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Abstract
Due to associated hydrological risks, there is an urgent need to provide plausible quantified
changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent
a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under
global warming. However, they are computationally costly, limiting uncertainty evaluation in
ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison
Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but
provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we
quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric
rainfall drivers, using both observations and a CP projection representing a decade under the
Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical
relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP,
including for time periods not covered by the CP model. We find reconstructed hourly extreme
rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for
2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the
+0–60% (mean+30%) we obtain from a traditional extreme rainfall metric based on raw daily
CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We
conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall
projections in line with CP model behaviour, reconstructing important information for
medium-term decision making. This approach also better enables the communication of
uncertainties in extreme rainfall projections that reflect our current state of knowledge on its
response to global warming, away from the limitations of coarse-scale climate models alone.
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1. Introduction

Convective rainfall dominates rainfall extremes in
many regions of the world, which are set to increase
with or beyond the rate of increasing water vapour
in the atmosphere in a warming climate (Allen and
Ingram 2002, O’Gorman and Schneider 2009). Vig-
orous convective events can pose a serious threat to
human health, urban infrastructure, and food secur-
ity by causing flash floods (Lobell and Gourdji 2012,
Engel et al 2017). Yet, projected changes in extreme
rainfall remain highly uncertain (IPCC 2021). This
is in part because traditional coarse-scale global cli-
mate models with horizontal resolutions commonly
⩾100 km, such as those in the Climate Model
Intercomparison Project (CMIP) ensembles, cannot
explicitly capture convective processes. Instead, these
models rely on convective parameterisations that
tend to produce daily rainfall intensities that are too
low and spread out, rendering projected changes in
extreme precipitation questionable (Trenberth et al
2003, Stephens et al 2010). This severely limits
the usefulness of climate projections in the con-
text of local impacts of changes in extreme weather
(e.g. Vischel et al 2007). Consequently, there is
an urgent need for more reliable information on
future trends in rainfall extremes, which can sup-
port the development of adaptation and mitigation
strategies.

In this context, convection-permitting (CP)
simulations, which allow convection to develop
explicitly, have been found to simulate more real-
istic rainfall characteristics in different convective
environments (Prein et al 2015, Kendon et al 2017).
However, such simulations are computationally
expensive and therefore often conducted in a one-off
manner, providing a single realisation of a possible
future without capturing uncertainties intrinsic to
future climate projections. Ensemble projections at
CP scale are only just starting to emerge e.g. with a
focus on the UK (Fosser et al 2020), or are still under
planning e.g. within Coordinated Regional Climate
Downscaling Experiment (CORDEX) Flagship Pilot
Studies for Europe, South America, and High Moun-
tain Asia (Coppola et al 2020, Lavin-Gullon et al 2021,
Zhou et al 2021).

Currently, the best way to evaluate future rain-
fall extremes and related risks must be an expert-
informed approach that combines the advantages of
information from existing parameterised and CP cli-
matemodel projections, together with understanding
from observations. This study brings together these
different state-of-the-art climate data to derive future
extreme rainfall estimates.

We focus on West Africa, where we now have
a single CP realisation of future climate (Stratton
et al 2018, Senior et al 2021), which shows a greater
increase in extreme rainfall than a parameterised ver-
sion of the model, with greater intensification of

convective updraughts (Berthou et al 2019, Kendon
et al 2019, Fitzpatrick et al 2020, Jackson et al 2020).
This CP simulation is amajor advance given the dom-
inance of large, organised thunderstorm-clusters in
this region, which produce the majority of extreme
rainfall (Mathon et al 2002). These so-called meso-
scale convective systems (MCSs) however cannot
be captured by CMIP models. We demonstrate an
approach for combining the individual CP projection
with rainfall-driver relationships from observations
and with the uncertainty range from 64 CMIP simu-
lations, based on their future changes in atmospheric
MCS drivers.

Variability and change in extreme MCS rain-
fall predominantly depends on total column water
(TCW), low-level vertical wind shear and convective
available potential energy (CAPE). Higher TCW con-
tent in a warmer atmosphere is known to intensify
storm dynamics and to strongly control increases
in extreme rainfall (Roderick et al 2019, Fitzpatrick
et al 2020, Lenderink et al 2021). Wind shear affects
MCS organisation (Moseley et al 2016), the entrain-
ment dilution of convection (Mulholland et al 2021)
and the inflow of unstable air and hence latent heat-
ing (Alfaro 2017), thereby modifying MCS intensity
(Mohr and Thorncroft 2006). Environmental CAPE
is another important driver for changes in MCS
intensities and size (Prein et al 2017, Maranan et al
2018), but strongly co-varies with TCW and is there-
fore excluded from the driver scaling here to avoid
double-counting. We therefore focus on future TCW
and wind shear changes in CMIP models to recon-
struct probable and time-continuous extreme MCS
rainfall intensities.

Future changes in extreme rainfall and associated
uncertainty are key parameters for defining long-term
adaptation strategies against hydrological risks. The
design of hydraulic infrastructures (e.g. sewage sys-
tems, dams) and their management relies on statist-
ical indicators such as intensitiy-duration-frequency
curves, design rainfall or floods, whose estimation in a
changing climate remains amajor challenge (Francois
et al 2019, Brunner et al 2021, Sharma et al 2021).
This is particularly the case in West Africa, where
hydraulic design tools are non-existent or obsolete
(Sane et al 2018).We illustrate a way to use CPmodels
in combinationwith observations to inform the use of
coarse-scale climate model data for such estimations.
To our knowledge, this is the first attempt to com-
bine thismixture ofmodels and observations to better
understand the response of future rainfall extremes to
its atmospheric drivers.

2. Datasets andmethod

2.1. Observation-based data
Following the methodology in Klein et al (2021), and
drawing on previous West African studies (Arnaud
et al 1992, Laing et al 1999, Mathon et al 2002),
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we use thermal-infrared imagery from the Meteo-
sat series, which we combine with microwave rain-
fall estimates, and ERA5 reanalysis data over the
West African monsoon season May–October 2004–
2018 to relate MCS rainfall intensities to atmospheric
drivers. Together, these datasets capture a broad
range ofMCS-driver variability under current climate
conditions.

Based on 10.8 µm-band brightness temperatures
of the Meteosat Second Generation (MSG; Schmetz
et al 2002, EUMETSAT 2021), we identify MCSs
as contiguous cloud ⩽−50 ◦C regions larger than
5000 km2 between 16 and 1900UTC, the time when
the frequency of MCSs reaches a maximum (e.g.
Mathon and Laurent 2001), for a Sahelian domain
(9◦–19◦ N, 10◦ W–15◦ E). Maximum MCS rain-
fall (Pmax) is sampled frommatched-up ‘high-quality
precipitation’ (HQprecipitation, merged microwave-
only precipitation estimate) fields of the half-hourly
Final Run V06B Integrated Multi-satellitE Retriev-
als for Global Precipitation Measurement (IMERG-
HQ; Huffman et al 2019) dataset at ∼15 km resol-
ution. MCS snapshots with Pmax ⩽ 1 mm h−1 are
removed to exclude non-precipitating cloud shields.
We thus obtain conditional maximum rain rates from
22 368 MCS snapshots, for which we identify pre-
storm driver conditions.

Environmental TCW and wind shear, defined
here as the 925–600 hPa zonal wind difference in
m s−1, are sampled from ERA5 reanalysis hourly data
(Hersbach et al 2020, CDS 2021) coarsened to 0.7◦

resolution at 1200UTC, preceding afternoon MCSs,
and at the location of minimum MCS temperature.
The 0.7◦ resolution for atmospheric drivers reflects
the scale of smallest considered MCSs while ensur-
ing better consistency with the coarse spatial resolu-
tion of CMIP model data. For brevity, we refer to the
combination ofMSG, IMERG-HQand ERA5 data for
analyses as observation-based (OBS).

2.2. Convection-permitting model
This study uses data from the CP4 simulation; a 4.4
km pan-African CP climate simulation based on the
Met Office Unified Model and created within the
Future Climate for Africa (FCFA) Improving Model
Processes for African cLimAte (IMPALA) project
(Stratton et al 2018, Kendon et al 2019). Themodelled
historical period (CP4H) encompasses 1997–2006
with atmospheric boundary conditions provided by
a prototype of the latest atmosphere-only UM global
model GA7/GL7 at 25 km with sea-surface temper-
atures (SST) prescribed from observations (Reynolds
et al 2007). The CP4 future projection (CP4F) covers
ten years representative of 2100 climate conditions.
It uses GA7/GL7 atmospheric boundary conditions
under increased greenhouse gas concentrations in
line with the Representative Concentration pathway
(RCP) 8.5 at the end of this century. Driving SSTs are

adjusted fromCP4H to reflect end-of-century SSTs by
adding a climatological annual cycle of ∆T derived
from a HadGEM2-ES climate projection (Jones et al
2011), while ozone and aerosol concentrations in
CP4F remain the same as for CP4H .

At ∼4.4 km resolution, CP4 operates within
the ‘grey zone’ for resolving convection (Field et al
2017), but has been confirmed to improve the
intensity and distribution of precipitation across the
Sahel (Berthou et al 2019). It also correctly cap-
tures climatological MCS distributions, albeit with
underestimations in maximum MCS size and speeds
together with an overestimation in MCS frequen-
cies (Crook et al 2019). We extract simulated after-
noon MCSs following the same approach as for OBS,
converting outgoing longwave radiation into bright-
ness temperatures and applying the ⩽−50 ◦C tem-
perature threshold. Filtering for ⩾5000 km2 rainy
clouds gives 45 977 MCS snapshots for CP4H and
35 975 snapshots for CP4F with co-located atmo-
spheric conditions sampled at 1200UTC and at 0.7◦

resolution. The smaller number of future MCSs
is consistent with previous CP4 analyses, which
found fewer but more intense rain events paired
with longer dry spells across the Sahel for CP4F
(Berthou et al 2019, Kendon et al 2019). In line
with IMERG-HQ rainfall, the modelled rainfall is
coarsened to 15 km resolution before sampling MCS
maximum rainfall. This averaging also reduces the
overestimation of high-intensity rainfall CP4 shows
at native resolution (cf supplementary figure S1,
Berthou et al 2019).

2.3. CMIPmodels
We analyse driver changes in wind shear and TCW
out to 2100 in simulations from 38 CMIP5 (Taylor
et al 2012) and 26 CMIP6 models (Eyring et al
2016); one realisation per model i.e. ‘r1i1p1’ mem-
bers (see supplementary table 1; available online
at stacks.iop.org/ERL/16/104023/mmedia) for which
data were available for both variables. Only simula-
tions forced by the RCP 8.5 (Shared Socioeconomic
Pathway 5-8.5 for CMIP6) are analysed, consistent
with CP4. Three different 30-year time slices are
considered; 2030–2059 (‘2040’), 2050–2079 (‘2060’),
and 2070–2099 (‘2080’). The reference period covers
1950–1999, which was driven by historical anthropo-
genic and natural forcings. The models were inter-
polated onto a common 1.25◦ latitude × 1.875◦ lon-
gitude grid and averaged for respective time slices.
For the rainfall reconstruction, we use a seasonal
average of the changes in atmospheric drivers dur-
ing the peakmonsoonmonths July–September (JAS),
during which MCS activity is at a maximum in the
Sahel (Lafore et al 2011, Nicholson 2018). For a sub-
set of models, we also evaluate changes in 3-hourly
and daily rainfall extremes, depending on availability
(cf supplementary table 1).
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2.4. Translating driver changes into changes in
extreme rainfall
Using the identified MCSs from OBS and CP4, we
define MCS extreme rainfall as the 95th percentile
of the maximum MCS rainfall distribution (Pmax95).
We assume a linear relationship between changes in
∆Pmax95 and atmospheric driver changes. The indi-
vidual driver contribution is then defined as

∆Pmax95,t = βt ×∆TCW, (1)

and

∆Pmax95,s = βs×∆shear, (2)

where ∆TCW and ∆shear denote the differences
between JAS average future and historical conditions
of the respective variable from either CMIP models
or CP4. Reconstructed rainfall from JAS CP4-drivers
will be used to evaluate our scaling approach in com-
parison to the CP4modelled rainfall change. βt and βs
represent the associated rainfall/driver relationships
based on hourly atmospheric data, either as simulated
by CP4 or derived from OBS. The change in driver-
based Pmax95 is then reconstructed as a linear combin-
ation of individual driver contributions:

∆Pmax95,t+s =∆Pmax95,t+∆Pmax95,s. (3)

Our use of the driver scaling factors βt and
βs depends on the precipitation/driver relationship
remaining the same in the current and future cli-
mates, and on CP4 capturing the relationship under
both climates. This will be discussed in the following.

3. Derived rainfall-driver relationships

3.1. Historical scaling of observed andmodelled
extreme rainfall with atmospheric drivers
We first evaluate how the rainfall-driver scaling com-
pares between OBS and CP4H for the atmospheric
drivers TCW and shear. In figures 1(a) and (b), we
stratify the MCS sample according to driver strength
and compute the 95th percentile of the Pmax distri-
bution to obtain the intensity of the 5% most intense
storms that can be supported by any joint TCW-shear
combination (i.e. Pmax95). This allows us to ascertain
howPmax95 changes in response to one driver while the
other remains approximately constant.

There is a marked tendency for Pmax95 to increase
with higher TCW as well as with wind shear in OBS
(figure 1(a)). This behaviour cannot be explained by
any correlation between TCW and shear, which is
negative for OBS (r=−0.21, p⩽0.01). CP4H simil-
arly shows higher Pmax95 as TCW increases, but exhib-
its little sensitivity to ambient shear. Averaging across
TCW-bins, figure 1(c) confirms that CP4H Pmax95-
scaling with TCW shows good correspondence with
a rainfall change of 0.69 mm h−1 per unit increase in
TCW (mm) compared to 0.71 mm h−1 for OBS. At

the same time, CP4H considerably underestimates the
rainfall spread introduced by wind shear per TCW-
bin (blue spread) and consequently does not repro-
duce the observed Pmax95-increase of 0.78mmh

−1 per
unit shear (m s−1) shown in figure 1(d).

This result is in line with previous studies of CP4,
which found realisticMCS rainfall sensitivity to TCW
but little shear dependency (Fitzpatrick et al 2020,
Senior et al 2021). Our observation-based results
however highlight the importance of shear for MCS
maximum rainfall intensity on synoptic time scales; a
relationship which is backed by theory (Alfaro 2017)
and can be captured by idealised models below 1 km
spatial resolution (Bickle et al 2021).

We will therefore rely on the historical absolute
Pmax95-shear scaling as inferred from OBS following
equation (2) with βs defined as

βs =

(
∂Pmax95

∂shear

)
OBS

= 0.78± 0.15 mm h
−1

m s−1
(±SE)

(4)

representing the absolute change in rainfall per unit
shear from observations (figure 1(d)) ± standard
error (SE). This is applied under the assumption that
scaling of rainfall with wind shear remains constant
across climates, which is supported by the good fit of
the layer-lifting model of convection in Bickle et al
(2021), since this model depends on MCS-relative
flows of moisture and hence shear. For TCW on the
other hand, CP4 shows realistic behaviour, which we
exploit in the next step to derive the scaling of Pmax95
with increasing TCW under global warming.

3.2. Future scaling of extreme rainfall with
atmospheric moisture
Based on end-of-century projected changes by CP4,
we now consider the climate change sensitivity of
Pmax95 to TCW relative to the historical period. Dif-
ferent from the effect of wind shear, the rainfall-
humidity relationship cannot be assumed to remain
the same across climates as similar levels of TCW do
not result in similar rainfall intensities.

This is illustrated in figure 2, where in addition to
CP4H , the pre-storm atmospheric drivers are separ-
ated for CP4F MCSs, similar to the approach used to
obtain figure 1(c), but by averaging the Pmax95 distri-
bution across 5-percentile TCW-bins. Compared to
CP4H , the CP4F MCS distribution shows a marked
shift towards higher TCW. At the same time, when
MCSs occur, similar levels of TCW in CP4F result
in higher Pmax95 than in CP4H . This is in contrast
to our current understanding for likely changes in
mean rainfall, for which less rainfall is expected in
a warmer climate for similar TCW, as more mois-
ture is necessary to reach similar levels of relative
humidity. A possible explanation for this behaviour is
that extreme MCS rainfall occurs when convection is
strong. Convective updraughts are expected to widen
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Figure 1. Comparison of extreme rainfall-driver scaling in observations and CP simulation. 2D-histograms of Pmax95 intensity for
pre-storm TCW (mm) versus zonal wind shear (m s−1) for (a) OBS (ERA5, IMERG) and (b) CP4H . Bins with fewer than 10
MCSs are shaded grey. r2 gives explained Pmax95 variance from multi-linear regression of TCW and shear. Line plots are based on
the histograms, depicting the Pmax95 relationship with (c) TCW only (d) shear only, for OBS (black) and CP4H (blue). Shading
spans the 10–90 percentile spread of (c) shear-related Pmax95 across each TCW bin, and of (d) TCW-related Pmax95 across each
shear bin. Legends give slopes of the linear fits (black dashed lines, p ⩽ 0.01 except CP4H shear fit)± standard errors, weighted by
MCS number per joint driver bin. Empty circles indicate bins cumulatively containing 80% of all MCSs.

and intensify under global warming (Prein et al 2017),
with the latter similarly identified for CP4 (Jackson
et al 2020). The dynamical MCS intensification may
then result in higher extreme rainfall in the future for
similar TCW levels.

We follow a ’quantile-projection’ approach to
map the historical driver distribution and associated
Pmax95 onto future conditions, as represented by cli-
mate change vectors βt between CP4F and CP4H in
figure 2. The resulting βt ranges from 1.07 up to 1.33
(figure 2(a) inset), with a mean βt according to

βt =

(
∆Pmax95

∆TCW

)
CP4

= 1.2± 0.13 h−1 (±min/max).

(5)

The fact that hourly extreme rain scales with pre-
ceding TCW with βt > 1 points towards the import-
ance of dynamical processes that help to increase the
vertical transport of moisture in MCSs and the MCS
moisture supply from the surroundings. In the fol-
lowing, βt is used to calculate Pmax95,t from TCW
changes in CMIP models.

4. Combined driver-based projected
changes in extreme rain

We now derive a plausible range of changes in recon-
structed ∆Pmax95 based on the Sahel domain-average
of absolute changes in TCW (mm, figure 3(a)) and
wind shear (m s−1, figure 3(b)) of 64 CMIP models.
The domain average is calculated for 9◦–19◦ N, 10◦

W–15◦ E, in line with the domain where MCSs were
sampled.

In terms of TCW and shear projections, there is
no indication of a fundamentally different behaviour
between CMIP5 and CMIP6 ensembles (figures 3(a)
and (b)), justifying our pooled evaluation. For the
2080 period, the 10–90 percentile spread in TCW
across all 64 CMIPmodels reaches+11–21mmwhile
CP4 projects a larger TCW change than 90% of all
CMIPmodels (22mm), noting it is representative of a
later period and excludes anomalous aerosol forcing.
Similarly, the CP4 wind shear change of +3 m s−1 is
at the high end of the CMIP distribution.

Based on these results for ∆TCW and ∆shear,
we calculate∆Pmax95,t, the rainfall contribution from

5
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Figure 2. Deriving extreme MCS precipitation scaling from projected moisture change in the CP simulation. Pmax95 (mm h
−1) for

5-%tile bins as a function of pre-storm TCW (mm) for CP4-historical (CP4H , blue) and -future (CP4F , red) with bars spanning
the 10–90 percentile of shear bins as in figure 1. The scaling factor (inset) is calculated for each percentile-connecting vector
(βt, two example vectors given), expressed as the absolute change of Pmax95 per change in TCW between CP4H and CP4F .

Figure 3. CMIP driver change and reconstructed extreme rainfall from combined drivers. Sahel domain-average driver change of
value-ordered CMIP5 (n= 38) and CMIP6 (n= 26) models for (a) TCW (mm) and (b) wind shear (m s−1) for the 2040, 2060,
and 2080 periods relative to historical. CP4 driver change is based on JAS domain-averages, in line with CMIP, and corresponds to
circa 2100. (c)–(e) shows the driver-reconstructed change in Pmax95 (mm h

−1) for respective time periods associated with TCW
(grey), zonal wind shear (black), and combined change (green) for all models. Shading for CMIP and whiskers for CP4 depict
uncertainty range from scaling with βs = 0.78± 0.15 and βt = 1.2± 0.13.

TCW, via equation (1) using βt as derived from
CP4 (equation (5)). The scaling factor βs from OBS
(equation (4)) is directly applied in equation (2)
to derive ∆Pmax95,s, the rainfall contribution from
shear. By scaling the CMIP driver changes throughout
the century, we can also obtain reconstructed Pmax95
intensities for the 2040 and 2060 periods, which are
not covered by the CP4 simulation.

Using the combined information from OBS, CP4
and CMIP models, figures 3(c)–(e) finally illustrates
the translation of the MCS driver changes into abso-
lute change in reconstructed Pmax95 for individual and
combined drivers (c.f. equation (3)) across the differ-
ent future 30-year time slices:

∆Pmax95,t+s = (βt)CP4× (∆TCW)CMIP+(βs)OBS

× (∆shear)CMIP . (6)

ComparingTCW-reconstructed (figures 3(c)–(e),
grey line and shading) to the combined-driver
∆Pmax95 (green line and shading), we find that
shear changes have a minor effect on future rain-
fall change: while the individual change related to
shear still increases from +1.8 mm h−1 around 2040
to+2.4 mm h−1 by 2080 for the 90th CMIP percent-
ile, the relative contribution from strengthened shear
to total ∆Pmax95,t+s decreases from 2040 through to
2100 as it is outpaced by the TCW increase. Hence,
TCW remains the primary driver of increased MCS
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extreme rainfall for all future time periods consider-
ing average driver changes across the Sahel.

4.1. Spatial variability of reconstructed extreme
rainfall and comparison to modelled extremes
So far, presented results did not consider sub-regional
driver variability. Across the Sahel domain, TCW
changes show marked spatial variability linked to
a pronounced zonal asymmetry in projected mois-
ture changes as well as to generally strong meridi-
onal gradients in this wet-dry transition region (sup-
plementary figures S2c, S3, S4). Strongest wind shear
changes tend to follow zonal bands for CP4 and
CMIP, for which most models suggest a peak in the
eastern Sahel (supplementary figures S2d, S5, S6).

Assuming our domain-wide scaling factors
remain valid locally, we calculate a pixel-based
∆Pmax95,t+s for the 2080 period in figures 4(a) and
(b), showing the CMIP ensembles’ 90th and 10th per-
centile, respectively. In line with model agreements
on peaks of TCW and shear change in the eastern
Sahel, the reconstructed ∆Pmax95,t+s shows highest
values over Niger and northern Nigeria. Shear con-
tributions to ∆Pmax95,t+s ⩾8% up to a maximum of
17% (hatching) cover most of the northern Sahel for
both extreme ends of the CMIP range, commensurate
with large CMIP uncertainties in modelling changes
in southern Saharan lower tropospheric warming
(Rowell et al 2021).

Finally, we compare relative changes in recon-
structed ∆Pmax95t+s with modelled rainfall changes
in CP4 and CMIP (figure 4(c)). The scaling is com-
pared for the Sahel domain and boxes centred on
the cities of Bamako (1), Timbuktu (2), and Niamey
(3) (figure 4(a)), corresponding to regions along the
previously discussed zonal gradient of TCW change
projected by many CMIP models. For CP4, this step
provides an indication of the skill of the simple linear
driver-scaling presented here to reproduce regional
intensities ofmodelledMCS rainfall. Figure 4(c) illus-
trates that for all regions except Bamako, the CP4-
modelled∆Pmax95 (black cross) lies within the uncer-
tainty range of ∆Pmax95t+s reconstructed from JAS
CP4 driver changes (green cross and shading). The
range reflects the uncertainty associated with the
TCW and shear scaling factors and reaches a max-
imum of ±7.7% (Niamey). This good correspond-
ence in spite of CP4’s weak shear response may be
linked to the scaling not considering additional rain-
fall intensification factors like instability, suggesting
that our results may still be a conservative estimate.

The CMIP5/6-based ∆Pmax95t+s (green box) is
shown in comparison to the modelled change in 95th
percentile daily rainfall (for wet days ⩾0.1 mm) of
a range of raw CMIP5/6 models (grey box) as well
as to a bias-corrected version of CMIP5 (blue box).
We consider the latter to be the best available dataset
regarding CMIP5-projected rainfall changes in West
Africa (Famien et al 2018). Across evaluated regions,

the ensemble mean change in reconstructed extreme
rainfall lies between +40% and 58% (+20%–31%
for the 2040 period), which is markedly higher than
for any ensemble-mean modelled CMIP rainfall in
the same region. Furthermore, ∆Pmax95t+s shows a
clear signal of intensification across the entire CMIP
uncertainty range, linked to exclusively positive driver
changes. Modelled daily extremes on the other hand
include negative changes within the 10–90th percent-
ile CMIP range for all regions, with region-dependent
ensemblemeans between 14%and 35% for rawCMIP
and 3%–48% for bias-corrected CMIP5. While we
acknowledge that the change in ∆Pmax95t+s, which is
based on sub-daily extremes, may behave differently
from CMIP daily rainfall metrics, it allows us to com-
pare the reconstructed results to a more commonly-
used and directly-inferred extreme rainfall metric. In
addition, 3 out of 4 currently available CMIP6models
that provide sub-daily rainfall did not show a stronger
signal for 3-hourly compared to daily extremes (sup-
plementary figure S7), suggesting there is no system-
atic intensification at sub-daily scale that applies to all
CMIP models.

5. Discussion and conclusions

In this study, our aim was to fuse a CP model
projection, which provides us with only one pos-
sible future of how precipitation extremes from
West African MCSs might change, with a CMIP-
based time-continuous uncertainty range. For that,
we adopted a simple linear scaling based on only
TCW and shear, which we show allows to recon-
struct CP4-modelled rainfall intensities. The presen-
ted scaling approach follows the assumption that
CMIP changes in atmospheric drivers of MCSs are
plausible, while the CP model in combination with
observations provides a more realistic response of
extreme MCS rainfall to those drivers. We thus draw
on the strengths of respective datasets.

We find reconstructed changes in extreme rain-
fall to be exclusively positive across CMIP mod-
els, dominated by the strong projected increases in
TCW with an ensemble 10–90 percentile range of
+37%–75% (+55% mean) for 2070–2100 (+18%–
30%with+26%mean for 2030–2060) under RCP8.5
across our Sahel domain. Shear contributions to these
figures reach at least 8% for most of the northern
Sahel, although we note that this result is based on
MCS sensitivities to shear in the afternoon. The shear
contribution may be higher for nocturnal MCSs,
when the importance of shear for MCS mainten-
ance increases in the absence of daytime heating (e.g.
Vizy and Cook 2018). The strictly positive changes
are in contrast to CMIP-modelled changes in daily
extremes, which we find to be less conclusive with
a 10–90 percentile range of +0–60% (+30% mean)
for raw CMIP5/6 rainfall and +4%–88% (+37%

7
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Figure 4. Spatial reconstruction of extreme rainfall change and comparison to modelled change for 2080. (a), (b) shows
driver-reconstructed∆ Pmax95,t+s (mm h

−1) for the 90th and 10th percentiles across the CMIP ensemble (n= 64) at each grid
point, respectively, and areas of wind shear contribution⩾8% to the rainfall change (hatching). Large box marks the Sahel
domain for which βt and βs were derived and 2◦ × 1◦ boxes are centred on the cities of Bamako (1), Niamey (2), and Timbuktu
(3). (c) compares relative changes in∆ Pmax95,t+s based on CMIP driver change (green boxes, relative to CP4H) to
CMIP-modelled 95th percentile daily rainfall (grey boxes, n= 47) and for a bias-corrected CMIP5 version (Famien et al 2018;
blue boxes, n= 28). Boxplots span the inter-quartile range, indicating the median (line) and mean (open circles), with 10–90
percentile whiskers. (x) depict CP4 driver-reconstructed∆Pmax95,t+s (green (x)), and the raw CP4-modelled rainfall (black (x)).
Green shading for CP4-(x) depicts the uncertainty from βt and βs scaling factors.
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mean) using a bias-corrected CMIP5 dataset with
some models again exhibiting negative changes.

The limited previous analyses of extreme rain-
fall projections over West Africa to date focus on
selections of RCP8.5 downscaled CMIP models and
have found either little change in extreme precip-
itation trends compared to driving CMIP models
with no agreement in sign (Diallo et al 2016) or
end-of-century ensemble-mean increases that stay
below 40% (Sylla et al 2015, Todzo et al 2020). This
suggests, CMIP and even medium-resolution down-
scaling approaches may consistently underestimate
extreme rainfall change, potentially in ways related to
model resolution, convection schemes and projected
driver changes. This conclusion is further supported
by previous CP4 studies (Kendon et al 2019, Finney
et al 2020, Jackson et al 2020).

While the driver-reconstructed change in extreme
rainfall presented here exhibits an apparently smal-
ler uncertainty range than that of the CMIP mod-
els, many assumptions and simplifications are incor-
porated in the reconstruction that are not explicitly
reflected. For example, we assume that the driver
changes MCSs feel locally on an hourly basis are pro-
portional to the climate change in the July–September
domainmean as represented in the CMIP driver data.
We also necessarily assume that rainfall scaling with
wind shear is stationary across climates since the CP
model fails to capture the observed shear sensitivity,
highlighting a key problem of this CP simulation—
although related errors would be minor given the
indicated secondary role of wind shear for future
extreme rain intensification. Furthermore, various
scaling problems are simplified by the fact that all
changes in the considered drivers are positive and
force extreme rain in the same direction with cli-
mate change, avoiding drivers cancelling each other,
which would considerably increase the significance of
scaling errors. We also use the historical CP4 rain-
fall distribution as a present-day reference to trans-
late the reconstructed absolute rainfall changes into
relative changes, even though certain CMIP future
driver changes may be unlikely given the CP4 his-
torical starting point. Nevertheless, for simplicity, we
assume all CMIP driver changes to be equally plaus-
ible to occur in CP4.

This leaves us with a novel methodology that
combines CP with CMIP simulations and observa-
tions to translate future atmospheric changes into
extreme rainfall change. The reconstructed extreme
rainfall illustrates that, given the background condi-
tions for MCS formation in a region, associated rain-
fall extremes will increase in line with and beyond the
regional increase in TCW if relative humidity remains
approximately constant. This relationship, diagnosed
from CP simulations, makes TCW change a useful
indicator for the behaviour of the extreme tail of
the rainfall distribution. In this way, an evaluation
of convection-permitting rainfall projections based

on atmospheric drivers helps to communicate to
users more defensible hydro-climatological informa-
tion for West Africa, using our best scientific know-
ledge and understanding of the likely future changes
in MCSs. The logical framing of this approach also
lends itself to the construction of climate-change nar-
ratives (e.g. Dessai et al 2018, Burgin et al 2020),
which have been found to be very useful in risk com-
munication.
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