commu-

nity consists of an amount ri(σ) of resources of type i (i = 1, . . . , N/2), an amount tj(σ) of toxin of type j

(j = 1, . . . , N/2), and an abundance sk(σ) of microbial species k (k = 1, . . . , N). Here, resources are assumed to

be nutrients for all species, allowing them to grow at different rates, while the toxins kill all species at different

rates when species have different toxin sensitivities. hence the species extinction probability.

In a static environment (no EFs), this chemostat model evolves according to the birth-and-death process

defined by the following “birth” and “death” reactions:

ri
τ+
ri−−→ ri + 1, (1a)

ri
τ−

ri−−→ ri − 1, (1b)

tj
τ+

tj−−→ tj + 1, (1c)

tj
τ−

tj−−→ tj − 1, (1d)

sk
τ+
sk−−→ sk + 1, (1e)

sk
τ−

sk−−→ sk − 1, (1f)

occurring with transition rates:
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τ+ri = αRi, (2a)

τ−ri =

N∑

k=1

µik

Y r
ik

ri
ri +Kr

ik

sk + αri, (2b)

τ+tj = αTj , (2c)

τ−tj =

N∑

k=1

δjk
Y t
jk

tj
tj +Kt

jk

sk + αtj , (2d)

τ+sk =

N/2
∑

i=1

µik
ri

ri +Kr
ik

sk, (2e)

τ−sk =

N/2
∑

j=1

δjk
tj

tj +Kt
jk

sk + αsk, (2f)

where α is the dilution rate of the chemostat, ξ = ±1 (see below) represents changing environmental conditions

in terms of in-flowing resource and/or toxin amount. Ri(ξ) (Tj(ξ)) is resource i’s (toxin j’s) supply under the

environmental condition ξ, Y r
ik (Y t

jk) is species k’s biomass yield for resource i (toxin j), µik is the maximum

growth rate of species k by resource i, δjk is the maximum death rate of species k by toxin j (species k’s

sensitivity to toxin j), and Kr
ik (Kt

jk) is the amount of resource i (toxin j) that gives the half-maximum growth

(death) rate for species k (see also Table A.1). These transition rates hence reflect that (i) the amounts of

resources and toxins increase depending on the product of their in-flow concentrations and the dilution rate,

(ii) the amounts of resources and toxins decrease with the dilution rate and with the consumption/absorption

by species, (iii) the growth and death rates depend in Monod functional forms on the amounts of resources and

toxins, respectively, (iv) the dilution rate α sets the time scale at which the environment attains the state of

abundance or scarcity (after a time ∼ 1/α), see below and Appendix 2.2 and (v) all effects are additive. When

Ri and Tj are constant, the environment is static and the birth-and-death process defined by Eqs (1a) – (2f)

naturally accounts for the DN arising in the population, which is the sole source of noise.

We model EFs by considering a time-fluctuating binary environment resulting in Ri and/or Tj to be di-

chotomous random variables, i.e., Ri = Ri(ξ(σ)) and/or Tj(ξ(σ)), where ξ(σ) = ±1 represents the binary state

of the environment (ξ = 1 represents a mild environment while ξ = −1 represent a harsh environment). We

hence assume that Ri and/or Tj switch between two values at a rate ν, according to a time-continuous colored

dichotomous Markov noise (random telegraph noise) (Bena, 2006; Horsthemke and Lefever, 2006)

ξ
ν−→ −ξ. (3)

We call ν a “switching rate” because we implement a symmetrically switching environment as a simple

example of EFs (but see Appendix 2.2 for a further discussion of this choice and Appendix 5 for other forms of

EFs). Although we use arbitrary units in the model, the unit of the switching rate applies to all events. For

example, if the unit for the dilution rate is per hour, ν = 100 means that the environment switches every hour
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on average. We investigate three environmental switching scenarios, where either or both resource and toxin

supplies fluctuate over time, see Table 1. In the main text, we focus on the scenario where only resource supplies

switch between abundant and scarce supplies (R+

i and R−
i , respectively, such that R+

i > R−
i > 0) while the

amounts of toxin supplies remain constant over time (〈Tj〉 ≡ (T+

j + T−
j )/2); see Appendix 3 for the remaining

scenarios. The initial resource supply in the main text is Ri (ξ (0)) = R+

i with probability 0.5 and otherwise

Ri (ξ (0)) = R−
i .

We assume that ξ switches symmetrically between the states ±1 (see Taitelbaum et al. (2020) and Appendix

5 for the cases of asymmetric switching). In all our simulations, ξ is stationary and thus ξ has zero mean,

〈ξ(σ)〉 = 0, autocorrelation 〈ξ(σ)ξ(σ′)〉 = exp (−2ν|σ − σ′|), where 〈·〉 denotes the ensemble average over the

environmental noise, and finite correlation time 1/(2ν). A great advantage of dichotomous noise is its simplicity:

ξ is bounded (Ri and Tj are always well defined) and straightforward to simulate. This choice allows us to

model suddenly changing environmental conditions, which reflect situations in microbial life such as exposure to

resource or toxin oscillations that can be reproduced in lab-controlled experiments (Sunya et al., 2013). Other

forms of EFs are also possible, e.g. ξ could be a Gaussian random variable, but then Ri and Tj would be

unbounded and vary continuously and could take unrealistic values. Modeling EFs with Eq (3) is arguably

the simplest biologically-motivated choice to couple fluctuations in resource/toxin supplies with demographic

noise, and allows us to investigate questions that are not specific to dichotomous noise, see Appendix 2.2.

Interestingly, the analysis of the long-term dynamics of the two-species, one-resource-one-toxin model under

symmetric dichotomous noise in Appendix 2.2 reveals that this simple form of environmental variability leads

to distributions of the total population size n (i.e., the sum of species, resources and toxins abundances n ≡
∑

k sk +
∑

i ri +
∑

j tj) that varies greatly with the rate of switching relative to the dilution rate: when

ν/α ≫ 1 (fast switching), the total population size n is unimodal; when ν/α ≪ 1 (slow switching), n is bimodal

and fluctuates between two very different values; intermediate scenarios interpolating between unimodal and

bimodal distribution of n arise when ν/α ∼ 1 (intermediate switching), see Wienand et al. (2017, 2018); West

and Mobilia (2020); Taitelbaum et al. (2020) and Fig. A.6. This results in an explicit coupling of DN to EFs in

multi-species communities, via the modulation of the DN intensity by ν/α. This is a distinctive feature of our

model comparing previous studies. For example, some models (Leigh, 1981; Engen and Lande, 1996; Kalyuzhny

et al., 2015) do not couple DN and EFs, while other models (Engen and Lande, 1996; Kamenev et al., 2008;

Chisholm et al., 2014; Fung et al., 2015) study the coupling of DN and EFs in single species scenarios. See

Appendix 2.2 for more detailed discussion and analysis.

The master equation for this model is defined by combining the dynamics of the amounts of resources and
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toxins, abundances of species, with the environmental switching (Eqs (1a) - (3)):

d

dσ
P
(
~r,~t, ~s, ξ, σ

)
=

N/2
∑

i=1

(
E
−
ri − 1

) {
τ+riP

(
~r,~t, ~s, ξ, σ

)}

+

N/2
∑

i=1

(
E
+
ri − 1

) {
τ−riP

(
~r,~t, ~s, ξ, σ

)}

+

N/2
∑

j=1

(

E
−
tj − 1

){

τ+tjP
(
~r,~t, ~s, ξ, σ

)}

+

N/2
∑

j=1

(

E
+
tj − 1

){

τ−tj P
(
~r,~t, ~s, ξ, σ

)}

+

N∑

k=1

(
E
−
sk

− 1
) {

τ+skP
(
~r,~t, ~s, ξ, σ

)}

+
N∑

k=1

(
E
+
sk

− 1
) {

τ−skP
(
~r,~t, ~s, ξ, σ

)}

+ ν
{
P
(
~r,~t, ~s,−ξ, σ

)
− P

(
~r,~t, ~s, ξ, σ

)}
(4)

where P
(
~r,~t, ~s, ξ, σ

)
gives the probability to find the population in state

(
~r,~t, ~s, ξ

)
at time σ, with ~r = (ri),

~t = (tj), ~s = (sk). Here, E±
ri is a shift operator such that

E
±
riP

(
~r,~t, ~s, ξ, σ

)
= P

(
r1, . . . , ri ± 1, . . . , rN/2,~t, ~s, ξ, σ

)
, (5)

and E
±
tj and E

±
sk

are the equivalent shift operators for tj and sk, respectively. Note that P
(
~r,~t, ~s, ξ, σ

)
= 0

whenever any of ri, tj , sk < 0. The first to sixth lines on the right-hand-side of Eq (4) represent the birth-and-

death processes (1), while the last line accounts for environmental switching.

The master equation (4) fully describes the model dynamics and can be simulated exactly with the Gillespie

algorithm (Gillespie, 1977). Owing to the stochastic nature of the model, after a time that diverges exponentially

with the community size, DN will cause the eventual collapse of the population (Spalding et al., 2017; Assaf and

Meerson, 2017). This phenomenon is practically unobservable when resource levels remain sufficiently large,

i.e. if R−
i ≫ 1, and the population settles in a long-lived quasi-stationary distribution. Here we focus on the

quasi-stationary regime that is attained when distributions of species abundances appear to be stationary for

a long time (see supplementary video): the distributions of two species’ abundances change little from time

σ = 130 onward when the parameter values are as shown in Table A.1 with ν = 10−1 and δ = 0.2, which

are typical parameter values used in this study. It would be reasonable then to set σend = 200 expecting that

species’ abundances reach a quasi-stationary state in many of our chosen parameter values.

2.1 Evaluating species interactions

First, we analyze how the net effect of species interactions (i.e., resource competition and facilitation via

detoxification) can change under DN and EFs by measuring the extinction probabilities in the presence or
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absence of another species at time σend (see Appendix 1.1 for details). We begin with two species (N = 2)

where the sign and magnitude of species interactions can change because the amounts of resources and toxins

can change the net effect of resource competition and facilitation via detoxification (Piccardi et al., 2019). We

used parameter values such that species 1, if it persists, always outcompetes species 2 in the absence of DN

(i.e., species 1 grows faster than species 2, see Appendix 2.1 for analysis and Table A.1 for parameter values) to

identify the effects of DN. Importantly, EFs alone do not change species 1’s extinction probabilities in mono-

versus co-culture in the absence of DN. Under DN coupled with EFs in our chosen parameter range, either of

the two species or both species tend to go extinct. As a proxy for interactions, we focus on the net effect of

species 2 on species 1, which is defined by the extinction probability of species 1 in mono-culture minus that in

co-culture with species 2 (the so-called difference in extinction probability, see also Eq (A.1)): species 2 has a

negative (positive) effect on species 1 if species 1 more (less) frequently goes extinct in co-culture with species

2 than in mono-culture. When species 2 has a negative effect on species 1, one can consider two possibilities

in co-culture: (i) species 2 outcompetes species 1 (see Fig. 4) or (ii) both species 1 and 2 go extinct. As

explained in section 3.3, we focus on the former probability, the so-called probability of exclusion of the fittest to

understand the net effect of species 2 on species 1. We performed 105 simulations for each switching rate and

toxin sensitivity in mono- and co-cultures. We calculated 95% of highest posterior density intervals (HPDI) to

measure the uncertainty of species 1’s extinction probabilities (see Appendix 1.1) but these intervals are too

small to be visible on our plots due to the large number of simulations we ran.

2.2 Evaluating species diversity

To explore how species diversity changes with the switching rate, we ran simulations at different numbers of

species ranging from N = 2 species to N = 10 species and different mean toxin sensitivities (see Appendix 1.3

for details). For each condition (one number of species and one mean toxin sensitivity), we sampled 100 sets

of parameters from certain probability distributions. These sets of parameters represented 100 communities

composed of N species. In this analysis (section 3.5) we consider a more general scenario and all previous

simplifying assumptions on the parameter values are relaxed: all species have randomly drawn (see Appendix

1.3), and hence typically different, growth and death rates.

The dynamics of each community were independently simulated 100 times to see whether the species compo-

sition was robust against DN and EFs. These 100 replicate runs can be seen as 100 independent “patches”that

initially consist of the same species set, but no species migrate from one patch to another. We measured the beta

diversity of each community (Jost, 2007; Chao et al., 2012) and species richness (number of surviving species) as

functions of the environmental switching rate in the quasi-stationary distribution (at time σend). Beta diversity

accounts for the heterogeneity of each community across 100 replicates For example, if beta diversity is larger

than one but species richness is one in all replicates, different species fixate in each replicate. In contrast, beta

diversity is one if all communities show identical species compositions; for example, in the two-species scenario

with parameter values shown by Table A.1 and in the absence of DN, species 1 always outcompetes species
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2 and thus beta diversity is one. This baseline corresponds to a perfectly deterministic scenario. One could

instead consider using another baseline corresponding to a perfectly stochastic or neutral scenario where all

species’ parameter values are identical (e.g., Fig. A.21), in which case species compositions are determined

only by demographic noise coupled with environmental fluctuations. We choose to focus on the deterministic

baseline, as beta diversity is always = 1 regardless of the number of species, their parameter values, and the

environmental switching rate. In contrast, beta diversity in the neutral scenario changes with these parameter

values, making it more difficult to compare across conditions.

We compared the patterns of beta diversity of two- or ten-species communities with the probability of

exclusion of the fittest in species pairs sampled from these communities (see also Appendix 7). The sampled

species pairs may stably coexist, in which case the fittest species in a pair is the one that is more abundant

in the absence of any noise. If both species go extinct in the absence of noise, either of the two species is

randomly labeled as the fittest. This labeling generalizes what is used in the species interaction analysis above

where species 1 (the fittest species) always grows faster than species 2, such that their long term coexistence is

impossible in the absence of DN.

2.3 Statistical analysis

Statistical analysis was performed with Python 3.7.6 incorporating Scipy 1.4.1. and pymc3 3.10.0. For statistical

tests of Pearson’s correlation and Spearman’s rank-order correlation, scipy.stats.pearsonr and scipy.stats.spearmanr

were used, respectively. For calculation of HPDIs, pymc3.stats.hpd was used.

3 Results

3.1 Toxin sensitivity determines single species’ response to coupled DN and EFs

To establish our intuition on how the coupling of EFs and DN affects the dynamics, we first analyse the

extinction probabilities of a single species (species 1) in mono-culture with one type of resource and toxin (Fig.

2A). As the switching rate decreases, the duration of the harsh or mild environments become longer. In the

presence of DN, this duration determines whether or not the species goes extinct, together with its sensitivity

to toxins in the environment, which can be seen to modulate environmental harshness. When the switching

rate is very low (ν → 0), the species is exposed to the static environment with either abundant or scarce

resources (with probability 0.5, respectively) depending on the initial environmental condition ξ(0): it mostly

goes extinct under scarce resource supplies even when their sensitivity to toxins is low (Fig. 2B). On the other

hand, abundant resource supplies maintain species 1 with some probability even if it is very sensitive to the

toxin (Fig. 2D). Over many simulations, low fluctuation rates therefore result in a bimodal distribution of the

species’ abundance (e.g., Fig. 2B). At the other extreme, very high switching rates (ν → ∞) expose the bacteria

to an environment with mean abundance of resources (Wienand et al., 2017, 2018; West and Mobilia, 2020;

Taitelbaum et al., 2020). This is enough to rescue the species with a low toxin sensitivity (Fig. 2B) but not
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with a high sensitivity (Fig. 2D). At an intermediate toxin sensitivity (Fig. 2C), the worst situation lies in the

intermediate fluctuation rate: the duration of the harsh environment is long enough to drive them extinct, but

the time with abundant resource supply is not long enough to rescue them fully. In sum, even when only a

single species is present, we see non-trivial patterns in its response to EFs coupled with DN, which depends on

its sensitivity to toxins.

3.2 Toxin sensitivity changes how switching rate affects two-species competition

Next, we add another species (species 2) that grows slower than species 1 into the environment and ask how

it interacts with species 1 in our model. Rather than measuring interactions through the effect of each species

on the other’s abundances, we focus on species 1 and analyze how its extinction probability is affected by the

presence of species 2, compared to mono-culture (Fig. 2). Our reasoning is that (i) species 1 should always

out-compete species 2 in the absence of DN, and that (ii) we already know the extinction probability of species

1 under EFs and DN in mono-culture; measuring any deviation from the mono-culture outcome allows us to

quantify how likely it is for the fitter species to be lost in a given community. Such species loss events can be

seen as ecological drift. We again explore changes in the species’ toxin sensitivity, as we learned above that it

affects species abundances via DN (Fig. 2), but also because we expect it to affect species interactions (Piccardi

et al., 2019). For now, we varied sensitivity to toxins simultaneously for both species, an assumption that we

relax later.

When both species were highly sensitive to the toxin, species 2 had a positive effect on species 1, reducing

its extinction probability. This occurs because in the simulations, toxic compounds are degraded more quickly

in co-culture than in mono-culture due to the larger initial number of individuals (s1(0) + s2(0) > s1(0)).

This effect can be recapitulated by a mono-culture with larger initial abundance (Fig. A.20). A larger total

initial species abundance in co-culture decreases death rates, which outweighs competition for nutrients in toxic

environments (Piccardi et al., 2019). However, for most parameter values in Fig. 3A, species 2 has a negative

effect on species 1 by increasing its extinction probability. We therefore focus on competitive interactions in

the main text and consider positive interactions in Appendix 4.

As in the single species case (Fig. 2), the extinction of species 1 was highly dependent on the toxin sensitivity

of the two species, as we varied the fluctuation rate: monotonically increasing, monotonically decreasing, or

non-monotonically changing with a minimum or maximum value at an intermediate switching rate (Fig. 3B).

Interestingly, this pattern does not match the single-species behavior (compare Fig. 2A and 3AB).

3.3 Behavior at extreme switching rates explains non-monotonic changes in ex-

clusion of the fittest

To better understand why the faster-grower goes extinct in the observed parameter ranges (Fig. 3B), we

decompose species 2’s effect on species 1 into the probability that species 2 persists but species 1 goes extinct

(hereafter, called probability of exclusion of the fittest) and the probability of any other outcome (e.g., extinction
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of both species, see Eq (A.2)). We focus on the probability of exclusion of the fittest, as it explains the variation

in species interaction strength in most cases (compare Figs. 3A and C) and investigate how it changes over the

switching rate and depends on toxin sensitivity.

We again let the two extreme switching rates guide our intuition (see also Fig. A.4). At a very slow rate

(ν → 0), the resource supply remains either scarce or abundant, while a very fast environmental switching rate

(ν → ∞) drives resource supply to the mean concentration. We explore system behavior at these three constant

resource supplies (scarce, abundant or mean) and different toxin sensitivities, which together represent how

harsh the environment is. When the environment is harsh – due to resource scarcity, high toxin supplies, or

high toxin sensitivity –, both species are most likely to go extinct rather than to outcompete each other (Figs.

5A – C). As toxin sensitivity goes down and species survival becomes more likely, DN becomes more important

and we see a higher probability that even the fitter species (species 1) will be excluded. The more resources are

available, the more likely it is that species survive – in particular, that species 1 out-competes species 2, and

the peak of competitive exclusion moves to a higher toxin sensitivity (see arrows in Figs. 5A – C). When it is

easy for both species to survive (toxin sensitivity is low and/or resources are abundant), DN no longer plays

an important role and the faster-growing species 1 is unlikely to be excluded. ntuitively then, the exclusion of

the fittest is caused by the coupling of DN with EFs: Harsh environments, where both species’ abundances are

positive but low (see Appendix 2.2), lead to stronger DN and a higher probability of extinction of the fittest

species compared to a static or mild environment (Fig. 4). It is important to stress that the exclusion of the

fittest never occurs without DN, regardless of EFs (see Appendix 2).

Hereafter, we refer to the toxin sensitivity that maximizes the probability of exclusion of the fittest in the

absence of environmental switching as the “critical toxin sensitivity” (arrows in Figs. 5A – C). We see two

critical toxin sensitivities (at 0.1 and 0.8 in Figs. 3C and D, Figs. 5A and C) at ν → 0 that correspond to the

long time spent with either scarce or abundant resources. Instead, at ν → ∞, where resources remain at mean

abundance, there is a single critical toxin sensitivity (at 0.4 in Figs. 3C and D) where exclusion of the fittest

is most likely (Fig. 5B). Toxin sensitivities between these critical values can show a maximum or minimum

probability of exclusion of the fittest at an intermediate switching rate, resulting in the rugged landscape of

Fig. 3C (see Appendix 1.2 for more detail).

3.4 Competition strength changes non-monotonically under different scenarios

We have shown that using a given set of parameters, the rugged landscape shown in Fig. 3C causes the

competitive exclusion of a faster-growing species to either increase, decrease or vary non-monotonically across

switching rates, depending on toxin sensitivity. We next explore the generality of this finding. In the appendix,

we explore scenarios where (i) switching occurs in toxin rather than resource supplies, where (ii) both resource

and toxin supplies switch (Table 1, see Appendix 3), or where (iii) we change the amounts of scarce and abundant

resource supplies (Appendix 4).

In all these scenarios, the landscapes of species 1’s difference in extinction probability and probability of
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exclusion of the fittest are qualitatively similar (Figs.3 C and D, A.7, and A.9). However, each scenario differs in

the three critical toxin sensitivities and likelihood that the difference in extinction probability non-monotonically

changes over the switching rate. Accordingly, we asked whether the distances between critical toxin sensitivities

might predict the probability of observing non-monotonic behavior. In Table A.2 and Fig. A.14, we show that

the distance between critical sensitivities under harsh and mean environments (i.e., very fast environmental

switching) correlates positively with the likelihood of observing non-monotonic effects of the switching rate on

competition (Fig. A.14, black circles; Spearman’s ρ = 0.77, P-value: 0.043), but no significant correlation was

found with the distance between the critical toxin sensitivities under the mean and mild, or the harsh and mild

environments (Fig. A.14, grey diamonds and cross marks; Spearman’s ρ = −0.22, P-value: 0.64, and ρ = 0.42,

P-value: 0.35, respectively). Therefore, the non-monotonic change of the difference in extinction probability is

likely when there is a large difference in the critical toxin sensitivities under harsh and mean conditions.

3.5 Beta diversity changes similarly to exclusion of the fittest

In the previous sections, we focused on interactions between two species and the conditions under which one

may drive the other extinct. Ultimately, however, our interest is to predict how whole communities comprised

of tens, hundreds or even thousands of species are affected by fluctuations in the environment.

We set up a model of 100 communities composed of between 2 and 10 species each. Species within each

community were defined by parameter values that were randomly sampled from the same distributions with

the exception of toxin sensitivity δ, which was sampled from beta distributions with different means, ranging

from δ̄ = 0.1 to 1. We generated a new set of 100 communities with different numbers of species and different

fluctuation rates as above, and ran 100 replicate simulations for each of the 100 communities in each set. We then

measured beta diversity across the 100 replicate simulations per community and final species richness (number

of surviving species) over all 100 runs for the 100 communities (total: 10’000). In this model design, the 100

replicate runs represent independent “patches” without migration. Their beta diversity then indicates how

different the species compositions were across all patches in a given environment (e.g. a given fluctuation rate),

and we repeat the exercise 100 times with different species sampled from the same distributions to see generality

of the results. A high beta diversity would then indicate that we have different community compositions in each

patch, while a beta diversity of 1 would tell us that all patches have the same species composition.

In two-species communities, we obtained qualitatively similar patterns of exclusion of the fittest to those in

the species interaction analysis (compare column A in Fig. 6 with Fig. 3C), suggesting that our results in Fig.

3C are unlikely to be specific to the choice of species parameter values in Table A.1. Beta diversity changes over

the environmental switching rate similarly to the probability of exclusion of the fittest for four out of the five

tested mean toxin sensitivities (columns A and B in Fig. 6, see also Fig. A.15): both monotonically decrease

(mean toxin sensitivity δ̄ = 0.1 or 1.0), or non-monotonically change with maximum (δ̄ = 0.2) or minimum

(δ̄ = 0.6) values at intermediate switching rates. This similarity can be explained as follows: ignoring extinction

of both species, a small probability of exclusion of the fittest indicates that the stronger species 1 fixates in most
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simulations, a homogeneous outcome with small beta diversity. In contrast, when the exclusion of the fittest is

more likely, the weaker species 2 is more likely to fixate, leading to significant heterogeneity in the simulation

results and large beta diversity (species 2 survives alone in a fraction of the runs, and species 1 in the rest). At

one mean toxin sensitivity δ̄ = 0.4, the patterns of the probability of exclusion of the fittest and beta diversity

over the switching rate do not match. At this toxin sensitivity, beta diversity remains high at low switching

rates (ν = 10−5, 10−4, 10−3) because both species go extinct in 50% of the runs but they can coexist in about

7%, as illustrated by our measure of final species richness (column C in Fig. 6). Beta diversity ignores the cases

of both-species extinction but increases in cases of coexistence, see Eq (A.6). Overall, looking at final species

richness (column C in Fig. 6), we see that complete extinction is more likely to occur as sensitivity increases.

At the highest toxin sensitivity, the only way a species can survive is if the switching rate is really low and they

can benefit from abundant resources for a long time, while at lower toxin sensitivity, complete extinctions only

occur at low switching rates, because there is long term exposure to scarce resources.

In communities with ten species (see Figs. A.18 and A.19 for intermediate community sizes), we observe

similar patterns between beta diversity (column D in Fig. 6) and the probability of exclusion of the fittest

(column A in Fig. 6) Studying interactions between species pairs can therefore predict the behavior of a ten-

species community. To explore whether it matters which two species one selects for the interaction analysis, we

next repeatedly sub-sampled species pairs from each ten-species community and compared the exclusion of the

fittest in the pairs with the beta diversity of the whole community (Fig. A.16). Naturally, the more species

pairs one samples, the more accurately we can predict the pattern of beta diversity, but this accuracy appears

to saturate at around five species pairs (Appendix 7, Fig. A.17), which is approximately 11% of all possible

species pairs. In addition, large beta diversity does not necessarily reflect a large variation in species richness;

large beta diversity with small species richness (see mean toxin sensitivity δ̄ = 0.4 or 0.6 at switching rate

ν ≥ 100 in columns D and E of Fig. 6) indicate that different species fixate in each run, which also supports the

observed relationship between the exclusion of the fittest and beta diversity. In sum, estimating the probability

of exclusion of the fittest between a few randomly selected species pairs (section 3.3) is a good predictor for the

beta diversity of larger communities under those same environmental conditions (see Appendix 7 for detailed

discussion). This similarity is not coincidental: as for the probability of exclusion of the fittest, beta diversity

is also maximized when DN is the strongest, such that different species survive in each patch.

4 Discussion

Understanding how species diversity in microbial communities arises and is maintained is a central question

in microbial ecology and evolution. While many theoretical and experimental studies have addressed this

question in static environments, community diversity is expected to respond to fluctuations between benign

and harsh environmental conditions, which can alter the abundance of different species and the interactions

between them (see e.g., Rodŕıguez-Verdugo et al. (2019)). Strong drops in population sizes caused by harsh

conditions can increase the strength of DN, which, coupled with EFs may lead to non-trivial outcomes (Wienand
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et al., 2017, 2018; West and Mobilia, 2020; Taitelbaum et al., 2020). Here we have analysed a mathematical

model representing a biological scenario such as a gut or soil microbial community that experiences fluctuations

between benign and harsh conditions, such as feast and famine, or drought and rain. The model shows how

community diversity – mediated by inter-specific interactions and DN – changes with environmental fluctuation

rates.

Our study is centred on two main findings. First, we show that the rate at which resource supplies switch

changes the ability of a slower-growing species to drive a fast-growing one extinct (Fig. 3). While the fitter

species will never be excluded in the absence of DN, in a fluctuating environment with DN, harsh conditions

(e.g. scarce resources) strengthen DN to sometimes drive species extinction in spite of their greater fitness. We

see this as a form of ecological drift, wherein selection by the environment is not strong enough to maintain the

fittest species and thus the fittest species may go extinct due to DN. By changing the length of time spent in

the harsh environment, the environmental switching rate affects such competitive exclusion. In addition, the

species’ ability to withstand environmental harshness can also strengthen DN and lead to stronger ecological

drift. We confirmed the generality of these results by exploring various forms of EFs (e.g., asymmetric switching

environments and cyclically changing environments in Appendix 5). When we consider many replicate com-

munities with identical initial species compositions, the increased stochasticity resulting from DN means that

which species go extinct under these harsh conditions is less dependent on their relative competitiveness, and

species composition will be more random in each replicate, leading to greater beta diversity. Recent studies

corroborate this finding: smaller communities show larger varieties in species composition due to DN (Gilbert

and Levine, 2017), while species composition is robust against EFs when species are insensitive to them (Dedrick

et al., 2021).

Although we now understand that beta diversity increases when the probability of exclusion of the fittest is

high, precisely when such ecological drift is maximized will be difficult to predict in practice, as it is a function

of multiple factors: the form of the EFs (Appendix 3 and Appendix 5), the magnitude of EFs (Appendix 4),

the rate of EFs and the sensitivity of species to environmental harshness. Yet, our simulation approach allows

us to investigate these different effects efficiently.

Our second main finding is that a good way to predict how beta diversity will respond to EFs is to measure

the probability of exclusion of the fittest across fluctuation rates in few pairs of species randomly sampled from a

focal community and use it as an indicator for how the beta diversity of the whole community will behave (Fig.

6, Appendix 7). In two species communities, explaining the similarity between the probability of exclusion of the

fittest and beta diversity is straightforward: the latter accounts for the probabilities that both or either of the

two species persist. We verified that this similarity also holds in neutral scenarios (i.e., two species are identical

except for their labels and thus the fittest species is arbitrarily chosen, Fig. A.21). In larger communities, the

similarity is not straightforward but our first main finding helps to understand this result. EFs affecting DN

strength could exclude species that would persist in a community without noise. If the “fittest” species goes

extinct with some probability due to DN, community compositions at time σend are heterogeneous and beta

diversity increases. Therefore, our two findings emphasize the importance of coupling EFs and DN: competition
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results can differ from those in static environments and this affects beta diversity.

This brings us to a hypothesis that has been debated at length in ecology: the intermediate disturbance

hypothesis (Connell, 1978; Grime, 1973), which states that intermediate intensity and frequency of disturbance

maximize species diversity. Fox (2013) argues that the intermediate disturbance hypothesis should be abandoned

because many examples disagree with it (Mackey and Currie, 2001; Miller et al., 2011). In our model, fluctuations

in resource and toxin can be regarded as disturbances. In agreement with Mackey and Currie (2001) and Miller

et al. (2011) then, an intermediate intensity (i.e., toxin sensitivity) or disturbance frequency (environmental

switching rate) does not always maximize beta diversity: our analysis shows that intermediate frequencies of

disturbance maximize beta diversity only when mean toxin sensitivity is within a certain range. Mean toxin

sensitivities at the two thresholds of this range show that beta diversity monotonically decreases or increases

over the switching rate. These thresholds depend on scenarios of environmental switching and amounts of

resource supplies because these parameters change the probability of competitive exclusion (see Appendix 3

and Appendix 4). High beta diversity at intermediate disturbances is then a consequence of a change in

environmental conditions and not expected to apply generally.

The relationship between EFs and species diversity is also an important question in the modern coexistence

theory, which predicts that fluctuations will affect species coexistence by changing species growth rates when

rare (Chesson, 2000a,b; Barabás et al., 2018; Ellner et al., 2019; Letten et al., 2018a). Compared to the approach

taken in this study – where we ask how many and which species persist at the end of a long but fixed time frame

(i.e., for a quasi-stationary distribution, Fig. 6) – the modern coexistence theory allows one to analyze whether

or for how long a set of species will all coexist (Schreiber et al., 2020). An interesting future direction would be to

apply the modern coexistence theory to investigate how environmental fluctuation rates and toxin sensitivities

affect the duration of all-species coexistence. This approach would help to propose biological mechanisms behind

species coexistence in our setup.

Of course, our model makes some simplifying assumptions and has some limitations. First, we used arbitrary

time units, which in practice can be considered to be hours, corresponding to typical bacterial growth rates in

relevant experiments (Novick and Szilard, 1950; Lin et al., 2002; Zhao and Lin, 2003). This implies that species

interactions and beta diversity will vary when environmental switching ranges from hourly (ν = 100) to about

once every four days (ν = 10−2) on average, which is shorter than in some experimental studies (Benneir and

Lenski, 1999; Rodŕıguez-Verdugo et al., 2019; Chen and Zhang, 2020) but not impractical. That said, under

this assumption, changing environmental switching from a daily to an hourly scale, for example, would show

different species compositions or diversity.

Second, our model focuses on competitive exclusion but other types of interactions can also affect diversity

(Rodŕıguez-Verdugo et al., 2019). Positive interactions between pairs of species (e.g., cross-feeding), for example,

might increase alpha and gamma diversities, because such interactions enable species to coexist (Sun et al.,

2019). This could result in an increase in beta diversity because the extinction of one species increases its

partner species’ extinction probability (Dunn et al., 2009; Goldberg and Friedman, 2020).

Third, one can consider more complex species-resource (and species-toxin) interaction functions. For ex-
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ample, species’ growth rates can be limited by the resource with the smallest amount when the resources are

complementary (León and Tumpson, 1975). In addition, absorption rates of toxin might correlate with species’

growth rate if the toxin targets cell metabolism. These functional forms may enable more species to coexist,

collapsing the similarity between beta diversity and the probability of exclusion of the fittest. Our study would

also be more general if species could change their growth rates depending on resource concentrations (Nguyen

et al., 2020a) or types (Balakrishnan et al., 2021). Introducing such plasticity would affect species’ extinction

probability and diversity. One could also consider building species-compounds interaction networks. In the cur-

rent manuscript, we assume that each resource (toxin) has a positive (negative) effect on each species. However,

we know that some compounds, (e.g., pesticides) can be resources for some species but toxic to others (Muturi

et al., 2017), and other compounds (e.g., that affect pH (Ratzke et al., 2020) and osmolarity (Larsen, 1986;

Oren, 2008)) can have either positive or negative effects on growth depending on their concentrations. The way

in which species and compounds interact could affect exclusion of the fittest and species diversity.

Although we focused on beta diversity to measure the heterogeneity of communities in this manuscript, other

metrics of species diversity could be considered. For example, Fung et al. (2015) and Kalyuzhny et al. (2015)

analyze how demographic noise and environmental fluctuations affect species abundance distributions (SAD).

Grilli (2020) instead calculate the mean abundance distribution (MAD), which is defined as the distribution

of mean species abundances over communities and follows a log-normal distribution. While SAD characterizes

species diversity within a single community, it does not explain the heterogeneity of species compositions across

communities, which is what we can capture with beta diversity. Combining multiple SADs or probability

distributions of SADs is possible, but would not be as easy to analyze. Similarly, MAD ignores the variation of

species’ abundances across communities and may therefore not capture the heterogeneity of communities caused

by demographic noise and environmental fluctuations.

Finally, our community analysis considers up to ten microbial species, which is orders of magnitude below

the size of natural microbial communities, according to genomic sampling (Gans, 2005; Roesch et al., 2007).

However, it may also be reasonable to assume that species live in structured environments where they cannot

possibly interact with more than a handful of other genotypes (Tecon et al., 2019). This suggests that a

10-species community may already be biologically meaningful.

In conclusion, the time scale of environmental fluctuations changes the importance of species fitness for

survival and thus community beta diversity. This occurs in our model when EFs affect the strength of DN,

leading to the occasional exclusion of strong species. Predicting how the strength of DN changes is not simple

because it is affected by both environmental and species’ parameters (resource and/or toxin supplies and toxin

sensitivities in our model). This may be one explanation as to why the intermediate disturbance hypothesis

does not always hold, but rather there are many relations between diversity and disturbance (Mackey and

Currie, 2001; Miller et al., 2011). Nevertheless, we found similarities between how competitive exclusion plays

out between species pairs and beta diversity at the community level. In the event that we would like to predict

how the diversity of a given ecosystem, such as a soil community or a bioremediation ecosystem, responds to

environmental fluctuations, it may be sufficient to isolate a few culturable species and analyze their interactions
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over different fluctuation rates. This approach promises to greatly facilitate our ability to study large and

complex natural communities and their response to harsh conditions.
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Figure 1: Schematic illustration of the model

A chemostat model with environmental switching. A: Interaction network when N = 2. A → B represents that A
increases B while A ⊥ B represents that A decreases B. Two species compete for the same resource (R in a circle) but
are killed by the same toxic compound (T in a triangle). As a proxy for species interactions, we follow the net effect of
the slower-growing species 2 on species 1 (large arrow from species 2 to 1). B: An example of a chemostat model with
environmental switching and N = 2. Environmental switching is realized by changing the media flowing into a
chemostat. In this example, the current environmental condition is abundant resource supply R+

1 .
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Figure 2: Extinction probability and species abundance in mono-culture

A: Extinction probability of species 1 in mono-culture when the toxin sensitivity is low (green), moderate (orange), or
high (blue). 95% HDPIs are too small to see. B–D: violin plots of species 1’s abundance at the end of 105 simulations
with a low (B), moderate (C), or high (D) toxin sensitivity. White dots and black bars represent median values of the
abundances and their interquartile ranges, respectively.
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Figure 3: Species interaction strength changes differently over the switching rate

A: Difference in species 1’s extinction probability in mono-culture minus co-culture with species 2 (Eq A.1) changes

over the switching rate ν and the two species’ identical toxin sensitivities. In most of the parameter space, species 2 has

a negative effect on species 1 (i.e., species 2 increases the extinction probability of species 1). B: Some illustrative

examples from panel A plotted differently to show how species 2’s effect on species 1 changes over the switching rate at

given toxin sensitivities. The difference in extinction probability can monotonically increase (toxin sensitivity 0.1),

monotonically decrease (toxin sensitivity 0.4), or non-monotonically change with a minimum (toxin sensitivity 0.2) or a

maximum (toxin sensitivity 0.6) value at an intermediate switching rate. C: Probability that species 2 persists but

species 1 goes extinct (i.e., exclusion of the fittest) over the switching rate and the toxin sensitivity. D: probabilities of

exclusion of the fittest over the toxin sensitivity, when the environmental switching rate is slow (ν = 10−5),

intermediate (ν = 10−1), or fast (ν = 103). In panels B and D, 95% HDPIs are too small to see.
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Figure 4: Examples of the dynamics with exclusion of the fittest

In these examples (A: ν = 10−3, and δ = 0.1, A: ν = 10−1, and δ = 0.2, C: ν = 101, and δ = 0.4), species 1 goes extinct

but species 2 survives at the end of simulation σend = 200 due to the DN-EFs coupling. Black lines on the x-axis

represents times when the resource supply is scarce (ξ(t) = −1) while white lines represent times when the resource

supply is abundant (ξ(t) = 1). In panels A and B, species 1 decreases its abundance and goes extinct during the scarce

resource supply condition (pointed by arrows). In panel C, the environmental conditions are not shown because they

are not visible due to the fast switching.

BA C

Figure 5: Exclusion of the fittest explains how DN changes with toxin sensitivity and resource supply

Analysis of exclusion of the fittest predicts at which toxin sensitivity DN is strongest. A – C: In the absence of

environmental switching, the probability of exclusion of the fittest (i.e., probability that species 2 excludes species 1

and survives, shown by solid lines and hatched bars) is uni-modal over the toxin sensitivity while the probability of

both species extinction (bars) monotonically increases. The toxin sensitivities giving the peak values of probabilities of

exclusion of the fittest (critical toxin sensitivities, pointed by black arrows) depend on the resource supply: scarce

R1 = R−
1 (A), mean R1 = 〈R1〉 (B), or abundant R1 = R+

1 (C). 95% HDPIs are not observable as they are very small.
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Probabilities of exclusion of the fittest (column A), beta diversities (column B), and species richness (column C) over

the switching rate and the mean toxin sensitivities in two-species communities. Here, competitive exclusion refers the

event where the slower-growing species excludes the faster-growing species. Columns D and E show the beta diversity

and species richness in ten-species communities, respectively. In the plots of probability of exclusion of the fittest and

beta diversity, the black lines show the means and blue areas represent the probability distributions calculated from

10’000 simulations (100 beta diversity and each of them from 100 replicate runs). Each color in the species richness

plots represents the proportion of 10’000 runs where at the end of the run there were that number of species surviving.

Each row represents the mean toxin sensitivity of communities in those runs.
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Table 1: Different scenarios of environmental switching
Scenario Ri (ξ = 1) Ri (ξ = −1) Tj (ξ = 1) Tj (ξ = −1)

1 R+

i R−
i 〈Tj〉 〈Tj〉

2 〈Ri〉 〈Ri〉 T−
j T+

j

3 R+

i R−
i T−

j T+

j

R+

i , R
−
i , and 〈Ri〉 represent abundant, scarce, and mean resource supplies, respectively. R+

i > R−
i and

〈Ri〉 =
(
R+

i +R−
i

)
/2 for i = 1, . . . , N/2. Similar representation and relations hold for toxin supply Tj . In

each condition, ξ = 1 (ξ = −1) means mild (harsh) environment, respectively.
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Supplementary information

Appendix 1 Details of analysis

Appendix 1.1 Species interaction analysis

Here, we summarize the details of the simulations and parameter values used for species interaction analysis

in the main text. In the analysis of species interactions, we used the minimal model (N = 2): two species

compete for one resource and absorb and are killed by one toxin. We assumed that species 1 grows faster

than species 2 but the other parameter values are identical (Table A.1). In each run, the initial condition

is either (r1(0), t1(0), s1(0), s2(0)) = (150, 100, 10, 0) or (150, 100, 10, 10), where species 2 is absent or present,

respectively. The initial environmental condition is ξ = 1 with a probability of 0.5; otherwise ξ = −1. Each

simulation continues until at time σend = 200 when the distributions of species abundances converge to a quasi-

stationary distribution and do not change for a long time. The extinction probability was estimated by running

105 simulations for each condition.

In the main text, to investigate how species 2’s effect on species 1 changes over the switching rate, we began

by analyzing the difference in the extinction probability of species 1 in the presence/absence of species 2 as a

proxy for species interactions:

∆P (s1(σend) = 0) ≡ P (s1(σend) = 0; s2(0) = 0)− P (s1(σend) = 0; s2(0) > 0) . (A.1)

Then, we moved to using the probability of exclusion of the fittest (probability that species 2 excludes species

1) instead:

∆P (s1(σend) = 0) =− P (s1(σend) = 0, s2(σend) > 0; s2(0) > 0)
︸ ︷︷ ︸

exclusion of the fittest

+







P (s1(σend) = 0; s2(0) = 0)
︸ ︷︷ ︸

sp 1 goes extinct in mono-culture

−P (s1(σend) = 0, s2(σend) = 0; s2(0) > 0)
︸ ︷︷ ︸

both species go extinct







.

(A.2)

Although Fig.3A and C show that these two measures give similar results, Fig. A.2 confirms this conclusion as

the ratio of these two measures is around 1. In other words, the second line on the right-hand-side of Eq (A.2)

is ignorable. Intuitively, this is because the environment is very harsh when both species are likely to go extinct

(i.e., small resource supplies and high toxin sensitivity); then species 1 is also likely to go extinct in mono-

culture under such harsh environment. For this reason, the competitive exclusion probability (the first line on

the right-hand-side of Eq (A.2)) changes similarly to difference in extinction probability (∆P (s1 (σend) = 0))

over environmental switching rates and toxin sensitivities (Fig. 3C), although they differ in their signs.

We calculated 95% of highest posterior density intervals (HDPIs) to see the uncertainty of species ’1 extinc-
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tion probabilities or the probability of exclusion of the fittest. As we were interested in whether species 1 goes

extinct (or is excluded by species 2) or not in each simulation run, it is reasonable to assume these probabilities

follow beta distributions. As a prior distribution, we assumed the following beta distribution

Beta (1, 1) , (A.3)

which is equivalent to a uniform distribution between 0 and 1. After running 105 simulations and observing

species 1’s extinction (or exclusion) X times, the posterior probability distribution of species 1’s extinction

probability (or the probability of exclusion of the fittest) is given as follows:

Beta
(
X + 1, 105 −X + 1

)
. (A.4)

To calculate the 95% HDPIs, we sampled 10,000 samples from the posterior distributions and used pymc3.stats.hpd

function. However, the 95% HDPIs are very small and not observable in the main text due to the large number

of simulations.

Appendix 1.2 Landscapes of exclusion of the fittest

To understand how the switching rate and toxin sensitivity affect the probability of the exclusion of the fittest,

we analyzed three cases in the absence of EFs (Fig. 5), deriving three critical toxin sensitivities where the

probability of exclusion of the fittest is maximized. This analysis clarifies what happens at the two extreme

switching rates. We see two critical toxin sensitivities (at 0.1 and 0.8 in Figs. 3C and D) at ν → 0 that

correspond to the long time spent with either scarce or abundant resources, while at ν → ∞, where resources

remain at mean abundance, there is a single critical toxin sensitivity (at 0.4 in Figs. 3C and D). As the switching

rate increases from one extreme to the other, the form of the probability of exclusion of the fittest in Fig. 3C

changes from bi-modal to uni-modal.

We now see that the landscape of competitive exclusion in Fig. 3C contains two “mountain ranges”. The

first includes two peaks corresponding to the critical toxin sensitivities under scarce and mean resources (0.1, 0.4,

respectively). The peak at toxin sensitivity 0.1 converges to the peak at 0.4 (Fig. 3D) with increasing environ-

mental switching. The second mountain range has a single peak corresponding to the critical toxin sensitivity

under abundant resources (0.8), which vanishes by increasing the switching rate (Fig. 3D). At toxin sensitivities

between the critical values under scarce and mean resource supplies (δ = 0.2, 0.3), the probability of exclusion

of the fittest changes in a humped shape over the switching rate (species 1’s difference in extinction probability

changes in a U shape, see Fig. 3B), as it passes over the first mountain range. When the toxin sensitivity is

between the critical values under mean and abundant resources (e.g. δ = 0.6), the probability of exclusion of

the fittest instead has a “valley” over the switching rate (the difference in extinction probability changes in a

humped shape, see Fig. 3B). At toxin sensitivities larger than the abundant resource critical value (δ > 0.8),

exclusion of the fittest is very unlikely because both species frequently go extinct (Fig. 5C).
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In summary, the transition between the two extreme switching rates results in a highly rugged landscape.

This means that the stochastic exclusion of the fittest species can be very high or very low at an intermediate

switching rate (either in agreement or in contradiction with the intermediate disturbance hypothesis), depending

on species’ toxin sensitivities, our proxy for environmental harshness. This makes predicting the outcome at a

given switching rate very difficult, as it is dependent on precise parameter values.

Appendix 1.3 Species diversity analysis

In the community diversity analysis, we changed the number of species from N = 2 to N = 10. Some parameter

values were not fixed in this analysis, and we sampled them from the following probability density functions:

µik ∼ N
(
1, 0.12

)
, (A.5a)

δjk ∼ Beta
(
100δ̄, 100

(
1− δ̄

))
, (A.5b)

Kr
ik,K

t
jk ∼ N

(
100, 102

)
. (A.5c)

Here, each function is uni-modal with a mean of 1.0 for µik, δ̄ for δjk, and 100 for Kr
ik,K

t
jk. For µik,K

r
ik, and

Kt
jk, the mean values are the same as in Table A.1 and they are rarely negative due to the small variances.

We set the mean of µik as 1 so that µik is likely to be larger than δjk unless δ̄ = 0.99: species would easily go

extinct when µik < δjk. The means of Kr
ik and Kt

jk are chosen so that amounts of resource and/or toxin inflows

are larger (smaller) than these values under the abundant (scarce) supply condition. We expected that the

growth and/or death rates of species would largely change depending on the environmental conditions with this

setting. We sampled δjk from a beta distribution so that 0 ≤ δjk ≤ 1. δjk should be non-negative by definition

and not be larger than 1 because a large δjk is likely to drive species k extinct. Beta distribution satisfies these

requirements regardless value of mean δ̄. We systematically vary the value of the mean toxin sensitivity δ̄ to

be δ̄ = 0.1, 0.2, 0.4, 0.6 or 0.99 in each set of simulations. We used δ̄ = 0.99 instead of δ̄ = 1.0 because the beta

distribution did not generate different values of δjk with δ̄ = 1.0. For each number of species N (2, 4, 6, 8 or

10) and δ̄, 100 sets of parameter values are sampled. With each parameter set, we performed the simulation

100 times until σend = 200 at each value of the switching rate ν. Then, we calculated the species richness (the

number of surviving species) and beta diversity.

In each run, initial resource amounts, species abundances, and toxin amounts are given by (ri(0), tj(0), sk(0)) =

(150, 150, 10) for any i, j, k. As an environmental switching scenario, we chose scenario 1 (Table 1) with

R+

i = 200, R−
i = 50, and 〈Tk〉 = 125 for any i and k. The initial environmental condition is ξ = 1 with

probability of 0.5; otherwise ξ = −1.

Then, at a quasi-stationary distribution (σend), we evaluated beta diversity and species richness. Beta

diversity is calculated as follows:

1Dβ (σend) ≡
1Dγ (σend)
1Dα (σend)

, (A.6)
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with alpha and gamma diversities defined as below:

1Dα (σend) ≡ exp

(

−
100∑

l=1

N∑

k=1

wlplk (σend) ln pln (σend)

)

, (A.7)

1Dγ (σend) ≡ exp

(

−
N∑

k=1

p̄k ln p̄k (σend)

)

. (A.8)

wl is a weight for community l calculated by size of community l (sum of species abundances in community l

relative to the sum of community sizes over l), plk is the relative abundance of species k in community l (i.e.,

in community l, plk (σend) = sk (σend) /
∑

k sk (σend)), and p̄k =
∑

l wlplk is the mean relative abundance of

species k among communities l = 1, . . . , 100. If all species go extinct in community l, it does not affect alpha,

beta and gamma diversities as wl = 0. If all species go extinct in all communities, beta diversity becomes

1Dβ (σend) = 1. Fig. A.3 represents how alpha, beta, and gamma diversities change over the switching rate

and mean toxin sensitivities.

Appendix 2 Analysis excluding noise

Appendix 2.1 Deterministic scenarios (absence of DN and EFs)

In this section, we analyse the equilibrium state of a two-species, one-resource, and one-toxin model, in the

absence of environmental switching and demographic noise. Although an equilibrium state cannot be analyt-

ically obtained, we shall see that there exists at most one stable and feasible equilibrium state. By removing

demographic noise and environmental switching from Eq (4) in the main text, the dynamics are governed by

the following ordinary differential equations:

ṙ1 = α (R1 − r1)−
∑

k=1,2

µ1k

Y r
1k

r1
r1 +Kr

1k

sk, (A.9a)

ṫ1 = α (T1 − t1)−
∑

k=1,2

δ1k
Y t
1k

t1
t1 +Kt

1k

sk, (A.9b)

ṡk =

(

µ1k
r1

r1 +Kr
1k

− δ1k
t1

t1 +Kt
1k

− α

)

sk, (A.9c)

where the dot denotes the time derivative. In spite of the simplicity of the model, we learn from (A.9a)

-(A.9c) that, in the absence of consumption by the species, the resources and toxins relax towards the in-flowing

values R1 and T1 on a timescale of order 1/α. Furthermore, we infer from (A.9a) -(A.9c) that there are feedback

loops between species abundances and resource and toxin concentrations (see Fig. 1A): as sk increases, both r1

and t1 decrease, see (A.9a) and (A.9b), which in turn can result either in a decrease (negative feedback loop)

or in an increase of sk (positive feedback loop), depending on the sign of the parenthesis on the right-hand-side

of (A.9c).

When only species k persists in the system, a feasible1 equilibrium state of Eqs (A.9a) -(A.9c), (r1, t1, sk) =

1Here, feasibility means r∗
1k, t

∗
1k, s

∗
k > 0
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(r∗
1k, t

∗
1k, s

∗
k), should satisfy below:

α (R1 − r∗1k) =
µ1k

Y r
1k

r∗
1k

r∗
1k +Kr

1k

s∗k, (A.10a)

α (T1 − t∗1k) = δ1kY
t
1k

t∗
1k

t∗
1k +Kt

1k

t∗k, (A.10b)

µ1j
r∗
1k

r∗
1k +Kr

1k

= δ1k
t∗
1k

t∗
1k +Kt

1k

+ α. (A.10c)

By rearranging the first and second equations, we see that they represent quadratic functions of r∗
1k and t∗

1k:

−r∗21k + {R1 −Kr
1k − µ1ks

∗
k/(αY

r
1k)} r∗1k +Kr

1kR1 = 0, (A.11)

−t∗21k +
{
T1 −Kt

1k − δ1ks
∗
k/(αY

t
1k)
}
t∗1k +Kt

1kT1 = 0. (A.12)

Notice that Kr
1kR1 and Kt

1kT1 are positive. This implies that the above equations always have a unique positive

root. In other words, we can obtain unique solutions for r∗
1k and t∗

1k once we obtain s∗k.

By substituting the positive roots of Eqs (A.11) and (A.12) into Eq (A.10c), we obtain the following equation

whose positive root is s∗k:

f(s) =
1

2α

{

(−µ1k + 2α+ δ1k) s+
√

Q1 (s)−
√

Q2 (s) + α
(
−Kr

1kY
r
1k +Kt

1kY
t
1k − Y r

1kR1 + Y t
1kT1

)}

(A.13)

where Q1(s) and Q2(s) are quadratic functions of s:

Q1 (s) = {µ1ks+ αY r
1k (K

r
1k −R1)}2 + 4αY r

1kK
r
1kR1 > 0 (A.14a)

Q2 (s) =
{
δ1ks+ αY t

1k

(
Kt

1k − T1

)}2
+ 4αY t

1kK
t
1kT1 > 0. (A.14b)

Notice that f(s) always has a root s = 0 because

f(0) =
1

2α

{√

Q1(0)−
√

Q2(0) + α
(
−Kr

1kY
r
1k +Kt

1kY
t
1k − Y r

1kR1 + Y t
1kT1

)}

=
1

2α

{
αY r

1k (K
r
1k +R1)− αY t

1k

(
Kt

1k + T1

)
+ α

(
−Kr

1kY
r
1k +Kt

1kY
t
1k − Y r

1kT1 + Y t
1kT1

)}

= 0. (A.15)

Although Newton’s method numerically provides a root of f(s), this root depends on the initial value used in

Newton’s method. In addition, as f(s) has root s = 0, Newton’s method may provide this root with various

initial values, which does not always mean that f(s) does not have positive roots (i.e., s∗k). In other words, it

is recommended to investigate how many positive roots f(s) has before using Newton’s method.

To investigate the number of f(s)’s positive roots, it is useful to obtain df/ds:

df

ds
=

1

2α

{

(−µ1k + 2α+ δ1k) +
dQ1/ds

2
√

Q1 (s)
− dQ2/ds

2
√

Q2 (s)

}

. (A.16)
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Although it is analytically difficult to obtain the solution(s) of df/ds, we can obtain the maximum number of

positive roots of f(s) by analyzing the number of df/ds’s sign changes. Notice that dQ1/ds and dQ2/ds are

linear functions of s:

dQ1

ds
= 2µ1k {µ1ks+ αY r

1k (K
r
1k −R1)} , (A.17a)

dQ2

ds
= 2δ1k

{
δ1ks+ αY t

1k

(
Kt

1k − T1

)}
. (A.17b)

In addition, Q1(s) and Q2(s) are always positive. Then, the second and third terms of Eq (A.16) change their

sign at most once by increasing s. The maximum number of df/ds’s sign change is, therefore, two. This implies

that the maximum number of positive roots of f(s) is also two. To obtain the exact number of positive roots of

f(s), it is necessary to numerically calculate the root(s) of df/ds. Substituting the root(s) into Eq (A.13) and

calculating the sign of f(s), it is possible to obtain the exact value of s∗k.

Once we have obtained a feasible equilibrium state (r∗
1k, s

∗
k, t

∗
1k), it is necessary to analyze the stability of

this equilibrium state. Although the stability analysis requires the evaluation of the Jacobian matrix at each

equilibrium state, we can see that there exists at most one feasible and stable equilibrium state without such a

stability analysis. Notice that:

ṡj ≶ 0

⇔ µ1k
r∗
1k

r∗
1k +Kr

1k

≶ δ1k
t∗
1k

t∗
1k +Kt

1k

+ α

⇔ f (s) ≷ 0. (A.18)

These inequalities imply that a stable equilibrium state satisfies the following inequality:

df

ds

∣
∣
∣
∣
s=s∗

k

> 0. (A.19)

Although there can exist at most two feasible equilibria, only one of them satisfies the above inequality (Fig.

A.1). The number of feasible and stable equilibria is, therefore, one at most.

For the sake of simplicity but without loss of generality, in the main text, we assumed that the maximum

growth rate of species 1 is larger than species 2 but the remaining parameter values are identical, resulting in

a per-capita growth rate of species 1 always larger than species 2. In this setting, in the absence of DN, species

2 always goes extinct after a finite time while species 1 persists if it has a feasible and stable equilibrium state.

It is worth noting that this feature also characterizes the two-species, one-resource and one-toxin model in the

presence of environmental switching without DN: in this case species 2 always goes extinct in a finite time, and

at equilibrium one has either s∗1 = s∗2 = 0 (extinction of both species) or s∗1 > 0, s∗2 = 0 (survival of species 1,

extinction of species 2), see Fig. A.5.
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Appendix 2.2 With environmental fluctuations alone

It is also instructive to analyze the long-time dynamics of the two-species, one-resource, one-toxin model in

the presence of EFs and without DN. This describes the dynamics of a sufficiently large community in which

DN is always negligible and whose time evolution is described by Eqs (A.9a)-(A.9c), but now with (R1, T1) =

(R1(ξ), T1(ξ)) switching randomly with rate ν between two states ξ = ±1, which is applicable to all three

scenarios in Table 1. Here, for the sake of simplicity and concreteness, we consider the scenario 1 of Table 1

with 1 ≪ R−
1 < 〈R1〉 < R+

1 , while T1 = 〈T1〉 does not vary with the environment. In this case, Eqs. (A.9a)-

(A.9c) are a system of stochastic differential equations (SDEs). In order to appreciate the effect of EFs on DN,

it is useful to study the total population size n ≡ r1 + t1 + s1 + s2 which, according to (A.9a)-(A.9c), obeys

ṅ = α (R1(ξ) + 〈T1〉 − n)− 2
∑

k=1,2

δ1,k
t1sk

t1 +Kt
1,k

, (A.20)

where, as in the main text, Y r
ik = Y t

jk = 1. Importantly,
√
n gives the intensity of DN in a total population of

size n. Eq (A.20) is, however, difficult to analyze, due to the nonlinear coupling of t1 with sk whose dynamics,

according to Eqs (A.9b)-(A.9c), also depend on ξ. In order to obtain some insight into the stationary probability

density p(n) of the population, we have thus we analyzed n̂ ≡ r1 − t1 + s1 + s2 which is related to the total

population size, since n̂ = n − 2t1. In this simple example n̂, according to Eqs. (A.9a)-(A.9c), obeys the

following linear SDE

˙̂n = α (R1(ξ)− 〈T1〉 − n̂) . (A.21)

As seen above, the system reaches its equilibrium and (s1, s2, t1) → (s∗1, s
∗
2 = 0, t∗1) after a finite time while

the environment varies endlessly .The SDE (A.21) defines a simple piecewise deterministic Markov process

(PDMP) (Davis, 1984) whose (marginal) probability density pν/α(n̂) can be obtained analytically, see Bena

(2006) and Horsthemke and Lefever (2006):

qν/α(n̂) = Z
[{
R+

1 − 〈T1〉 − n̂
}{

n̂−R−
1 + 〈T1〉

}] ν
α
−1

, (A.22)

where Z is the normalization constant. Hence, in the absence of DN, with environmental switching as the

sole source of randomness, the dynamics leads to a population consisting of only individuals of species 1 (species

2 is wiped out) and toxin and resources, with respective abundances s1, r1, t1, in a fluctuating population whose

scaled size n̂ = s1 + r1 − t1 is distributed according to qν/α(n̂) of finite support
[
R−

1 − 〈T1〉 , R+

1 − 〈T1〉
]
(i.e.

R−
1 −〈T1〉 ≤ n ≤ R+

1 −〈T1〉). While this PDMP probability density ignores DN, it is known to generally provide

a useful approximate description of how the quasi-stationary (at finite time & σend) distribution varies with

the environment in a large yet finite system, see, e.g., (Wienand et al., 2017, 2018; West and Mobilia, 2020;
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Taitelbaum et al., 2020). Here, Eq. (A.22) readily sheds light on the effect of ν and α on n̂ = n − 2t1. It is

clear from Eqs. (A.9a)-(A.9c), that t1 varies with ξ and thus the marginal probability density of population

size, p(n), cannot be immediately obtained from (A.22). Yet, we can obtain useful information about how the

population varies with ν and α by focusing on the fast and slow switching regimes (see Fig. A.6):

• when ν/α ≪ 1 (slow varying environment), qν/α(n̂) is bimodal and n̂ is as likely to fluctuate about

R+

1 − 〈T1〉 or R−
1 − 〈T1〉. Hence, when in this slowly switching regime, the population size fluctuates with

the same probability either about R−
1 − 〈T1〉 + 2t∗1(ξ = −1) or R+

1 − 〈T1〉 + 2t∗1(ξ = +1) (see, the first

column of Fig. A.6).

• when ν/α ≫ 1 (fast changing environment), qν/α(n̂) is unimodal and n̂ fluctuates about its average, i.e.

n̂ ≈ 〈R1〉−〈T1〉. Hence, in this fast switching regime, the population size fluctuates about n ≈ n̂+2〈t1〉 =

〈R1〉 − 〈T1〉 + 2〈t1〉, where 〈t1〉 = (t∗1(ξ = 1) + t∗1(ξ = −1))/2 and t∗1(ξ = ±1) are obtained from the

equilibria of Eqs. (A.9a)-(A.9c) with R1 = R1(ξ = ±1) (see, the third column of Fig. A.6).

This picture is confirmed by the simulation results reported in Fig. A.6, where we see that the marginal

probability densities p(n) and qν/α(n̂) have qualitatively the same features: both are bimodal and have two

well-separated sharp peaks when ν/α ≪ 1, and a single pronounced peak when ν/α ≫ 1. At intermediate

values of ν/α, the probability densities of n and n̂ are much broader with a generally flat profile (exhibiting one

or two “bumps”), see the second column of Fig. A.6. This analysis, which can be readily extended to N > 2

species and to other scenarios of environmental fluctuations, clearly shows that the population size can greatly

vary as the environment changes. In particular, Eq (A.22) shows that when ν is low or α is high, half of the

simulation runs lead to communities of “small sizes” where the effect of DN is expected to be significantly larger

than in communities obtained in the faster switching regime (ν/α ≫ 1) when R+

1 ≫ R−
1 .

It is also worth noting from Eqs (A.9a)-(A.9c) and Eq (A.21) that if, say, only the maximum growth rates

were subject to environmental switching, i.e. µik = µik(ξ) with all other parameters kept constant, we always

obtain a large constant population size (if R1 ≫ T1) and thus no DN-EFs coupling because the distributions

of n and n̂ are independent on µik. On the other hand, if only the maximum death rates were subject to

environmental switching, i.e. δjk = δjk(ξ), the DN-EFs coupling would result from a complicated set of coupled

stochastic differential equations obtained from (A.9a)-(A.9c) with δjk → δjk(ξ). These analyses clarify the

significant difference of our model from others. Some previous studies (e.g., Leigh (1981); Kalyuzhny et al.

(2015) and multi-species model of Engen and Lande (1996)) do not include DN-EFs coupling because they

assume that EFs affect species’ growth rates, but total species abundances or maximum population sizes do not

change. Other studies (e.g., Kamenev et al. (2008); Chisholm et al. (2014); Fung et al. (2015) and the single

species model of Engen and Lande (1996)) include a form of DN-EF coupling because EFs in their model change

both species’ growth rates and population sizes. However, these models consist of only one species, and hence

do not consider interspecific interactions. Our model includes both DN-EFs and indirect species interactions

(resource competition and facilitation via detoxification, see Fig. 1A), and thus we can analyze how DN-EFs
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coupling affect species diversity as in Fig. 6. In summary, here we have attempted to make the simplest choice

to couple DN and EF in a transparent and biologically-relevant way.

Appendix 3 Alternative environmental switching scenarios

In the main text, environmental switching affects only the resource supply (scenario 1) while the amount of

toxin supply is fixed. Here, the results of other environmental switching scenarios are shown: In scenario

2, environmental switching affects only the toxin supply, while both resource and toxin supplies change and

correlate negatively in scenario 3 (see Table 1).

In both scenarios 2 and 3, the difference in species 1’s extinction probability ∆P (s1(σend) = 0) is very

similar to the negative value of the probability of exclusion of the fittest when the sign of ∆P (s1(σend) = 0) is

negative (Fig. A.7). This once again confirms that we can use one measure for the other.

In addition, in both scenarios, the probability of exclusion of the fittest are bi-modal across toxin sensitivities

at very slow environmental switching ν = 10−5, but uni-modal at very fast environmental switching (ν = 103)

(Fig. A.7C, D). As explained in the main text, when ν → 0, there are no switches and the environmental state

is randomly allocated to harsh or mild conditions at t = 0 with the same probability (the mean of ξ is zero),

yielding a bi-modal distribution at low switching rate. In the limit ν → ∞, there are so many switches that

environmental noise averages out, i.e. ξ is replaced by its mean (that is zero). This results in a uni-modal

distribution when ν ≫ 1.

In scenario 2, however, we do not observe any non-monotonic changes over the switching rate (Fig. A.7C).

This is because the critical toxin sensitivity under abundant toxin supply (δ = 0.3) is close to that under mean

toxin supply (δ = 0.4). In contrast, we do observe non-monotonic effects of the switching rate in scenario

3 (Fig. A.7D): when δ = 0.2, an intermediate switching rate (ν = 10−1) shows the minimum difference in

extinction probability, and the maximum probability of competitive exclusion. Although in scenario 3 the same

intermediate switching rate minimizes the probability of competitive exclusion at toxin sensitivity 0.6, the same

non-monotonic effect is not observed in the difference in extinction probabilities (Fig. A.7B). Note that the

critical toxin sensitivities under the mild environments in scenarios 2 (scarce toxin supply) and 3 (abundant

resource supply and scarce toxin supply) are slightly larger than 1.0 (Fig. A.8) and therefore not visible in Fig.

A.7D. Table A.2 shows the critical toxin sensitivities in each scenario.

Appendix 4 Effects of resource supply

In this section, we again focus on environmental switching scenario 1 (changing only resource supply). We will

see that the amount of resource supplies R1(ξ) changes the critical toxin sensitivities under scarce, mean, and

abundant, resource supplies, affecting the likelihood of the non-monotonic effect of the environmental switching

rate.

By increasing the abundant or decreasing the scarce resource supply (Figs. A.9A and D, respectively), the
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distance between the critical toxin sensitivities under scarce and mean (or mean and abundant) resource supplies

becomes larger (Table A.2). Conversely, decreasing abundant or increasing scarce resource supply (Figs. A.9B

and C, respectively), decreases the distance between the critical toxin sensitivities under scarce and mean (or

mean and abundant) resource supplies (Table A.2). Once again, changes in competitive exclusion probability

(A.9) match changes in species 2’s effect on species 1 (Fig. A.10).

Analyzing the probability of exclusion of the fittest instead of the difference in extinction probability is valid

only when the difference in extinction probability is negative: if it is positive, the second line in (A.2) cannot

be ignored. The sign of the difference can, however, become positive at δ = 1.0. Indeed, when R+

1 = 400 and

δ = 1.0, species 2 has a positive effect on species 1 whose strength varies non-monotonically with the rate of

environmental switching (A.11A). In this case, we analyze both (i) the probability of exclusion of the fittest (the

first line in Eq (A.2), Fig. A.11B) and (ii) the difference in species 1’s extinction probability in mono-culture and

both species extinction in co-culture (the second line in Eq (A.2), Fig. A.11C). The effects of the environmental

switching rate on (i) and (ii) are similar, leading to similar non-monotonic effects of species 2 on species 1. In

sum, non-monotonic effects of environmental switching rates on species interactions can be observed whether

these interactions are positive or negative. Although the main text explains why non-monotonic effects of

environmental switching rates on species interactions happen when interactions are negative, it remains unclear

why such non-monotonic changes happen when species interactions are positive.

Appendix 5 Other forms of environmental fluctuations

In this section, we analyze environmental fluctuations other than symmetric switching between two states. Our

goal is here to show that our main findings qualitatively still hold and can therefore traced back to the generic

interdependence of EFs and DN rather than detail of their coupling.

As in the main text, we assume that the environmental fluctuations change only the resource supply while

the toxin supply is constant. First, we investigate asymmetric switching between two resource supply conditions.

Second, we increase the number of environmental states and introduce a cyclic change of the resource supply.

Under asymmetrically switching or cyclically fluctuating environments, we find similar patterns of how

species interactions change over species’ toxin sensitivities and a rate of environmental fluctuations.

Appendix 5.1 Asymmetric switching

In the main text and appendices other than this section, for the sake of simplicity, we assume symmetric

switching rates between two states by Eq. (3) (see Taitelbaum et al. (2020)). Here, we relax this assumption

and introduce asymmetric switching rates because perfectly symmetric switching environments are very unlikely

in nature; in gut microbiota, for example, duration that their host is starving would be longer than that the
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host is eating food. We implemented asymmetric switching as follows:

ξ = 1
ν1−→ ξ = −1 (A.23a)

ξ = −1
ν2−→ ξ = 1. (A.23b)

Without loss of generality, we define the two switching rates as follows:

ν1 = β1ν (A.24a)

ν2 = β2ν (A.24b)

where ν is the basal switching rates. In extreme cases (β1 ≫ β2), for asymmetric switching scenarios can

correspond to systems with rare disturbances in nature. In this extremely asymmetric case, the sojourn time in

the harsh environment exceeds greatly that in the mild environment, which results in a strong effect of DN. In

contrast, DN effects are less important when β2 ≫ β1 and the population experiences more frequently the mild

than the harsh environment(Taitelbaum et al., 2020). We recover a symmetric environmental switching when

β1 = β2.

Fig. A.12 summarizes the two species interactions under resource supply fluctuations with asymmetric

environmental switching rates when the initial environmental condition is ξ(0) = 1 with probability of 0.5

(otherwise ξ(0) = −1). In Figs. A.12 A and C, ν1 > ν2 and therefore the sojourn time of ξ = −1 (an harsh

environment) is longer than that of ξ = 1 (a mild environment). On the other hand, Figs. A.12 B and D shows

the cases when the sojourn time the mild environment is longer than that of the harsh environment because

ν1 < ν2. In both cases, species 1’s difference in extinction probabilities and the probability of exclusion of the

fittest show monotonically increasing, monotonically decreasing, or non-monotonic changing with a minimum

or maximum value at an intermediate switching rate, although they quantitatively differ from Figs. 3 A and C.

Appendix 5.2 Cyclic changes

Here, we analyze cases when the number of environmental states in terms of resource supply is greater than

two, but remains discrete and finite. This simply reflects that natural environments do not always fluctuate

between two states. In this subsection, an environmental state is given by ξ = 1, 2, . . . , n and environments

cyclically fluctuate with rate ν as follows:

ξ
ν−→







ξ + 1 if ξ = 1, . . . , n− 1

1 otherwise.
(A.25)

This is a natural extension of Eq (3) by increasing the number of environmental conditions: n = 2 recovers

a symmetrically switching environment between two conditions (ξ = 1 → 2 → 1 → . . . although we use the

notation ξ = ±1 → ∓1 → ±1 → . . . in the main text).
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Fig. A.13 shows how species interactions between two species change when n = 4 and the resource supply

fluctuates such that R1 (ξ = 1) > R1 (ξ = 2) > R1 (ξ = 3) > R1 (ξ = 4). In this analysis, an initial environ-

mental condition ξ(0) is one of four conditions (probability of 0.25 for each). As in Figs. 3 A and C, the

rate of cyclical environmental change affects species 1’s extinction probability and the probability that species

2 excludes species 1. We frequently observe that the probability of exclusion of the fittest non-monotonically

changes (toxin sensitivity: 0.1 – 0.6).

In this work, the fluctuating environment has been modeled as randomly switching between a finite number

of environmental states ξ. This choice is particularly convenient as it allows us to deal with bounded noise, and

hence Ri and Tj to always remain positive, and are straightforward to simulate using the standard Gillespie

algorithm. The case of environmental noise varying continuously in time is also of great interest, as it allows

Ri and Tj to take any values in a domain. For instance, the environmental noise can be an Ornstein-Uhlenbeck

process (ξOU ), e.g. by letting Ri = Ri(ξOU ) = R̄i(1 + kξOU ), where R̄i is constant, ξ varies in time, and

k > 0, see, e.g., Assaf et al. (2013). This poses a number of challenges since, ξOU being unbounded, Ri

can take negative (unphysical) values. Furthermore, there are no general methods to simulate exactly birth-

death processes subject to continuous external noise, see, e.g., Berŕıos-Caro and Galla (2020). Here, while the

assumption of discrete environmental noise is a simplification of many real situations, we think that our main

findings are generic and shall hold also under continuous environmental noise. In fact, since our results stem

chiefly from the coupling of EFs and DN, a feature shared by discrete and continuous noise, they are expected

to qualitatively hold also in the case of continuous external noise.

Appendix 6 Diversity in communities of increasing species number

In the main text, we show the distributions of beta diversity and species richness in communities when the

initial number of species N is two or ten. This section shows the results of intermediates values of N = 4, 6, 8.

The number of initial species does not change how beta diversity changes over the environmental switching rate,

except when the mean toxin sensitivity δ̄ = 0.4 (Fig. A.18). These results indicate that beta diversity and the

probability of competitive exclusion change similarly over the switching rate when the initial number of species

is larger than two.

The initial number of species N in a community affects the maximum values of species richness (Fig. A.19).

However, how the switching rate and the mean toxin sensitivity affect the distribution of species richness

was consistent for different values of N . In particular, increasing the mean toxin sensitivity decreases species

richness. The effects of the environmental switching rate also depend on the mean toxin sensitivity: at mean

toxin sensitivity 1.0, species in all cases are more likely to go extinct as the switching rate increases, while the

likelihood of all species going extinct consistently shows a humped shape at toxin sensitivity 0.4 or 0.6.
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Appendix 7 Quantified the similarity between the exclusion of fittest

and beta diversity

In this section, we first quantify the similarity between the exclusion of the fittest and beta diversity in two-

species communities. Then, we investigate how many species pairs we should analyze to predict the patterns of

beta diversity in ten-species communities.

In the main text, we show that the probability of exclusion of the fittest and beta diversity exhibit similar

patterns (see columns A and B in Fig. 6). We quantified the similarities with Pearson’s correlation coefficients.

Fig. A.15 shows the distributions of the correlation coefficients of 100 two-species communities at each mean

toxin sensitivity (see also Appendix 1.3). Except for the case that mean toxin sensitivity is 0.4 (where the

probability of exclusion of the fittest and beta diversity do not match), the correlation coefficients are large

positive (> 0.6). Therefore, a large correlation coefficients indicates the similarity between the probability of

the exclusion of the fittest and beta diversity.

We continued the analysis in ten-species communities. In these cases, we have 45 pairs of species in each

community and we calculated the probabilities of the exclusion of the fittest by running 100 replicates in each

species pair of thirty ten-species communities (six communities at five mean toxin sensitivities). Fig. A.16

shows that the exclusion of the fittest in some pairs match the patterns of beta diversity of whole communities

but other pairs do not. Then, we investigated the number of species pairs m that is necessary to predict a

pattern of beta diversity over the environmental switching rate (i.e., a large correlation between probability

of exclusion of the fittest and beta diversity). When m ≥ 2, we calculated Pearson’s correlation coefficient

between beta diversity and mean probability of exclusion of the fittest within m pairs. However, we have many

possible choices of m pairs when 1 < m < 45. In these cases, we randomly chose 300 sets of m pairs in each of

community and thus we obtained 1800 correlation coefficients at each mean toxin sensitivities. When m = 1 or

45, we analyzed all possible choices of m species pairs and we obtained 45 or 1 correlation coefficient(s) in each

community, respectively. Fig. A.17 indicates that the correlation coefficients can be large even when m = 1 or

2, but larger m increases correlation coefficients. We suggest that m = 5 is the best because the m = 5 and

m = 9 show little difference in the distributions of the correlation coefficients and we are very likely to obtain

a large correlation coefficient with m = 5. In conclusion, we do not have to analyze the exclusion of the fittest

for all species pairs to predict how the environmental switching rate affect beta diversity.
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Figure A.1: Feasible and stable equilibrium state

An example of f(s) in Eq (A.13) and equilibrium states. In this example, f(s) has three roots: s = 0, and two feasible

equilibria. The blue arrows indicate that s decreases or increases when f(s) is positive or negative, respectively. As

df/ds is negative at the left equilibrium state, this equilibrium state is unstable. On the other hand, the right feasible

equilibrium has a positive df/ds and thus this equilibrium can be stable. Note that the equilibrium state corresponding

to s = 0 can be also stable. Parameter values are δ1k = 1.2, R1 = 200, T1 = 125 and as in Table A.1 otherwise.
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Figure A.2: Probability of exclusion of the fittest relative to the difference in extinction probability of species 1

A histogram of the ratio of the probability of exclusion of the fittest and the difference in species 1’s extinction

probabilities alone versus in the presence of species 2, showing the results of 81 sets of the environmental switching rate

ν and the toxin sensitivity δ (9 values of ν = 10−5, . . . , 103 and 9 values of δ = 0.1, . . . , 0.9). For each set of the

parameter values, 105 simulations were run to calculate the competitive exclusion probability and the difference in

species 1’s extinction probabilities in the presence/absence of species 2. In many of these 81 parameter sets, this ratio

is close to 1, indicating that both measures yield similar results. As in the manuscript we focus on conditions leading to

competition between the two species, we ignore toxin sensitivity δ = 1.0 where species 2’s effect on species 1 can be

positive.
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Figure A.3: Changes of alpha, beta, and gamma diversities

Alpha, beta, and gamma diversities over the switching rate and mean toxin sensitivity in two- and ten-species

communities at the end of simulations. As alpha diversity is always closed to one, beta diversity and gamma diversity

show similar trend. The black lines and blue areas represent the mean values and the probability distributions of the

diversities calculated from 10’000 simulations. See Appendix 1.3 for more detail.
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Figure A.4: Species 2’s effect on species 1 in the absence of environmental switching

Species 2’s effect on species 1 when the resource supply is fixed to be scarce (R−
1 ), mean (〈R1〉), or abundant (R

+

1 ).
The toxin sensitivities that minimize species 2’s effect on species 1 correspond to the peak sensitivities in Fig. 5.
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Figure A.5: Examples of the dynamics with only the environmental fluctuations

State transition of two species abundances (s1, s2) in the absence of DN but the presence of the EFs are shown. Here,

EFs switch resource supply (scenario 1 in Table 1) and the initial population abundances are s1(0) = s2(0) = 10. In

this setting, species 2 always goes extinct (limσ→∞ s2(σ) = 0) regardless of the values of δ and ν. On the other hand,

species 1 survives (limσ→∞ s1(σ) > 0) if the environment is not too harsh. In each panel, different colors represent

different samples of the dynamics with EFs alone. The values of ν and δ are shown on the top of each panel and the

rest parameter values are shown in Table A.1.
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Figure A.6: Distributions of total population sizes

Probability distributions of total population size n = r1 + t1 + s1 + s2 and the auxiliary quantity n̂ = r1 − t1 + s1 + s2
obtained from 1,000 runs of Eqs (A.9a)-(A.9c) with environmental switching of scenario 1 in Table 1 at the slow

ν = 10−3 (first column), intermediate ν = 10−1 (second column), or fast ν = 101 (third column) switching rates. We

collected the simulation data at time σend = 200. At the beginning of each simulation, ξ = 1 with 50 percents;

otherwise ξ = −1. (A-C): the contour plots show the joint probability distributions of n and n̂: large n corresponds to

large n̂. (D-F): the histograms show the distributions of the total population size n. (G-I): the histograms of n̂ (left

y-axis) and its theoretical probability distributions qν/α (n̂) (right y-axis), which is given by Eq(A.22), are shown in

blue bars and red dashed lines, respectively. We used δ1,1 = δ1,2 = 0.2 and all other parameter values are shown in

Table A.1, and thus ν/α = 0.01 corresponds to the slow switching rate (first column), ν/α = 1 corresponds to the

intermediate switching rate (second column), and ν/α = 100 corresponds to the fast switching rate (third column),

respectively, see Appendix 2.2. Exceptionally, we used ν/α = 80 instead of ν/α = 100 to show qν/α (n̂) in the third

column because ν/α = 100 causes overflow during the calculation of qν/α (n̂), but this modification does not change the

qualitative feature of qν/α (n̂).
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Figure A.7: Effects of the environmental switching rate in alternative scenarios

Examples of the effect of switching rate in alternative scenarios. In the left column (A and C), toxin supply is

switching (scenario 2), while both resource and toxin supplies switch and are negatively correlated (scenario 3) in the

right column (B, D). A and B: difference between extinction probabilities in absence and presence of species 2. C and

D: competitive exclusion probability. Parameter values: R+

1 = 200, R−
1 = 50, T+

1 = 200, and T−
1 = 50.
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Figure A.8: Critical toxin sensitivities under mild environments

The critical toxin sensitivities (i.e., toxin sensitivity that maximizes the probability of exclusion of the fittest in the

absence of environmental switching) under the mild environments (scenario 2 :scarce toxin supply T−
1 = 50, and

scenario 3: abundant resource supply R+

1 = 200 and scarce toxin supply) are > 1.
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Figure A.9: Effects of resource supplies on exclusion of the fittest

Top: abundant resource supply becomes twice (A) or half (B) of R+

1 = 200, i.e. R+

1 = 400 in panel (A) and R+

1 = 100

in panel (B). Bottom: scarce resource supply becomes twice (C) or half (D) of R−
1 = 50, i.e. R−

1 = 100 in panel (C) and

R−
1 = 25 in panel (D).
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Figure A.10: Effects of resource supplies on difference in extinction probability

Similar to Fig. A.9 but showing species 2’s effect on species 1’s extinction probability. Top: abundant resource supply

becomes twice (A) or half (B) of R+

1 = 200, i.e. R+

1 = 400 in panel (A) and R+

1 = 100 in panel (B). Bottom: the scarce

resource supply becomes twice (C) or half (D) of R−
1 = 50, i.e. R−

1 = 100 in panel (C) and R−
1 = 25 in panel (D). We

plotted toxin sensitivity from 0.1 to 2.0 in panel A to see non-monotonic positive species interactions (see also Fig.A.11

)

A B C

Figure A.11: Positive interaction strength varies non-monotonically with switching rate

A: Difference in species 1’s extinction probability with positive sign at δ = 1.0 and R+

1 = 400, showing a non-monotonic

effect of the environmental switching rate. B: Probability of exclusion of the fittest. C: Difference between the

probability of species 1 going extinct alone and both species going extinct.
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Figure A.12: Extinction probabilities under asymmetrically switching environments

Difference of species 1’s extinction probability and the probability of exclusion of the fittest under asymmetric

switching rates over the baseline of the switching rate ν and toxin sensitivity. Here, environmental fluctuations change

the amounts of resource supplies. A and B: Difference of species 1’s extinction probabilities in mono-culture minus

co-culture wit species 2 when (A) the harsh environment continues longer than the mild environment (β1 = 1.2 and

β2 = 1), or when (B) the mild environment continues longer than the harsh environment (β1 = 1 and β2 = 1.2),

respectively. C and D: Probabilities that species 2 excludes species 1 when the environmental switching rates are

identical to panels A and B, respectively. Other parameter values are shown in Table A.1.

A B

Figure A.13: Extinction probabilities under cyclic environmental changes

Difference in species 1’s extinction probability and the probability of exclusion of the fittest under under
cyclically fluctuating resource supplies among four states: R1 (ξ = 1) = 200, R1 (ξ = 2) = 150,
R1 (ξ = 3) = 100, and R1 (ξ = 4) = 50. A: Difference of species 1’s extinction probabilities in mono-culture
minus co-culture with species 2. B: Probability that species 1 goes extinct but species 2 survives. Other
parameter values are shown in Table A.1.
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Figure A.14: Non-monotonicity and critical toxin sensitivities

The number of times we observe non-monotonic changes of species 1’s difference in extinction probability across the
explored parameter range varies with the distance between the two critical toxin sensitivities, depending on where
distances are measured (between harsh and mean environments: dots, between mean and mild: environment diamonds,
and between harsh and mild environments: crosses). These three distances were measured in each of the following
seven scenarios: three different scenarios of environmental switching (Table 1 and Appendix 3) and four environmental
switching scenario 1s with changing amounts of resource supplies (Appendix 4). The correlation is only significantly
positive for the distance between scarce resource or abundant toxin supplies (i.e., harsh environments) and mean
resource/toxin supplies (Spearman’s ρ = 0.77, P-value: 0.043). The dot indicated by the arrow corresponds to the
scenario analyzed in the main text.
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Figure A.15: Correlations between exclusion of the fittest and beta diversity in two-species communities

The Pearson correlation coefficients between probability of exclusion of the fittest (first column of Fig. 6) and beta

diversity (second column of Fig. 6) in two-species communities are shown. Each panel differs in mean toxin sensitivity

(A: 0.1, B: 0.2, C: 0.4, D: 0.6, and E: 1.0) and we analyzed 100 two-species communities in each case.
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Each panel represents the beta diversity of a ten-species community (black lines), probabilities of exclusion of the

fittest in 45 species pairs (solid blue lines) and the mean probability of exclusion of the fittest over the 45 pairs (dashed

blue lines). Each row corresponds to mean toxin sensitivity δ̄. One can see six examples of ten-species communities at

each mean toxin sensitivity.
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The Pearson correlation coefficients between mean probability of exclusion of the fittest and beta diversity (Fig. A.16)

in ten-species communities are shown. Each row represents the different value of mean toxin sensitivity δ̄ while each

column represents the different number of sampled species pairs m.
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Beta diversities with increasing initial numbers of species N and mean toxin sensitivities δ̄. The black lines show the

means and blue areas represent the probability distributions calculated by 10’000 simulations (100 beta diversity

measurements using different parameter sets, each from 100 replicate runs).
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Figure A.19: Species richness with increasing initial number of species in a community
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Figure A.20: Initial Population size’s effect on extinction probabilities

Extinction probability of species 1 in mono-culture when the initial species abundance is default (small: s1(0) = 10) or

larger (large: s1(0) = 20). When the switching rate is small and the toxin sensitivity is 1.0, the extinction probability is

lower with the larger initial species abundance. In the rest cases, the extinction probabilities are not affected by the

initial species abundance. The parameter values are as shown by Table A.1.

A B C

Figure A.21: Exclusion probabilities and beta diversity in neutral cases

Two species dynamics under neutral cases (i.e., two species differ only in their labels). In this case, the probabilities

that species 2 outcompete species 1 (A) are identical to those that species 1 outcompete species 2 (C). Without loss of

generality, we can call exclusion of either species as exclusion of the fittest in the neutral scenarios. As in Fig. 6, there

are similarities between how the exclusion of the fittest (A or C) and beta diversity (B) changes over the switching rate

at each toxin sensitivity. The parameter values are as shown by Table A.1.
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Figure A.22: Extinction probabilities with zero toxin sensitivity

When species’s toxin sensitivities are zero, the dynamics are equivalent with the case without toxins because species die

only due to dilution. A: Species 1 does not go extinct in mono-culture. B: Difference of species 1’s extinction

probabilities in mono-culture minus co-culture. C: Probability that species 2 outcompetes species 1 in co-culture.

Panels B and C show qualitatively similar results with the case of toxin sensitivity 0.1, see Figs. 3A and C because

species 2 can outcompete species 1 under the harsh environment with low switching rates, due to DN.
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Table A.1: List of fixed parameters in the interaction analysis
Symbol Value Description

α 0.1 dilution rate of the chemostat
R±

1 R+

1 = 200, R−
1 = 50 abundant or scarce resource supply concentration

T±
1 T+

1 = 200, T−
1 = 50 abundant or scarce toxin supply concentration

Y r
1k Y r

1k = 1 for k = 1, 2 species k’s biomass yields of resource
Y t
1k Y t

1k = 1 for k = 1, 2 species k’s biomass yields of toxin
µ11 1.0 maximum growth rate of species 1 on resource 1
µ12 0.91 maximum growth rate of species 2 on resource 1
δ1k [0.1, . . . , 1.0] and δ = δ11 = δ12 sensitivity of species k to toxin 1.
Kr

1k 100 amount of resource 1 that gives half-max growth rate of species k
Kt

1k 100 amount of toxin 1 that gives half-max death rate of species k

Table A.2: Summary of critical toxin sensitivities and number of times non-monotonicity is observed
Switching scenario 1 2 3 1

Amounts of supplies base line ∗ ↑ R+

1 ↓ R+

1 ↑ R−
1 ↓ R−

1

Critical toxin harsh 0.1 0.3 0.1 0.1 0.1 0.3 0.1
sensitivities mean 0.4 0.4 0.4 0.9 0.2 0.5 0.3

mild 0.8 1.1 1.3 1.2 0.3 0.8 0.8
number of mean and harsh 2 0 2 7 0 1 3

non-monotonic changes mean and mild 1 0 0 3 0 0 2
observed between mild and harsh 3 0 2 10 0 1 4 †

∗ For exact parameter values, see Table A.1.
† At the critical toxin sensitivity corresponding to the mean environment (δ = 0.3), the species interaction
non-monotonically changes over the switching rate: the frequency of non-monotonicity is 3 + 2− 1 = 4.
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