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A B S T R A C T   

In the field of structural health monitoring (SHM), the acquisition of acoustic emissions to localise 
damage sources has emerged as a popular approach. Despite recent advances, the task of locating 
damage within composite materials and structures that contain non-trivial geometrical features, 
still poses a significant challenge. Within this paper, a Bayesian source localisation strategy that is 
robust to these complexities is presented. Under this new framework, a Gaussian process is first 
used to learn the relationship between source locations and the corresponding difference-in-time- 
of-arrival values for a number of sensor pairings. As an acoustic emission event with an unknown 
origin is observed, a mapping is then generated that quantifies the likelihood of the emission 
location across the surface of the structure. The new probabilistic mapping offers multiple ben-
efits, leading to a localisation strategy that is more informative than deterministic predictions or 
single-point estimates with an associated confidence bound. The performance of the approach is 
investigated on a structure with numerous complex geometrical features and demonstrates a 
favourable performance in comparison to other similar localisation methods.   

1. Introduction 

As the demand for more robust and intelligent structural health monitoring (SHM) systems increases, there is interest in not only 
detecting the presence of damage within a structure, but also identifying its location. By localising the damage, an operator is provided 
with a greater level of insight into the system, enabling more informed maintenance decisions to be made which will subsequently 
reduce operation and maintenance costs. 

A prominent feature across many damage localisation strategies is the capture and use of acoustic emission (AE), a phenomenon 
generated in physical media by mechanical mechanisms such as plastic deformation, friction and crack-tip progression. When an AE 
event occurs, it results in the release of a small packet of sound energy. Such energy propagates through the material as a high- 
frequency stress wave, which can then be captured in a digitised manner through the use of a piezoelectric transducer. The basic 
approach to acoustic emission localisation, which is often referred to as the Time Of Arrival (TOA) method, operates on the premise of 
observing/detecting an AE source at a number of spatially-distributed sensors. From here, by considering the time of the signal onset at 
each sensor, a difference-in-time-of-arrival (dTOA) value between each sensor pair can be calculated. First proposed by Tobias [1], 
dTOA values were used to produce a hyperbola of potential source locations for each sensor pair. By identifying the intersection of the 
hyperbolae, an estimate for the origin of the source location was obtained. The TOA method can also be posed as an optimisation 
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problem; in this sense, a source location can be estimated by minimising the difference between each recorded dTOA and a calculated 
value originating from a trial source position. Despite being simple to implement, the TOA approach relies on two assumptions: firstly, 
that there exists a direct path between the source and sensors, and secondly, that the wave velocity profile is uniform in all directions. 
However, for anisotropic media such as composite materials, or components that contain geometrical features such as thickness 
changes, bolts and holes, these assumptions become largely invalid. Given that the majority of engineering components will contain at 
least one of these inhomogeneities, there has been a significant amount of literature dedicated to developing AE localisation strategies 
that are not constrained to the assumptions detailed above. 

A number of initial studies focussed on developing methods that are robust to anisotropic media, incorporating an angular- 
dependent velocity term into the minimisation process [2–4]. However, knowledge of the wave-velocity profile will not always be 
available a priori. To account for this scenario, approaches that allow a directionally-dependent velocity term to be solved in parallel 
with the event location have also been suggested [5,6]. In relation to the localisation of AE in structures where a direct propagation 
path is obstructed, one strategy considered by a number of authors is to define a correlation operator that can quantify the similarity of 
two AE events through the concept of time-reversal [7,8]. The correlation between a real AE event and a set of artificial events can then 
be assessed, where the origin of the artificial excitation that returns the highest similarity is determined to be the location of the real 
source. Ciampa and Meo [9] implemented a similar strategy for localisation in complex geometries, however, by ensuring a diffused 
wavefield, were able to localise an acoustic impact with only a single sensor. A single-sensor approach was also considered by 
Ebrahimkhanlou and Salamone [10,11], training deep neural networks to map a recorded AE waveform to a source location. Although 
the results shown were promising, the outputs of the neural network were limited to deterministic source location estimates, and 
therefore provide no metric that quantifies how confident one should be in the predictions. 

For a number of the approaches that have been applied to complex structures, there exists a common step across their method-
ologies; generating and capturing a set of artificial AE events across the structure of interest. In these data-driven methods, instead of 
attempting to directly model the behaviour of the AE waves through exact physical laws, measurements that are sensitive to the 
phenomena of interest are first captured and then used to learn a statistical model. The use of such a technique in the context of AE 
source location was first suggested as part of the Delta T mapping approach developed by Baxter et al. [12]. The method views AE 
localisation as a problem of spatial mapping, whereby extracting the onset time of a series of artificial events at a number of distributed 
sensors, a map that quantifies the expected dTOA information across a structure is constructed for each available sensor-pair. As a real 
AE event occurs, the recorded dTOA values are then matched to those on the maps, allowing the identification of an estimated source 
location. The approach has since been applied in a number of challenging environments, such as an aircraft landing gear component 
[13], as well as composite materials [14]. An extension to the original methodology was also offered by Al-Jumaili et al. [15], reducing 
the required level of input from an operator. This reduction was achieved by the use of a hierarchical clustering algorithm to auto-
matically discard erroneous training events, as well as the implementation of a minimisation scheme so that a source location estimate 
could be obtained in an autonomous manner. 

To offer an increased spatial resolution, both the initial and extended Delta T methodologies linearly interpolate between the 
training grid points to generate the dTOA maps. However, for complex structures, the presence of phenomena such as wave mode 
conversion and internal reflections will result in a highly nonlinear wavefield. As a consequence of this, a linear interpolation scheme 
will not be sufficient to capture the complexity of the waveform behaviour between grid points. Hensman et al. [16] recognised this, 
and instead proposed the use of Gaussian process (GP) regression, a Bayesian non-parametric technique for nonlinear regression. 
There, rather than using a minimisation scheme, source localisation is achieved by directly learning an inverse mapping from 
difference-in-time-of-flight to source location. In addition to providing an improved interpolation strategy, a probabilistic output is 
also returned, where each prediction is associated with a degree of uncertainty - an attractive property of Bayesian solutions. A number 
of other authors have since adopted various Bayesian approaches as part of AE localisation strategies, including the use of a Markov 
chain Monte Carlo inference scheme for probabilistically locating sources in a concrete column [17], as well as extended and unfiltered 
Kalman filters for localisation in both isotropic and anisotropic plates [18,19] under noisy TOA measurements. Consideration has also 
been given by Sen et al. [20] to the particle filter - another example of Bayesian filtering. There, it was demonstrated that AE sources 
could be located in an isotropic plate whilst incorporating uncertainties such as those arising from material properties and mea-
surement noise. Additionally, Madarshahian et al. [21] proposed the use of probabilistic model selection for identifying AE signal 
onset times in a Bayesian manner. Whilst these works have returned promising results, localising AE sources from both a probabilistic 
and general perspective still remains a challenging area of research, particularly for complex structures. 

The method presented here, which we term Likelihood of Emission Location (LoEL), will continue in the theme of Bayesian source 
localisation, and more specifically, extend the use of Gaussian process regression for identifying the location of acoustic emission 
sources in complex structures. However, unlike in [16], source localisation is approached through a forward-model solution, where 
source coordinate locations are mapped to difference-in-time-of-arrival values. The likelihood of the emission location is then assessed 
across the surface of the structure, returning a mapping that quantifies the likelihood an observed dTOA measurement originated from 
a given location. The new method provides fully probabilistic source location estimates and naturally handles noisy TOA measure-
ments for complex structures. 

1.1. Outline of proposed methodology 

This paper presents a probabilistic approach for localising AE sources within complex structures, where under a Bayesian 
framework, a mapping across a target structure is produced that quantifies the likelihood of the origin of an AE event. In the proposed 
methodology, the first objective is to employ a Gaussian process to learn the relationship between locations on a test structure and the 
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corresponding dTOA values across a number of sensor pairs. For each unique sensor pair, the likelihood that a given dTOA originated 
from locations across the structure is assessed, generating a contour of potential source locations. A marginal likelihood across all 
sensors pairs can then be calculated, returning a map of the structure that represents the total likelihood of source location given the 
model for each sensor pair. Regions of high likelihood are interpreted as being more likely to be the origin of the event, where a single- 
point prediction of the source location can be identified at the location with the highest marginal likelihood. 

In addition to the standard benefits of taking a Bayesian approach, such as predictions that represent a distribution and the ability 
to naturally incorporate uncertainty, the method offers a number of distinct advantages. By assessing the source location likelihood 
across the structure, a metric is provided that quantifies how probable is the AE event at a given location. By assessing this likelihood 
over the surface of the structure, multiple possible damage locations are able to be flagged, as well as providing an operator with a 
greater level of insight than single-point predictions. Secondly, by using coordinate values as inputs to the GP, the noise-free input 
assumption that standard Gaussian process regression requires is more closely upheld than in the inverse case. There is also the 
flexibility to deal with targets that have an associated level of uncertainty, which given that the difference-in-onset times are often 
associated with some unknown level of noise (a consequence of factors such as sensor noise and the time of arrival estimation pro-
cedure), is a desirable functionality. Lastly, it will be shown that the proposed strategy returns a favourable accuracy as the density of 
the training grid is lowered, particularly in comparison to other leading AE localisation methods. Reducing the number of training 
measurements will be particularly advantageous for large structures, where generating a fine grid of artificial sources is very time- 
consuming. 

The remainder of the paper proceeds as follows; Section 2 provides an overview of Gaussian process regression theory. Section 3 
then introduces the proposed methodology, whilst Section 4 presents a number of results that demonstrate the effectiveness of the 
method, as well as a discussion. Finally, Section 5 provides overall conclusions. 

2. Gaussian processes 

Presenting a powerful Bayesian machine learning approach for solving regression problems, Gaussian processes are characterised 
by their ability to quantify uncertainty on predictions and capture nonlinear relationships in the presence of noisy data. In an engi-
neering world full of noise and uncertainty, this makes GPs particularly relevant for application within SHM, of which other examples 
can be found in [22–24]. 

When adopting a Gaussian process framework, one is concerned with mapping a series of D-dimensional observations X = (xi)N
i=1 to 

a set of corresponding vector of targets y = (yi)N
i=1 which are assumed corrupted by a zero mean Gaussian white noise ∊, with variance 

σ2n . Mathematically, this equates to modelling functions of the form, 
yi = f (xi)+ ∊, ∊ ∼ N (0, σ2

n). (1) 
It is perhaps most intuitive to view the Gaussian process as a distribution over functions, where each realisation is a potential 

function generated by that GP. In this sense, the GP acts as a prior over f(xi), and can be defined by, 
f ∼ GP (m(xi), k(xi, x

′
i)). (2) 

The GP is fully specified by its mean function m(xi), and covariance (kernel) function k(xi,x
′
i). Following the standard convention of 

the machine learning community [25], the mean function will be set equal to zero and is therefore omitted from this point onwards. 
With regard to the kernel, whilst any positive-definite function is a valid covariance function, there are a number of popular choices 
such as the squared exponential (SE) and the Matérn class of covariance functions. Although the SE is probably the most widely-used, 
considering the work of Stein [26], who argues that the smoothing assumptions imposed by this kernel are often unrealistic when 
modelling physical process, the choice of kernel here is from the Matérn family. Specifically, the Matérn 3/2 kernel is chosen following 
the demonstration of its ability to perform well with engineering data [27]. For two inputs xi,x

′
i, the Matérn 3/2 kernel takes the form, 

k3/2(xi, x
′
i) = σ2

f

(
1 +

̅̅̅
3

√
(||xi − x

′
i||)

l

)
exp

(−
̅̅̅
3

√
(||xi − x

′
i||)

l

)
, (3)  

where l represents the length scale and σ2
f is defined as the signal variance. As the GP is being employed in a spatial modelling context 

that is asymmetrical about each dimension (see Section 3 for details), it makes sense to switch to an anisotropic kernel where a unique 
length scale is defined for each input dimension. To transform Eq. (3) from an isotropic representation, the kernel can be represented 
as, 

k3/2(xi, x
′
i) = σ2

f (1+
̅̅̅
3

√
r)exp(−

̅̅̅
3

√
r), (4)  

where 

r =
∑D

d=1

||xid − x
′
id||

ld
, (5)  

with d denoting a specific dimension. Having fully defined the form of the Gaussian process, it is then desirable to incorporate the 
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knowledge provided by training data so that predictions can be made at a set of new testing points X*. To achieve this, one can first 
write the joint distribution of the training targets, y, and the unobserved latent functions, f* as, 

[
y

f*

]
= N

⎛
⎝

[
0

0

]
,

⎡
⎣K(X,X) + σ2

nI K(X,X*)
K(X*,X) K(X*,X*)

⎤
⎦
⎞
⎠. (6) 

Utilising standard multivariate Gaussian distribution machinery, the conditional distribution over f* can then be obtained [25] as, 
p(f*|X, y,X*) = N (E[f*],V[f*]), (7)  

where the posterior mean and variance are, 
E[f*] = K(X*,X)[K(X,X) + σ2

nI]
−1

y (8)  

V[f*] = K(X*,X*)−K(X*,X)[K(X,X) + σ2
nI]

−1
K(X,X*). (9) 

Inspecting Eqs. (4), (8) and (9), it can be seen that there remains a number of terms that must be determined; specifically l, σ2
f and 

σ2
n , which can be collated into a single vector θ. Defined as the hyperparameters of the model, an estimate of the optimal values, θ̂, can 

be learnt by maximising the log marginal likelihood of the model. As per standard numerical optimisation conventions, this max-
imisation translates to minimising the negative log marginal likelihood, 

θ̂ = argmin
θ

{− log(y|X, θ)} (10)  

where, 

logp(y|X, θ) = − 1

2
yT(K(X,X) + σ2

nI)
−1

y− 1

2
log|(K(X,X)+ σ2

nI)|−
N

2
log(2π). (11) 

Generally speaking, a numerical optimisation scheme of choice can then be employed to evaluate Eq. (10). The authors’ preference 
here is an example of population-based optimisation – the Quantum-Behaved Particle Swarm (QPSO) [28]. This approach has the key 

Fig. 1. Complex structure used to demonstrate the methodology. Recreated from [16].  
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advantage of being globally convergent [29], and has been demonstrated to perform well in engineering optimisation challenges, of 
which an example can be found in [30]. 

3. Localising AE sources with Gaussian processes 

Having established the mathematical framework for implementing Gaussian process regression, this section will detail the pro-
posed source localisation strategy. The experimental methodology used to demonstrate the approach will firstly be considered, before 
discussing how a Gaussian process can be used to learn a transformation from grid locations to dTOA values. Finally, the necessary 
framework for quantifying the source location likelihood will be given. It should be noted that the data set used in this work is identical 
to that collected in [16], and therefore discussion of the experimental configuration here will be limited to a brief overview. For a more 
detailed discussion, the reader is referred to Section 3 of [16]. 

3.1. Experimental setup 

The specimen used to demonstrate the proposed methodology is a 200 × 370 × 3 mm mild steel sheet, which as shown in Fig. 1, 
contains a series of holes that have been cut through the plate. These non-trivial geometrical features then introduce a number of 
complex phenomena that result in a challenging environment for performing acoustic source localisation. A grid was first constructed 
across the surface of the structure, where at each nodal location, a high-power laser pulse was used to artificially generate an acoustic 
emission source. Eight piezoelectric transducers were mounted to the specimen and used to capture the ultrasonic response to each 
excitation. The locations of these sensors are indicated by the black circles on Fig. 1a. 

3.2. Learning process 

Before learning a GP representation, the data set that has been gathered needs to be processed to reflect the relationship that is 
being modelled. Considering a single artificial AE event, there will be eight captured waveforms, each corresponding to an individual 
sensor. To extract the difference-in-time-of-arrival information, the arrival time of the waveform at each sensor is first estimated 
through the standard practice of implementing the Akaike Information Criterion (AIC) method, having the benefit of not requiring a 
pre-defined user threshold (for more details, see [31,16]). It is then trivial to calculate the difference-in-time of arrival across all sensor 
pairs. Given that the use of eight individual sensors results in 28 unique pairing combinations, for each AE event, there will be a 
corresponding dTOA vector containing 28 entries. 

Fig. 2. Spatial maps of dTOA values for sensor pairing 2–8, where the colour bar represents dTOA in seconds.  
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Having established a suitable data set, the process of learning a relationship between source location and dTOA can begin, where a 
GP representation is learnt for each unique sensor pair. Providing a graphical illustration of this process for sensor pairing 2–8, Fig. 2a 
represents each of the values used in the training period, whilst Fig. 2b demonstrates a denser mapping that has been learnt by the GP. 

3.3. Source location estimation 

In a standard regression setting, one is interested in capturing a relationship between two sets of variables; those termed the in-
dependent or explanatory variables, and those for which the objective is to predict the values of (the dependent variables). Under a 
Gaussian process framework, the independent variables are generally assigned as the input points, whilst the quantities one wishes to 
predict are placed on the targets. In the context of source localisation, the desired objective is to estimate the location of an observed AE 
event, suggesting that a location coordinate be designated as a target with a dTOA value (for example) assigned as an input. Although 
this direct means of modelling an inverse problem has demonstrated success [16], it is not reflective of the general approach to 
regression where the independent variables are assigned as model inputs. This paper avoids such an issue by considering a forward 
model, where the potential source location coordinates, which are indeed the explanatory ones, are used as model inputs, with the 
dTOA values assigned as model targets. 

An additional benefit of adopting a forward model is that the underlying assumption in standard GP regression of noise-free inputs 
[25] is more closely met than if taking an inverse model approach. Although the AIC method yields a reasonable prediction of the onset 
times, they are still only estimates of the true values. The dTOA values should, therefore, be interpreted as being corrupted with some 

Fig. 3. Source location likelihood maps corresponding to four individual sensor combinations, where the colour bar represents the likelihood value. 
The sensor pair used is represented by black circles, whilst the red cross marks the true source location. 
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level of noise, and therefore if placed on the inputs of the GP, do not uphold the required assumption. This will be particularly pertinent 
when operating outside of the ideal conditions of the laboratory, where increased levels of external noise will have more of a disruptive 
influence on the time of flight estimates. In the case of the AE source locations, the user has direct control of the position at which these 
events are generated. Therefore, providing that the experiment has been set up with good practice in mind (such as proper calibration 
of positioning devices), it is viable to assume that the noise present on the AE event locations is insignificant relative to that on the 
dTOA measurements. 

By placing grid coordinates on the input to the GP, the location of a future observed AE event can no longer be estimated solely by 
the predictive distribution. Instead, having mapped a grid of coordinates onto their corresponding dTOA values via GP regression, it is 
possible to assess the likelihood of a new set of observed dTOAs for each sensor pair yobs =

{
yobs,1, yobs,2,…, yobs,J

}
given the learnt 

functional mapping from the (x, y) coordinates to a measured dTOA in the training data, again for each sensor pair j = 1,2,…,J. For the 
set of J models, this means assessing, 

logp(yobs,j|D , x*,M j) = − 1

2
logV[f* ,j] −

(yobs,j − E[f* ,j])2

2V[f* ,j]
− 1

2
log2π, (12)  

where D =
{

Xi, yi,j
}N

i=1 
is the set of N training pairs where, for each i,Xi is the (x, y) coordinate for that observation and yi,j is the dTOA 

for observation i at sensor pair j. Eq. 12 gives the likelihood of a newly observed dTOA from an unknown source location given a 
candidate location x* for a given sensor pair, i.e. model M j. Although this likelihood remains conditioned on the hyperparameters, it is 
assumed that these are now fixed given the training stage of the model and they are not shown to avoid clutter. 

By calculating the exponential of Eq. (12) at a set of candidate points across the structure (i.e. for x* = X*), the likelihood that the 
event originated from each point can be computed. Defining this set of candidate locations as the predictive grid, it is clear that the 
accuracy of using Eq. (12) to identify the source origin will be dictated by the density of the grid. When implementing a GP, the main 
computational burden lies with the inversion of the covariance matrix, scaling as O (N3). Given that this operation is exclusive to the 
training stage, defining a suitably dense predictive grid will generally not be the dominant factor in computing time. What the size of a 
“suitably dense” predictive grid will be, however, is dependent on factors such as the complexity of the wavefield, number of training 
points used, and computational availability. As such, these variables dictate that the sizing of the predictive grid should be constructed 
on a case-by-case basis. 

To demonstrate the method visually, the data is split into a training and testing set, where each data point consists of the source 
location and the corresponding dTOA vector for an artificial event. For a single AE event randomly selected from the testing set, Fig. 3 
shows the likelihood that the corresponding dTOA value originated from each location on the predictive grid. The results are shown for 
four sensor-pairings, where the red cross indicates the true location. 

Investigating each of the maps, it can be seen that rather than providing a unique solution, there exist contours of highly probable 
locations for each sensor pair that will generally intersect at the true location. This is of course expected; acoustic emission theory 
states that when considering difference-in arrival times of the fastest wave mode to localise a source, providing the source does not sit 
on a direct path between two sensors, a minimum of three sensors are required to provide a unique solution. To account for this 
behaviour, it is necessary to marginalise over each of the individual models, which is equal to the following, 

p(yobs | D , x*) =
∫

p(yobs | D , x*,ℳ)p(ℳ)dℳ (13) 

By observing that the likelihood in each sensor pair depends only on the dTOA between those sensors (yobs,j) and that the collection 
of sensor pairs forms a finite and discrete set of possible ℳ = {M 1,M 2,…,M J}, the integral in Eq. 13 can be transformed into a finite 
sum. 

p(yobs | D , x*) =
∑J

j=1

p
(
yobs,j

⃒⃒
D , x*,M j

)
p
(
M j

) (14) 

Placing an equal importance on all sensor pairs, it is possible to set p(M j
)
= 1/J ∀ j ∈ {1,2,…, J}. Therefore, 

p(yobs | D , x*) =
∑J

j=1

p
(
yobs,j

⃒⃒
D , x*,M j

) (15) 

The task of predicting the true source location for the measured emission event can then be framed as maximising the likelihood of 
the observed dTOAs given the candidate location x* and the previously observed training data D . In other words to determine, 

x̂* = argmax
x*

{logp(yobs | D , x*) }

where the candidate AE source location x* with the highest likelihood of generating the observed dTOAs from the observation yobs is 
determined to be the predicted source location, ̂x*. The advantage of marginalising across the possible models (sensor pairs) is that one 
is not required to choose a best subset of sensors with which to proceed, instead it is possible to capture the information from all 
possible measurements and combine them in a consistent manner. It also allows, if a priori knowledge is available, weighting of 
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different sensor pairs based on their efficacy in identifying source locations through modification of p(ℳ). 

4. Results and discussion 

Following the implementation of the localisation strategy detailed in the previous section, for the same test point used in Section 
3.3, Fig. 4 represents the marginal likelihood across all sensor-pair models that the event originated from locations across the plate. 
Inspecting Fig. 4, it can be seen that there exists a region of high likelihood around the true location, demonstrating that the origin of 
the AE event has been correctly located. If desired, a single estimate of the origin location can then be made by considering the location 

Fig. 4. Mapping that quantifies the combined source location likelihood of an AE event. The true origin is given by a red cross and the colour bar 
represents the combined likelihood value. 
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on the map that returns the highest marginal likelihood. 
The key advantage of the probabilistic maps is that the source location likelihood can be evaluated at any number of locations 

across the plate. The user is then flexible to decide on how to proceed. The simplest option is to use the algorithm in isolation, where 
the maximum likelihood solution can be used to identify the most likely location of the AE source. Alternatively, it is also possible to 
feed the location likelihoods into a wider risk-based SHM framework, where likelihood values are used to inform the calculation of risk 
associated with some given event [32–34]. 

In addition to identifying the highest likelihood event location, the probabilistic source location maps also provide an intuitive 
visualisation of the associated confidence, which can be used to inform an operator how large a region of the structure may warrant 

Fig. 5. Mapping with an increased uncertainty around the location of the AE event. The true origin is given by a red cross and the colour bar 
represents the combined likelihood value. 
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closer inspection. For example, in the case that the algorithm identifies the most likely source location with high certainty, one would 
expect to see a single compact region of high likelihood, as observed in Fig. 4, and therefore requires only a small area of the structure 
to be inspected. However, where a prediction is made with less certainty, this may be reflected in either a single region of high 
likelihood becoming more spread, or through the emergence of multiple highly probable locations. To demonstrate a prediction with 
lower confidence, Fig. 5 provides the source location likelihood map for a test point where the region of high likelihood is far more 
dispersed about the true location than that of the previous example, and indicates that a larger region should be investigated further. In 
this case of low confidence, the ability to flag an area/number of potential source locations will prove more informative over 
considering single point estimates with an associated uncertainty bound. 

4.1. Single location prediction performance 

Whilst single location predictions are not the sole focus of this work, it is still useful to consider them as a way to assess the general 
performance of the localisation algorithm. To do this, the predicted location (i.e. the most likely) of each observation in the test set is 
compared to the true value, with the results illustrated in Fig. 6. Upon visual inspection, it can be seen that there is a high level of 
agreement between the predicted and true location for the majority of points within a test set of 100 events. Assessing the root-mean- 

Fig. 6. Comparison between the predicted and true AE event location for 100 testing events.  
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squared-error (RMSE) of the test set according to Eq. (16) returns a value of 4.57 mm, which given the dimensions of the test structure, 
demonstrates the accuracy of the proposed approach. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
x,y((x, y)pred − (x, y)true)

2

Ntest

√

. (16)  

4.2. Sensitivity to training grid size 

One of the main costs associated with implementing a data-driven localisation strategy is the acquisition of training data, requiring 
artificial AE events to be generated across the test structure. Whilst autonomous data-collection solutions have been suggested [16], it 
is still beneficial for the number of training events to be reduced so that less time has to be spent collecting data. To investigate how 
sensitive the localisation algorithm is to the number of data points used in the training phase, the RMSE of single-point predictions 
using training sets with different grid spacing is investigated, where grid spacing is defined as the distance between each training point 
in both the x and y direction. For each training grid size, an averaged RMSE across ten testing sets that each consist of 100 randomly 
selected locations is then assessed, with the results plotted in Fig. 7. An obvious first conclusion to make is that as the spatial resolution 
is increased, which corresponds to reducing the grid spacing, the RMSE decreases. This is entirely expected; a training set represen-
tative of a denser grid will require less of the feature space to be interpolated over. A more notable observation is that as the grid 
spacing becomes larger, the corresponding increase in error is of a significantly smaller factor. For example, shifting the grid spacing 
from 5 mm to 20 mm - which is a 300% increase - returns only a 34.4% rise in error. Given that increasing the grid spacing from 5 mm 
to 20 mm would allow the required number of training events to be reduced from 2177 (at 5 mm grid spacing) to 160 (at 20 mm), in 
many circumstances, the relatively small increase in error could be justified by the considerable amount of time that would be saved 
during the acquisition stage. Additionally, as the data points are naively removed in a uniform manner, following a more informed 
training point selection process, such as removing less events around geometrical features, would likely see more favourable errors as 
the number of training measurements is reduced. 

4.3. Comparison to existing methods 

To compare the LoEL method with similar state-of-the-art approaches, the exercise completed in the above section is repeated using 
both the latest variant of the Delta T mapping technique (details in [15]) and also the method presented by Hensman et al. [16], which 
will be termed the direct GP approach. As this is the authors’ implementation of both of these methods, the training and testing lo-
cations will differ to those presented in the results of [16]. Additionally, it should be noted that a grid spacing of 5 mm was not 
computed for the direct GP due to excessive computational demands, which was estimated to be two weeks run time on a standard 
workstation due to re-training the model for each test set. 

Considering Fig. 7, LoEL compares favourably with both Delta T and the direct GP approach, returning a lower RMSE at the 
majority of the training grid resolutions. An increased predictive performance is particularly evident at the larger grid spacings, where 
it can be seen that the difference in error between the proposed approach and those for comparison increases. This enhanced 

Fig. 7. Mean and standard deviation of RMSE for 10 test sets as the spacing between the number of training set observations is varied. A grid 
spacing of 5/10/15/20/25 mm corresponds to 2177/599/302/160/107 training points. 
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interpolative capability can be ascribed to two factors. Firstly, as the behaviour of the acoustic emission waves across the plate is 
inherently nonlinear, the accuracy of the interpolation is dependent on the ability to represent such complexity. In the proposed 
approach, the choice of kernel function within the GP prior allows nonlinear relationships to be captured, whilst for Delta T, the 
method is limited to fitting a linear regression between known data points. Therefore as training data become more sparse, the 
assumption of a linear functional form will become increasingly restrictive, leading to a worsened interpolative performance. Sec-
ondly, as linear interpolation fits exactly through known targets, it is not possible to directly account for the process noise associated 
with the difference-in-time-of-arrival values. Conversely, under the LoEL approach, the dTOA measurements are considered to be the 
summation of a true underlying value, and some Gaussian noise term, which, for reasons discussed in Section 3.3, is more reflective of 
the underlying process being modelled. 

For the direct GP, the radial basis function (RBF) kernel (equivalent to an SE) that is implemented is capable of modelling non-
linearities and therefore overcomes the first limitation of Delta T. However, the infinitely differentiable property of the RBF kernel 
likely makes too strong a smoothing assumption on the data. By switching to a Matérn kernel, the family of functions believed to 
represent the relationship between spatial location and dTOA is now restricted to those that are p times differentiable (where p =
ν−1/2, with ν = 3/2). This order of differentiability more accurately reflects the underlying physical process being modelled, 
contributing to an improved spatial interpolation for our method. In relation to accounting for the uncertainty associated with the AE 
onset times, by mapping from dTOA measurements to a spatial location, the assumption of noise-free inputs required by standard 
Gaussian process regression is not upheld, whilst the uncertainty associated with the TOA measurements is unable to be incorporated 
into the model. This will clearly be detrimental to the localisation accuracy, particularly for the two least dense training sets where the 
error rises sharply in comparison to our method. An additional benefit of the proposed approach over the direct GP is a significant 
reduction in learning time. For the direct GP, a Gaussian process prior is learnt for each grouping of three or more sensors, which for 
eight individual sensors, corresponds to 438 GPs. In the case of the method proposed here, a GP is trained for each sensor paring, 
reducing the number of GPs to 28. Although at prediction time LoEL requires more function evaluations than the direct GP, as dis-
cussed earlier, the main computational bottleneck with GPs exists in the training stage, scaling O (n3) as opposed to at prediction time 
where the mean is computed at O (n) and the variance O (n2). Hensman et al. [16] do present some discussion around mitigating this 
elevated computational cost in their approach, for example, by using the same set of hyperparameter values for each array of the same 
dimensionality. However, our method remains more computationally efficient. 

5. Conclusions 

The work contained within this paper has established a probabilistic framework for localising acoustic emission sources in complex 
structures, offering a number of advantages:  

• The likelihood that an observed AE event originated from a given location is quantified across the surface of the structure, where 
the location that returns the maximum likelihood identifies the most likely source origin.  

• By using a forward model approach and placing the locations of the training events on the GP inputs, the model is representative of 
how regression problems are generally treated, as well as more closely upholding the noise-free input assumption than in the case of 
a direct strategy.  

• There is the potential ability to flag multiple possible damage locations.  
• The probabilistic mapping offers an intuitive visualisation of the confidence associated with a location prediction, which can assist 

an operator in deciding how large of an area to inspect.  
• As the number of data points used in the training phase is reduced, when applied to a complex-like structure, an enhanced 

interpolative performance is demonstrated in comparison to other similar localisation methods. 

One constraint of the proposed approach is the reliance on accurate TOA estimates. Although the GP framework allows some degree 
of uncertainty in the onset times, learning the dTOA maps requires there to be a sufficient level of accuracy in the TOA values. In this 
work, an AIC picker was adopted to determine the onset times, which comes with the caveat that signals fed into the picker must only 
contain a single AE event. In scenarios where one is reliant on data containing multiple events, such as in a streaming context, then an 
additional step in the data processing stage would be required. The authors believe that an adaptive thresholding strategy would be 
suitable here [35] and will be the consideration of future work. In regard to the nature of the onset time uncertainty, it is assumed that 
the noise process can be modelled as an additive, fixed variance Gaussian, and is therefore insensitive to the location of the event 
relative to the sensor pair. For larger structures in particular, it is likely that adopting a noise process that is dependent on the position 
of the event would be more suitable. To this end, the authors have begun an initial line of work considering the use of heteroscedastic 
Gaussian processes which allow an input-dependent noise [36]. Additionally, it would be desirable to explore alternative approaches 
for combining predictions across sensor pairs. For example, a weighting scheme that can reflect the uncertainty resulting from the 
location of the particular sensor pair will result in a more robust approach, particularly as the number of training measurements are 
reduced. 
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