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Abstract—Maintaining smartphone indoor localization systems
operational and accurate is challenging. Landmark and WiFi
based systems rely on up-to-date reference points and radio maps.
These are expensive to refresh for most current systems because
of the exhaustive site surveys these rely on. Any physical change
in the environment may cause unpredictable transformation in
the radio propagation medium or it may affect the typical nav-
igation paths inside the building. Active Learning (AL) involves
human intervention in annotating sensor samples collected from
the target environment. However, the burden on users to perform
this manual task should be minimized to make the approach
more user-friendly. We propose a solution that improves AL by
involving the users only when sensor data deviates from what
is expected at a location. Our solution analyses the confidence
of location estimations in the environment. We propose a robust
data distribution shift detector that looks at several levels in our
location estimation neural network to determine the confidence
of predictions. During the training stage, the model builds high
confidence for estimations in the areas where data is available. We
show that data from outside the training distribution is detected
as anomaly, which triggers the AL to prompt the user for her
current location as label. These annotated samples and other
augmented data are then used to update the location estimation
model.

Index Terms—indoor localization, active learning, data distri-
bution shift, estimation confidence

I. INTRODUCTION

A growing number of mobile applications and services rely

on indoor localization for their effective operation. Indoor

localization systems estimating the user location based on

data from smartphone sensors have been explored for almost

two decades with many successful examples and alternative

implementations (see Section II). One approach is to train a

location estimation model using training data collected from

a target region [1], [2]. Elements such as Wi-Fi fingerprints,

magnetic field and landmarks (doors, corners, etc.) are often

used as references by indoor positioning systems based on a

preliminary exhaustive data collection campaign (site survey).

However, these site surveys are expensive to perform. They

require deliberate intervention from a specialist to explore the

environment and collect the training data. Any small change

in that indoor space alters the radio propagation medium,

modifying received Wi-Fi fingerprints, and might interfere

with the magnetic flux in a small region (caused by relocating

powered equipment with an electromagnetic field). To calibrate

for such changes, new site surveys are needed periodically.

More recent work rely on crowds of people to source those

alterations from the target environment [1], [2]. Solutions such

as Active Learning (AL) aim to involve the users in labeling

the data (providing the ground-truth location), which is then

used to retrain the model (or update radio maps). However, it

is hard to assess when to prompt the user for her location. Too

many notifications and the user may become annoyed with the

system.

We propose to improve AL by knowing when to prompt the

user for interventions based on data distribution shift detection.

Sensor samples collected by the smartphone at run-time that

are not in the data distribution of the current training dataset

will be seen as anomaly by the system and prompt the user

for their labels.

Data that is annotated by users with the ground truth

location extends our training set. During the training, we force

the neural network based location estimation model to learn

the samples from the training set in order to identify them at

run-time with high confidence. We make this training robust by

introducing data augmentation to assist when training samples

are not evaluated with high confidence. This data augmentation

increases the number of samples available for training in

those regions with very few training samples. Effectively,

this process has the role of compensating data skewness and

boosting estimation confidence uniformly across the sampled

spaces. The model prediction confidence is determined by

observing the confidence at several levels in the neural network

through parallel Softmax layers associated to the main layers

of the position estimation network (Section IV discusses the

confidence estimation process in detail).

We perform the evaluation of the proposed data distribution

shift detection on Wi-Fi fingerprint data. Then we assess the

impact of this distribution shift detector in an AL setup. Any

new samples that are detected within the building are analysed

and only used to update an indoor localisation model if they

are determined to be data shift samples, i.e. from a region of

the building that has not been adequately mapped, because

there are few, if any, similar samples in the available training

set. We observe that our approach for AL accelerates the

training of a robust location estimation model using very little

additional samples, which lowers the burden on the users to

annotate the data. The evaluation is presented in more details

in Section V.
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This paper makes the following contributions:

• We propose a data distribution shift detection solution

for assessing the confidence of location prediction with a

neural network taking Wi-Fi fingerprints as input.

• We train the location estimation model with data aug-

mentation to boost its confidence for edge cases, such

that any low estimations at run-time reflect regions that

have never been explored.

• We incorporated our data distribution shift detector in an

active learning system to reduce the number of samples

that need user input to update the radio map of a building.

II. BACKGROUND AND RELATED WORK

A. Indoor Localisation

Indoor localisation refers to pinpointing a user’s position

within a building by utilising an indoor positioning system.

Several localisation systems exist today.

Wi-Fi fingerprinting is an indoor localisation method that

uses location fingerprinting to empirically measure signal

strengths for inferring locations [3]. This method typically

involves two phases - the offline phase (performed before the

system is operational), in which the received signal strengths

are collected at specified locations throughout the target indoor

region. The signal strength values of Access Points are saved

in a vector and associated a ‘ground-truth’ point (the x and y

coordinates of the sample location, and z for floor or altitude)

as such: (x, y, z). These (location, signal strength) pairs are

known as fingerprints and saved in a database, which can be

processed to produce a radio map.

After deployment, there is the online phase, which uses the

radio map to determine a location for the measurements of

a mobile device. Periodic Wi-Fi scans from a mobile device

create the run-time observations in a vector of signal strengths

(fingerprint). This online fingerprint is compared to the radio

map of past fingerprints to return a location estimate based on

the best matching signal strength vector. A similar process is

employed by magnetic fingerprint based systems and systems

that rely on physical landmarks in the building (such as

corners, doors, trajectory matching, etc.).

Many previous work use sensor based landmarks and Wi-

Fi signatures for performing indoor positioning. ‘SpotFi’ [4]

achieves “decimetre level localisation” (i.e. 10cm). This ex-

emplifies the principles underlying the majority of indoor

localisation systems: deployability, universality and reliability

– the system runs on existing Wi-Fi installations, the system

is able to localise any device with a Wi-Fi chip without any

further hardware requirement, and finally, accuracy is key for

the adoption of such systems for everyday usage.

Using Deep Neural Networks (DNN) to deal with the variant

and unpredictable nature of radio signals is also an active

research area. This approach requires a substantial amount

of training data, but this is becoming more widely available

through community repositories [5]. In [6], a four-layer DNN

model extracts features from widely fluctuating Wi-Fi samples.

This model is pre-trained as a Stacked Denoising Autoen-

coder (SDA), which learns reliable features automatically from

datasets of noisy samples. In addition to the isolated Wi-Fi

based position estimations, in [6] the trajectory is refined by a

Hidden Markov Model (HMM), which smooths any occasional

erroneous estimations.

A major problem for fingerprint based systems is the stal-

eness of radio maps. Constant update is needed to cope with

any involuntary and occurring changes in the environment.

Research focused on algorithmic strategies for adapting to

environmental changes in Wi-Fi location fingerprinting has

been developed in recent years. In [3], the focus is to perform

continuous updates to an existing radio map. Primarily, this

is motivated by the characteristics of the propagation environ-

ment, with gradual attenuation of the radio signals, but also

being affected by reflection, refraction, and absorption caused

by building structures and people moving in the environment,

resulting in significant distortions to the radio waves as it is

interpreted at the receiving end. In their system, ‘Streamspin’,

end users can choose to contribute their indoor location,

whereby they can indicate they are at a previously profiled

location or at a new location to expand the coverage of the

radio map. This human contribution helps to maintain fresh

radio maps.

Other systems replace the human intervention with infras-

tructure mounted cameras for position estimation [7]. In [8], a

system tracks the movement of people to estimate their exact

location when in view of the camera. Such context information

from the vision component can automatically annotate sensor

data [9] and continuously refine the estimation models.

In [10] AL in the context of Wi-Fi localisation is used for re-

ducing the amount of labelled data required for training a Wi-

Fi fingerprint model. This is designed to tackle the main barrier

of broad adoption, the labour-intensive process of collecting

labelled fingerprints. They show how a fingerprinting system

can be constructed with noticeably less labels, while obtaining

high positioning accuracy. Rather than requiring the user to

stop at every location within the target building to annotate

collected Wi-Fi fingerprints, dead reckoning is employed to

predict subsequent locations and label the Wi-Fi fingerprints

with. The accumulating error of dead reckoning is addressed

by automatically identifying some strategic locations to label,

and with AL the annotator is asked for her exact position when

close to those strategic locations.

B. Active Learning

Active Learning (AL) is a subsection of machine learning.

There are countless applications for this technology, including

but not limited to speech recognition [11], textual information

extraction [12] and image classification [13].

In [14], Burr Settles et al. explain the basic idea behind

AL as being a machine learning method of learning which

can reach greater accuracy by using fewer labelled training

instances, if it is allowed to select which instances to learn

from. Essentially, AL algorithms raise a query that requests

a human annotator, known as an oracle, to label a previously

unlabelled sample of data.
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In [11], AL is used for reducing the examples to be

labelled for training, by inspecting the unlabelled examples,

and intelligently deciding the most informative instances with

consideration for a cost function, such as the cost for the oracle

to label. Their aim is to choose the data samples that will

offer the best improvements in performance of the speech

recogniser. AL offers information extraction strategies [12],

including confidence and distance based approaches. The basic

premise is to design an algorithm that automatically identifies

documents for the user to annotate.

AL can also be used for novel image classification [13], by

building a robust classifier from a limited amount of labelled

training instances. They use this in an incremental learning

manner. The unlabelled data is progressively fed into the

Convolutional Neural Network (CNN). The majority of these

samples are clearly classified and take the labels provided by

the CNN. A minority of samples are user-annotated if they

do not meet the required threshold level, both of which are

then used to further update the CNN model with an increased

training set.

To determine the uncertain samples for annotation, three AL

approaches are commonly used: least confidence (LC), margin

sampling (MS), and entropy (EN). Their effect is to select the

most informative/uncertain instances from the unlabelled set

for annotation:

1) LC ranks the unlabelled samples in ascending order

based on the probability of the sample belonging to a

category (label). When a low probability for the sample

belonging to its most probable class occurs, the classifier

is uncertain about that sample and added to the ranking

for annotation.

2) MS ranks the unlabelled samples based on the difference

between the first and the second most probable class the

classifier considers it belongs to. When there is a small

margin between these top two probabilities, the classifier

is uncertain about the sample so it needs to be manually

annotated.

3) EN ranks the unlabelled samples on the difference

between all class probabilities. A high value of entropy

means an increased uncertainty about the sample’s class.

The techniques are focused on enlarging the training dataset

and using continuous data learning to retrain the classifier and

adapt the model for new samples. The problem with this is

that when learning new samples, old data points can become

forgotten. This aspect is the focus of another research [15] that

aims to alleviate the forgetting over time.

These are just a few examples of how AL can be applied

to certain scenarios, however the underlying techniques are

always similar, identifying the most relevant samples to be

labelled for training.

C. On Smartphone Premises

The requirement for any AL solution to run within the

computational confinements of a smartphone is of paramount

importance. Smartphones are, however, the ideal device to use

for indoor positioning, due to their wide array of sensors, and

their ubiquitousness in society.

In order to fulfill the requirement of a smartphone based

AL algorithm for indoor localisation, any final strategies or

techniques deployed must be capable of running on a mobile

device.

Updating location estimation models locally on a mobile

device has its challenges. Mobile devices are constrained by

their relatively limited processing capabilities (as opposed to

a dedicated computer system, with greater resources), hence

by using an opportunistic solution such as AL, only the most

relevant sensor samples will be selected for model update,

saving energy in communication and storage. This problem

can therefore be managed by using efficient AL strategies.

Research into minimising the resource usage of neural

networks [16] acknowledges that state-of-the-art uncertainty

estimation methods have a high impact on the computational

resources of constrained devices. Their approach allows pre-

trained DNN models to produce uncertainty estimation for a

classification task, being optimised for use on resource-limited

devices. The efficient framework that directly enables these

models to generate uncertainty estimates does not require any

additional training or fine-tuning of the DNN model. The paper

proposes that a layer-wise distribution is propagated through

the network in a cascaded manner, massively reducing the

computational complexity by allowing the model to produce

uncertainty estimations in one single run. This approach makes

it possible therefore to estimate the predictive uncertainty on

a wider range of small devices, which would otherwise be

harder with traditional techniques. Traditional methods need

multiple runs to generate the prediction certainty [17].

III. ACTIVE LEARNING WITH DATA DISTRIBUTION SHIFT

A. Data Distribution Shift

A prediction system uses training (past) data covariate

response pairs {xtrain, ytrain} from a distribution p(X,Y ) =
p(Y |X)p(X), having the conditional model p(Y |X) and with

a prior p(X). This learns to estimate the condition p̂(Y |X)
(predictor), such that it makes estimations for future variables

from a test set p̂(ytest|xtest).
Covariate shift occurs when the distributions of covariates

are different between the training data and the test data [18].

This has implications when the true model P (Y |X) cannot

be approximated correctly by the prediction model p̂(Y |X).
It could also be that the prediction model works well for

p(Xtrain) but not for p(Xtest), if the model is only accurate

in the X-space.

The use of novelty detection models [19], is a method of

learning a decision boundary between multiple categories in

a dataset, allowing any novel classes to be detected during

the testing phase. Further research [20] into data distribution

shift detection analyse machine learning systems that fail

loudly, built on solutions for detecting dataset shift. These

identify exemplars that are obvious candidates for the shift,

and quantifies shift malignancy (the amount of deviation).

The findings show that precise subtle changes in the data
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distribution can degrade the performance of even state-of-the-

art classifiers. As an extension, anomaly detection exposes

data instances that deviate from the main density of data

instances in a set [21]. A method of particular note is using

SoftMax likelihood models. The aim of this approach is to

generate a score that reflects the likelihood of events given an

input. The training dataset will tune the model to produce

maximum likelihood, or strong predictive confidences. The

weaker confidence samples generally come from a different

distribution, highlighting the anomalies in data. The concept

of producing anomaly scores by modelling the event likelihood

is expressed by:

Θ∗ = argmax
Θ

∑

x∈X

log p(x; Θ) (1)

where p(x; Θ) is the probability of a given instance x, with Θ
being the parameter to be learned. As so, p(x; Θ) is modelled

with the SoftMax function:

p(x; Θ) =
exp(τ(x; Θ))∑

x∈X exp(τ(x; Θ))
(2)

where τ(x; Θ) is the anomaly scoring function capturing the

feature interactions:

τ(x; Θ) =
∑

i,j∈{1,2,··· ,K}

wijzizj (3)

where zi is the embedding in a lower dimensionality for the

i-th feature value of x in the representation space. Wij is

a trainable parameter representing the weight brought to the

interaction.

In [21], SoftMax models are analysed based on their advan-

tages, showing that anomaly detection scores using SoftMax

can incorporate different types of interactions. They also come

with disadvantages, most notably being the computation cost

when the number of features in each data instance is large.

This is due to a O(Dn) time complexity per instance for

the n-th order interactions of D features. However, given that

most datasets used for indoor localisation are commonly very

small, performance issues are not a key concern, and hence

SoftMax likelihood models are a viable method for detecting

anomalous samples as they offer an adequate approach to

learn low-dimensional representations from a given training

set. Other reviews [22] that evaluate out-of-distribution sample

detectors also thoroughly investigate the usage of SoftMax in

several detection methods, but have concluded that reliably

evaluating the performance of out-of-distribution detectors is

difficult [23]. Previous methods are ineffective and perform

incomplete evaluations.

SoftMax layers are also shown to be efficient confidence

estimators in deep neural networks [24]. Lower probability

values in the SoftMax expose anomalous examples, so a classi-

fier conveniently acts as a efficient out-of-distribution detector.

Correctly classified examples produce greater values in the

SoftMax than erroneously classified and out-of-distribution

examples. In another research [24], three domains are inves-

tigated for anomaly detection with SoftMax: natural language

Cell 1 Cell 2 Cell 3

Prediction

Layer 2

Layer 1

WiFi 
fingerprint

Cell n

SoftMax 2

SoftMax 1

Score 2

Score 1

Fig. 1: Location estimation model with confidence assessment.

Each layer of the model has a SoftMax associated in parallel to

the main dataflow. SoftMax provides the largest probability to

be aggregated in the final model prediction confidence across

the entire network.

processing, computer vision and automatic speech recognition.

They show how the SoftMax exposes data that is from a

different distribution than the training data distribution, in all

three domains. We demonstrate that SoftMax as a confidence

assessment mechanism is also applicable to classifying Wi-Fi

samples and their distribution.

Detecting out-of-distribution samples has been an active

research space over the last several years, producing papers

that focus on detecting anomalous samples in areas such as

image detection [25], [26], text classification [27] and bacteria

identification [28].

The ability to detect distribution shifts (away from the

training distribution) in sensor data samples at run-time is

the key insight of our solution. This detection is hugely

beneficial towards efficient AL for indoor localisation that

avoids burdening the user excessively.

IV. DISTRIBUTION SHIFT DETECTION WITH CROSS

MODEL CONFIDENCE

Here we introduce our proposed solution for detecting data

distribution shifts. We determine that a test sample is from a

different region to the one used for collecting the training data

if there is a data distribution shift. The data distribution shift

assessment is made based on the confidence of the prediction.

A. Confidence Assessment of Model Predictions

Figure 1 presents the adaptation we make to the neural

network model. The prediction model takes a Wi-Fi fingerprint

as input and predicts on the final layer the grid cell of the

estimated location. At each layer in the network, we add a

parallel SoftMax layer. This is trained in a similar manner

across the network, using the target class of the training sample

to adjust each SoftMax layer. The intuition behind this concept

is driven by early exit branches in the GoogleNet neural

network. In GoogleNet, if the activation is strong enough

on one of these early SoftMax layers along the network, the

processing terminates early with that exit its predicted class,

before reaching the final layer of the network. In our case, we
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take the softmax estimations at each level and compute the

confidence of the entire model based on their probabilities.

We formulate the model confidence for a given class k and

propagating the input x as:

confidencek(x) =
n∏

i

lobit
(i)
k (x(i)) (4)

where lobit
(i)
k is the activation intensity of the SoftMax layer

added to layer i for the output associated to class k, and x(i)

is the input to layer i as propagated through the network.

This confidence level over the input sample indicates if there

is a data distribution shift, if the confidence is lower than a

predetermined threshold, or if the sample belongs from the

same distribution as the training data if the confidence is higher

than the threshold. We determine this threshold empirically

based on observations during training.

B. Data Augmentation

We boost the confidence of the classifier for samples in the

training set by extending the training set with samples that are

very similar to those that are underrepresented. We achieve

this by adding very small amounts of noise to the raw sample.

In the case of Wi-Fi fingerprints, this is reflected in adding

noise chosen from the normal distribution of signal strength

deviations observed at a location over many samples in the

training set.

Data augmentation is also valuable to reduce the skewness

of the data towards more samples for a specific region.

By increasing the amount of samples from a region that is

underrepresented in the training set, we boost the confidence

observed for that class (region) at run-time.

C. Finding the Confidence Threshold

To identify the samples from the unexplored region, a

threshold of confidence is imposed on the classifier predic-

tions. After training, the classifier has a weaker confidence

score for its predictions on samples from other regions. A

deep neural network classifier is trained on the training set

(including augmented data).

By analysing the confidence scores from the classifier on

the training regions and on the separated region, a threshold

of confidence becomes apparent that can differentiate between

known training data and the shifted samples.

We then use this threshold of confidence to plot a confidence

threshold map, whereby all the samples are plotted by their

coordinates, and each sample can be highlighted according to

whether it has been singled out as a sample of low confidence,

and has been identified as a data shifted sample.

V. EVALUATION

A. Dataset Preparation

We use the UJIIndoorLoc dataset [29] for training a position

estimation system. This is a multi-building multi-floor indoor

localisation dataset to test an Indoor Positioning System that

utilises Wi-Fi fingerprints. The UJIIndoorLoc dataset covers 3

Fig. 2: The leftmost building. The blue circle surrounds the

data samples used as the shifted, separate and unexplored

region.

buildings of Universitat Jaume I, each having at least 4 floors.

Data was gathered using more than 20 different users and 25

Android devices. We perform our evaluation on the samples

collected from the ground floor of the leftmost building.

B. Splitting the Data into Training and Leave-out Regions

Next, the data samples are split into the main training region

and the separate region that is used as the shifted validation

data that we use to gauge the performance of the classifier

once it is implemented. In Figure 2, the blue circle has been

superimposed on the graph to indicate the samples we leave

out of the training. For us, this region represents the data

distribution shift.

C. Creating the Cell Grid and the Choosing the Classifier

The grid cells are created as 1×1 metre cell size. This

splits the geographical area covered by the dataset into ap-

proximately 300×200 cells.

A deep neural network classifier is trained on the training

data and then tested on the shifted validation data, so that

a confidence threshold between the two datasets can be ob-

served. The training hyperparameters include the number of

epochs (training iterations) to 500, the mini-batch size is 512,

and having just two fully-connected neural network layers.

D. Confidence Score Assessment

After training, the classifier is used to predict the location

for samples from the left-out region. For each sample the

confidence score is calculated as the likelihood of prediction

believes to the sample right grid cell. We observe that on

the training data we get high confidence scores. Often the

samples are above 80% confidence, and very often above at

least 60%. There are some outliers present that score relatively

low however these are in the minority and any further training

risks overfitting the model.

In Figure 3, the orange lines represent the ‘estimated loca-

tion’, i.e. the grid cell classification that the classifier has the
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Fig. 3: Confidence scores of classifier on separated and unex-

plored validation data.

Fig. 4: Distribution of training and validation confidences.

most confidence in for that sample. The blue line represents the

confidence of the ‘correct location’. The resulting confidence

levels show that the classifier usually struggles to predict the

correct sample with a high degree of confidence. The blue line

shows the confidence scores of the correct classifications, and

they usually fall around 0.4 to 0.5. In most cases the confidence

levels are below 0.6, and sometimes the confidence scores are

very low.

E. Determining the Threshold for Distribution Shift

To detect data distribution shifts, we use a threshold on the

classifier confidence. If there is a clear threshold at which point

the majority of known samples (training region) are above

this confidence level, and the samples from the left-out region

are below, this is an effective threshold. Figure 4 presents

the box plots to visualise the distribution of the confidences

for samples from the training region and samples from the

validation (unexplored) region. We see that 0.6 (60%) is an

appropriate threshold to use for separating the two regions.

This point lies between the lower quartile of the training

data and the upper quartile of the validation data, hence most

samples are correctly identified as either ‘known’ locations, or

as the anomalous shifted samples we are seeking to detect.

Fig. 5: Classifier confidence on the samples. Darker red

indicates lower confidence - these are the samples assumed

to be shifted.

Fig. 6: Separation of samples into what the classifier considers

shifted and unshifted data samples.

F. Distribution Shifts for Active Learning

We make use of the same coordinates as before in Figure 2

so we can see how well the classifier performs at identifying

the shifted samples. Figure 5 plots the original samples in their

locations, shaded to represent the classifier confidence. Figure

5 accurately highlights the data shifted region, the separated

samples that are circled in blue in Figure 2. Figure 6 shows the

samples once again, but this time the data points are coloured

red or green to depict whether the current system considers

them a data shifted sample or not.

To reduce the number of false positives, we increase the

number of Wi-Fi samples available for the locations of the

training set that are wrongly classified. With data augmen-

tation, a small amount of noise is added to the received
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Fig. 7: Bar graph showing the number of Wi-Fi samples avail-

able for each grid cell in the extended training set (including

data augmentation).

Fig. 8: Accuracy of predictions on training and validation

(shifted) data.

signal strengths for the samples collected at those known

locations. Figure 7 presents the new distribution in the number

of samples for each cell in the training set.

G. Improving Active Learning with Data Distribution Shift

Detection

The confidence threshold is fixed at 0.6. We explore how

adding samples from the unexplored region influences the

quality of the model. Figure 8 presents the effect on the

validation set of adding a number of training samples from the

unexplored region. This simulates the manual input of users

as prompted when inside the unexplored region. This is de-

termined using the data distribution shift technique discussed

above.

The orange line shows the increasing accuracy of the

classifier as the first few samples from the separated region

are added to the training dataset. The increase in accuracy

saturates fast, making additional samples irrelevant. This is

due to the training generating enough augmented data samples

to resemble the real conditions better.

H. Discussion

We showed that our data distribution shift detection method

is successful in identifying those samples from isolated regions

that represent our data shift. This research shows how to

prioritise the Wi-Fi samples that have higher value for an

AL algorithm. By using just these relevant samples, we can

efficiently update and boost the accuracy of a Wi-Fi fingerprint

map.

We can correctly predict all the unseen samples from the

separated region as being shifted samples, and these samples

are fed into an AL mechanism to update indoor localisation

radio maps with user input.

New avenues of research could be explored from the results

so far. Whilst we have manually identified and selected a

confidence threshold to differentiate between main region

and separate region, further investigations could be carried

out to determine whether this threshold can be automatically

determined to give us the most optimal boundary that still

recognises the shifted samples, but minimises the amount of

false positives that are created by the classifier.

VI. CONCLUSIONS

We showed how Active Learning (AL) can benefit from

having an efficient data distribution shift detector to iden-

tify the samples that are best suited for user labelling. Our

data distribution shift method relies on the confidence score

produced by parallel SoftMax layers added to each layer of

the location estimation neural network. A threshold imposed

on this confidence score indicates which samples are in the

comfort zone of the classifier (region experienced in the

training set) and which samples are outside of its comfort

(region not available in the training set). Data augmentation

allows us to boost the confidence of the classifier for those

regions that have very few samples in the training set. We

show that this can also reduce the amount of samples required

to be annotated by users in the AL process.

Our work will be beneficial for updating and maintaining

indoor localization system that require up-to-date radio maps

and indoor landmark maps. Through this reliable AL solution,

the burden imposed on users to provide ground truth inputs is

substantially reduced.
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