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Abstract

Masked language modeling (MLM), a self-

supervised pretraining objective, is widely

used in natural language processing for learn-

ing text representations. MLM trains a model

to predict a random sample of input tokens that

have been replaced by a [MASK] placeholder

in a multi-class setting over the entire vocab-

ulary. When pretraining, it is common to use

alongside MLM other auxiliary objectives on

the token or sequence level to improve down-

stream performance (e.g. next sentence predic-

tion). However, no previous work so far has

attempted in examining whether other simpler

linguistically intuitive or not objectives can be

used standalone as main pretraining objectives.

In this paper, we explore five simple pretrain-

ing objectives based on token-level classifica-

tion tasks as replacements of MLM. Empirical

results on GLUE and SQUAD show that our

proposed methods achieve comparable or bet-

ter performance to MLM using a BERT-BASE

architecture. We further validate our methods

using smaller models, showing that pretrain-

ing a model with 41% of the BERT-BASE’s pa-

rameters, BERT-MEDIUM results in only a 1%

drop in GLUE scores with our best objective.1

1 Introduction

Masked Language Modeling (MLM) pretrain-

ing (Devlin et al., 2019; Liu et al., 2019; Lan et al.,

2020; Wang et al., 2020) is widely used in natu-

ral language processing (NLP) for self-supervised

learning of text representations. MLM trains a

model (typically a neural network) to predict a par-

ticular token that has been replaced with a [MASK]

placeholder given its surrounding context. Devlin

et al. (2019) first proposed MLM with an additional

next sentence prediction (NSP) task (i.e. predicting

whether two segments appear consecutively in the

original text) to train BERT.

∗Work was done while at the University of Sheffield.
1Our code is publicly available here: https://github.

com/gucci-j/light-transformer-emnlp2021

Recently several studies have extended MLM,

by masking a contiguous segment of the input in-

stead of treating each token independently (Song

et al., 2019; Sun et al., 2020; Joshi et al., 2020).

Yang et al. (2019) reformulated MLM in XLNET, to

mask out attention weights rather than input tokens,

such that the input sequence is auto-regressively

generated in a random order. ELECTRIC (Clark

et al., 2020a) addressed the expensive softmax issue

of MLM using a binary classification task, where

the task is to distinguish between words sampled

from the original data distribution and a noise dis-

tribution, using noise-contrastive estimation. In a

different direction, previous work has also devel-

oped methods to complement MLM for improving

text representation learning. Aroca-Ouellette and

Rudzicz (2020) have explored sentence and token-

level auxiliary pretraining objectives, showing im-

provements over NSP. ALBERT (Lan et al., 2020)

complemented MLM with a similar task that pre-

dicts whether two sentences are in correct order

or swapped. ELECTRA (Clark et al., 2020b) in-

troduced a two-stage token-level prediction task;

using a MLM generator to replace input tokens

and subsequently a discriminator trying to predict

whether a token has been replaced or not.

Despite these advances, simpler linguistically

motivated or not auxiliary objective tasks acting as

primary pre-training objectives substituting com-

pletely MLM have not been explored. Motivated by

this, we propose five frustratingly simple pretrain-

ing tasks, showing that they result into models that

perform competitively to MLM when pretrained for

the same duration (e.g. five days) and fine-tuned in

downstream tasks in GLUE (Wang et al., 2019) and

SQUAD (Rajpurkar et al., 2016) benchmarks.

Contributions: (1) To the best of our knowledge,

this study is the first to investigate whether linguis-

tically and non-linguistically intuitive tasks can

effectively be used for pretraining (§2). (2) We

empirically demonstrate that our proposed objec-
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Figure 1: Overview of our five frustratingly simple pretraining tasks along with a comparison to MLM. |C| denotes

the number of classes for each task.

tives are often computationally cheaper and result

in better or comparable performance to MLM across

different sized models (§4).

2 Pretraining Tasks

Our methodology is based on two main hypotheses:

(1) effective pretraining should be possible with

standalone token-level prediction methods that are

linguistically intuitive (e.g. predicting whether a

token has been shuffled or not should help a model

to learn semantic and syntactic relations between

words in a sequence); and (2) the deep architec-

ture of transformer models should allow them to

learn associations between input tokens even if the

pretraining objective is not linguistically intuitive

(e.g. predicting the first character of a masked to-

ken should not matter for the model to learn that

‘cat’ and ‘sat’ usually appear in the same context).

Figure 1 illustrates our five linguistically and non-

linguistically intuitive pretraining tasks with a com-

parison to MLM.

Shuffled Word Detection (SHUFFLE): Moti-

vated by the success of ELECTRA, our first pre-

training objective is a token-level binary classifi-

cation task, consisting of identifying whether a

token in the input sequence has been shuffled or

not. For each sample, we randomly shuffle 15% of

the tokens. This task is trained with the token-level

binary cross-entropy loss averaged over all input

tokens (i.e. shuffled and original). The major dif-

ference between ours and ELECTRA is that we do

not rely on MLM to replace tokens. Our intuition is

that a model can acquire both syntactic and seman-

tic knowledge by distinguishing shuffled tokens in

context.

Random Word Detection (RANDOM): We now

consider replacing tokens with out-of-sequence to-

kens. For this purpose we propose RANDOM, a

pretraining objective which replaces 15% of tokens

with random ones from the vocabulary. Similar to

shuffling tokens in the input, we expect that replac-

ing a token in the input with a random word from

the vocabulary “forces” the model to acquire both

syntactic and semantic knowledge from the context

to base its decision on whether it has been replaced

or not.

Manipulated Word Detection (SHUFFLE +

RANDOM): For our third pretraining objective,

we seek to increase the task difficulty and subse-

quently aim to improve the text representations

learned by the model. We therefore propose an

extension of SHUFFLE and RANDOM, which is a

three-way token-level classification task for predict-

ing whether a token is a shuffled token, a random

token, or an original token. For each sample, we

replace 10% of tokens with shuffled ones from the

same sequence and another 10% of tokens with

random ones from the vocabulary. This task can

be considered as a more complex one, because

the model must recognize the difference between



tokens replaced in the same context and tokens

replaced outside of the context. For this task we

use the cross-entropy loss averaged over all input

tokens.

Masked Token Type Classification (TOKEN

TYPE): Our fourth objective is a four-way classi-

fication, aiming to predict whether a token is a stop

word,2 a digit, a punctuation mark, or a content

word. Therefore, the task can be seen as a simpli-

fied version of POS tagging. We regard any tokens

that are not included in the first three categories as

content words. We mask 15% of tokens in each

sample with a special [MASK] token and compute

the cross-entropy loss over the masked ones only

not to make the task trivial. For example, if we com-

pute the token-level loss over unmasked tokens, a

model can easily recognize the four categories as

we only have a small number of non-content words

in the vocabulary.

Masked First Character Prediction (FIRST

CHAR): Finally to test our second hypothesis,

we propose a simplified version of the MLM task,

where the model has to predict only the first char-

acter of each masked token instead of performing

a softmax over the entire vocabulary. We define

a 29-way classification task, where 29 categories

include the English alphabet (0 to 25), a digit (26),

a punctuation mark (27), or any other character

(28). We mask 15% of tokens in each sample and

compute the cross-entropy loss over the masked

tokens only.3

3 Experimental Setup

Models: We use BERT (Devlin et al., 2019)

(BASE) as our basis model by replacing the MLM

and NSP objectives with one of our five token-

level pretraining tasks in all our experiments. We

also consider two smaller models from Turc et al.

(2019), MEDIUM and SMALL, where we reduce the

size of the following components compared to the

BASE model: (1) hidden layers; (2) hidden size;

(3) feed-forward layer size; and (4) attention heads.

More specifically, MEDIUM has eight hidden layers

and attention heads, while SMALL has four hid-

den layers and eight attention heads. The size of

feed-forward and hidden layers for both models are

2048 and 512, respectively.

2We use the Natural Language Toolkit’s stop word list:
https://www.nltk.org/.

3For more details on the pretraining tasks, including equa-
tions, see Appendix A.

Pretraining Data: We pretrain all models on the

English Wikipedia and BookCorpus (Zhu et al.,

2015) (WikiBooks) using the datasets library.4

Implementation Details: We pretrain and fine-

tune our models with two NVIDIA Tesla V100

(SXM2 - 32GB) with a batch size of 32 for BASE

and 64 for MEDIUM and SMALL. We pretrain all

our models for up to five days each due to limited

access to computational resources and funds for

running experiments. We save a checkpoint of

each model every 24 hours.5

Evaluation: We evaluate our approaches on

GLUE (Wang et al., 2019) and SQUAD (Rajpurkar

et al., 2016) benchmarks. To measure performance

in downstream tasks, we fine-tune all models for

five times each with a different random seed.

Baseline: For comparison, we also pretrain mod-

els with MLM. Following BERT and ROBERTA,

we mask 15% of tokens in each training in-

stance, where 80% of the tokens are replaced with

[MASK], 10% of the tokens are replaced with a

random word and the rest of tokens remain un-

changed. We compute the cross-entropy loss aver-

aged over the masked tokens only.

4 Results

Performance Comparison: Table 1 presents re-

sults on GLUE and SQUAD, for our five pretrain-

ing tasks compared to MLM across all model con-

figurations (§3). We also include for reference

our replicated downstream performance by fine-

tuning BERT-BASE (MLM + NSP) pretrained6 for

40 epochs (Upper Bound).

We first observe that our best objective, Shuffle

+ Random, outperforms MLM on GLUE Avg. and

SQUAD in the majority of model settings (BASE,

MEDIUM and SMALL) with five days pretraining.

For example in GLUE, we obtain an average of

79.2 using Shuffle + Random with BERT-BASE

compared to 77.6 using MLM. This suggests that

Shuffle + Random can be a competitive alternative

to MLM. Although Shuffle + Random does not out-

perform MLM in SQUAD only with BERT-BASE, it

remains competitive (83.5 compared to 84.8). The

4https://github.com/huggingface/

datasets
5For more details on model setup, implementation, and

data preprocessing, see Appendix C.
6We used an already pretrained model provided by Wolf

et al. (2020).



Pretraining task MNLI QNLI QQP RTE SST MRPC CoLA STS GLUE Avg. SQuAD v1.1

BASE - 40 Epochs Pretraining (Upper Bound)

MLM + NSP 83.8 90.8 87.8 69.9 91.9 85.0 58.9 89.3 82.1 (0.4) 87.4 (0.6)

Ours BASE - Five Days Pretraining

MLM 80.1 88.2 85.9 61.4 89.6 81.6 49.6 84.7 77.6 (0.2) 84.8 (0.2)
Shuffle 73.3 81.6 82.1 57.5 82.4 79.1 33.4 79.9 71.2 (0.3) 74.8 (0.2)
Random 78.6 87.0 85.5 60.5 87.4 81.6 47.0 84.0 76.4 (0.2) 81.6 (0.4)
Shuffle + Random 78.6 87.7 86.1 65.1 87.8 87.0 54.9 86.7 79.2 (0.3) 83.5 (0.2)
Token Type 75.1 84.2 83.9 56.8 86.7 75.5 40.3 77.4 72.5 (0.2) 78.6 (0.7)
First Char 78.2 87.1 85.5 60.7 89.5 83.6 43.9 84.6 76.7 (0.5) 82.0 (0.1)

MEDIUM - Five Days Pretraining

MLM 78.7 85.3 85.4 61.7 89.9 80.6 43.1 84.5 76.1 (0.4) 81.8 (0.5)
Shuffle 77.3 86.4 85.3 64.0 87.9 83.4 53.8 84.1 77.8 (0.2) 81.3 (0.2)
Random 77.7 86.2 85.6 64.3 87.8 81.7 44.3 84.8 76.6 (0.3) 79.5 (0.1)
Shuffle + Random 78.3 87.0 85.7 63.3 87.8 85.9 52.4 85.4 78.2 (0.2) 81.8 (0.2)
Token Type 76.0 84.7 84.4 59.7 87.6 81.4 45.8 80.7 75.0 (0.4) 79.8 (0.4)
First Char 77.4 85.6 85.1 59.4 88.8 83.9 42.4 83.0 75.7 (0.3) 79.5 (0.2)

SMALL - Five Days Pretraining

MLM 76.2 84.2 84.8 57.5 88.6 82.9 36.3 83.0 74.2 (0.4) 77.1 (0.3)
Shuffle 74.9 84.0 84.2 59.8 86.4 80.0 47.1 81.1 74.7 (0.3) 76.1 (0.6)
Random 75.6 84.7 84.8 58.3 86.7 80.0 39.6 83.5 74.1 (0.4) 76.7 (0.5)
Shuffle + Random 76.9 85.7 85.3 60.3 87.1 81.8 41.7 84.6 75.4 (0.4) 77.5 (0.3)
Token Type 73.2 83.0 83.7 58.8 86.4 77.1 37.1 77.8 72.1 (0.4) 74.2 (0.3)
First Char 75.3 84.0 84.9 55.6 87.2 79.8 33.1 83.3 72.9 (0.8) 77.4 (0.2)

Table 1: Results on GLUE and SQuAD dev sets with standard deviations over five runs in parentheses. For

MNLI, we report matched accuracy, for CoLA Matthews correlation, for STS-B Spearman correlation, for MRPC

accuracy, for QQP and SQuAD F1 scores; accuracy for all other tasks. Bold values denote best performing across

each dataset and Avg. for each model setting.

remainder of our proposed tasks perform well, with

First Char and Random being close to MLM across

all model configurations confirming our two hy-

potheses. Finally, Shuffle with BERT-BASE records

the lowest performance on GLUE (71.2 points), but

it performs best when combined with Random (i.e.

Shuffle + Random).

Computational Efficiency Comparison: Fig-

ure 2 presents the performance of our proposed

methods across (a) epochs and (b) days in GLUE

(SQUAD results available in Appendix E). Results

suggest that our methods are, in general, more com-

putationally efficient compared to MLM. Shuffle +

Random trains for the largest number of epochs (i.e.

faster forward-backward passes) in five days for the

SMALL and MEDIUM settings, with Random outper-

forming the rest in the BASE model setting (Figure

2 (a)). If we take a closer look, we can also see that

Shuffle + Random obtains higher performance to

MLM across all model configurations when training

for a similar number of epochs, suggesting that our

approach is a more data efficient task. Finally, we

can also assume that Shuffle + Random is more

challenging than MLM as in all settings it results in

lower GLUE scores after the first day of pretraining

(Figure 2 (b)). However, with more iterations it is

clear that it results in learning better text representa-

tions and quickly outperforms MLM. For example,

it achieves a performance of 78.2 compared to 76.1

for MLM with MEDIUM on the fifth day. Regarding

the remainder of our proposed objectives, we can

see that they perform comparably and sometimes

better than the MLM under SMALL and MEDIUM

model settings. However, MLM on average outper-

forms them in the BASE setting where the models

are more highly parameterized.

Lastly, we observe that for the majority of GLUE

tasks, we obtain better or comparable performance

to MLM with a maximum of approximately three

epochs of training with a BASE model. This demon-

strates that excessively long and computationally

inefficient pretraining strategies do not add a lot in

downstream performance.

5 Discussion

Based on our results, there are mainly two key

elements that should be considered for designing
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Figure 2: Results on GLUE dev sets across (a) epochs and (b) days. Each point is a checkpoint pretrained for
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pretraining objectives.

Task Difficulty: A pretraining task should be

moderately difficult to learn in order to induce rich

text representations. For example, we can assume

from the results that Token Type was somewhat

easy for a model to learn as it is a four-way classi-

fication of identifying token properties. Besides, in

our preliminary experiments, predicting whether a

masked token is a stop word or not (Masked Stop

Word Detection) also did not exhibit competitive

downstream performance to MLM as the task is a

lot simpler than Token Type.

Robustness: A model should always learn use-

ful representations from “every” training sample

to solve a pretraining task, regardless of the task

difficulty. For instance, Figures 3 to 5 in Appendix

D demonstrate that Shuffle needs some time to start

converging across all model configurations, which

means the model struggled to acquire useful repre-

sentations at first. In contrast, the loss for Shuffle +

Random consistently decreases. Because Shuffle +

Random is a multi-class classification, unlike Shuf-

fle or Random, we assume that it can convey richer

signals to the model and help stabilize pretraining.

Finally, we can also assume that MLM satisfies both

elements as it is a multi-class setting over the entire

vocabulary and its loss consistently decreases.

6 Conclusions

We have proposed five simple self-supervised pre-

training objectives and tested their effectiveness

against MLM under various model settings. We

show that our best performing, manipulated word

detection task, results in comparable performance

to MLM in GLUE and SQUAD, whilst also being

significantly faster in smaller model settings. We

also show that our tasks result in higher perfor-

mance trained for the same number of epochs as

MLM, suggesting higher data efficiency. For fu-

ture work, we are interested in exploring which

has the most impact in pretraining: the data or the

pretraining objective?
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Appendices

A Task Details

Here, we detail our frustratingly simple pretraining

objectives, which are based on token-level classi-

fication tasks and can be used on any unlabeled

corpora without laborious preprocessing to obtain

labels for self-supervision.

Shuffled Word Detection (SHUFFLE): Our first

pretraining task is a token-level binary classifica-

tion task, which consists of identifying whether a

token in the input sequence has been shuffled or

not. For each sample, we randomly shuffle 15% of

the tokens. This task is trained with the token-level

binary cross-entropy loss averaged over all input

tokens:

Lshuffle = −
1

N

N∑

i=1

yi log p(xi)

+ (1− yi) log(1− p(xi))

(1)

where N is the number of tokens in a sample, and

p(xi) represents the probability of the i-th input

token xi predicted as shuffled by a model. yi is the

corresponding target label.

This task is motivated by the success of ELEC-

TRA, whose pretraining task is to let a discrimi-

nator to predict whether a given token is original

or replaced (replaced word detection) in addition

to MLM. The major difference between ours and

ELECTRA is that we do not rely on MLM, whereas

ELECTRA utilizes it as its generator. Here, our intu-

ition is that a model should acquire both syntactic

and semantic knowledge to detect shuffled tokens

in contexts.

Random Word Detection (RANDOM): We also

consider replacing tokens with out-of-sequence to-

kens. For this purpose we propose RANDOM, a

pretraining objective which replaces 15% of tokens

with random ones from the vocabulary. Similar to

shuffling tokens in the input, we expect that replac-

ing a token in the input with a random word from

the vocabulary “forces” the model to acquire both

syntactic and semantic knowledge from the context

to base its decision on whether it has been replaced

or not. This task is trained with the token-level

binary cross-entropy loss averaged over all input

tokens (Eq. (1)).

Manipulated Word Detection (SHUFFLE +

RANDOM): Our third task is a three-way token-

level classification of whether a token is a shuffled

token, a random token, or an original token. For

each sample, we replace 10% of tokens with shuf-

fled ones and another 10% of tokens with random

ones. This task is an extension of SHUFFLE and

RANDOM and can be regarded as a more complex

one because the model must recognize the differ-

ence between a token replaced in the same context

and a token replaced outside of the context. For

this task we employ the cross-entropy loss averaged

over all input tokens:

Lmanipulated = −
1

N

N∑

i=1

3∑

j=1

yij log pij(xi) (2)

where pij(xi) represents the probability of the i-

th input token xi predicted as shuffled (j = 1),

randomized (j = 2), or original (j = 3) by a

model. yij is the corresponding target label.

Masked Token Type Classification (TOKEN

TYPE): Our fourth task is a four-way classifi-

cation task that identifies whether a token is a stop

word7, a digit, a punctuation mark, or a content

word. We regard any tokens that are not included

in the first three categories as content words. We

mask 15% of tokens in each sample with a special

[MASK] token and compute the cross-entropy loss

over the masked ones only not to make the task

trivial: if we compute the token-level loss, includ-

ing unmasked tokens, a model can easily recognize

the four categories of tokens as we have a small

number of tokens for non-content words. In this

task, a model should be able to identify the distinc-

tion between different types of tokens; therefore,

the task can be seen as a simplified version of POS

tagging.

Masked First Character Prediction (FIRST

CHAR): Our last task is a 29-way classification

task, where a model needs to predict the first char-

acter of a masked token. The 29 categories include

the English alphabet (0 to 25), a digit (26), a punc-

tuation mark (27), or any other character (28). We

mask 15% of tokens in each sample and compute

the cross-entropy loss over the masked ones only.

This task can be seen as a simplified version of

MLM as the model just need to predict the first

7A stop word category is based on the Natural Language
Toolkit’s stop word list: https://www.nltk.org/.



character of each masked token. Besides, it is also

similar to masked character-level language model-

ing, in that the output of both tasks is in characters.

B Non-linguistically Intuitive Task

As we have described in Section 2, a non-

linguistically intuitive task should not be “explic-

itly” related to an input sequence to solve, unlike

linguistically intuitive tasks, such as Shuffle and

Random. For example, predicting the first charac-

ter of a masked token should not matter for a model

to learn that ‘cat’ and ‘sat’ usually appear in the

same context. However, because accurately predict-

ing the first character requires the model to guess

its whole word “implicitly” given its surrounding

tokens, the first character of each masked token

should be related to the context. The deep archi-

tecture of transformer-based models should allow

them to learn such “implicit” associations between

input tokens by solving the non-linguistically in-

tuitive task, which leads to helping them to learn

syntactic and semantic relations between tokens.

C Experimental Setup

C.1 Model Architecture

For all our experiments, we use BERT (Devlin

et al., 2019) as our basis model by replacing the

MLM and NSP objectives with one of our five

token-level pretraining tasks. More specifically, we

employ BERT-BASE (12 hidden layers and atten-

tion heads, Dimhidden = 768, Dimintermediate =
3072, Total parameters = 125M ) (BASE),

MEDIUM (eight hidden layers and attention heads,

Dimhidden = 512, Dimintermediate = 2048,

Total parameters = 51.5M ), and SMALL (four hid-

den layers and eight attention heads, Dimhidden =
512, Dimintermediate = 2048 Total parameters =
38.9M ).

C.2 Data

Following Devlin et al. (2019), we use the English

Wikipedia and BookCorpus (Zhu et al., 2015) data

(WikiBooks) downloaded from the datasets

library8. We remove headers for the English

Wikipedia and extract training samples with a max-

imum length of 512. For the BookCorpus, we

concatenate sentences such that the total number of

tokens is less than 512. For the English Wikipedia,

we extract one sample from articles whose length

8https://github.com/huggingface/

datasets

is less than 512. We tokenize text using byte-level

Byte-Pair-Encoding (Sennrich et al., 2016). The

resulting corpus consists of 8.1 million samples

and 2.7 billion tokens in total.

C.3 Implementation Details

We implement our models using PyTorch

(Paszke et al., 2019) and the transformers

library (Wolf et al., 2020). We pretrain

our models with two NVIDIA Tesla V100

(SXM2 - 32GB) and use one for fine-

tuning. Our code is publicly available on

GitHub: https://github.com/gucci-j/

light-transformer-emnlp2021.

Pretraining: We set the batch size to 32 for the

BASE models and 64 for the MEDIUM and SMALL

models. We pretrain models for five days and op-

timized them with an Adam optimizer (Kingma

and Ba, 2014). We apply automatic mixed pre-

cision and distributed training during pretraining.

Note that we generate labels dynamically during

pretraining.

Finetuning: We fine-tune models for up to 10

and 20 epochs with early stopping for SQUAD and

GLUE, respectively. To minimize the effect of ran-

dom seeds, we test five different random seeds for

each task. We omitted the problematic WNLI task

for GLUE, following Aroca-Ouellette and Rudzicz

(2020).

C.4 Hyperparameter Details

As explained in Section 3, we entirely followed

the BERT architecture and only modified its output

layer depending on the task employed. Table 2

shows the hyperparameter settings for pretraining

and fine-tuning. Note that we utilized neither any

parameter sharing tricks nor any techniques that

did not appear in Devlin et al. (2019).

D Pretraining Behavior

Figures 3, 4 and 5 show the loss curves for our

pretraining tasks in each model setting: BASE,

MEDIUM and SMALL.

E Performance in SQUAD

Figure 6 demonstrates the performance of our pro-

posed methods across (a) epochs and (b) days in

SQUAD.



Hyperparameter Pretraining Fine-tuning

Maximum train epochs
10 epochs for BASE and MEDIUM Up to 20 epochs for GLUE
15 epochs for SMALL Up to 10 epochs for SQuAD

Batch size (per GPU)
16 for BASE 32 for GLUE
32 for HALF and QUARTER 16 for SQuAD

Adam ǫ 1e-8
Adam β1 0.9
Adam β2 0.999

Sequence length 512
128 for GLUE
384 for SQuAD

Peak learning rate

BASE: 1e-4 for MLM and Token Type, 1e-5 for Shuffle.

3e-5
5e-5 for First Char, Random and Shuffle + Random.
MEDIUM & SMALL: 1e-4 for MLM, Token Type and First Char.
5e-5 for Shuffle, Random and Shuffle + Random.

Warmup steps 10000 First 6% of steps
Weight decay 0.01 0
Attention Dropout 0.1
Dropout 0.1

Early stopping criterion
GLUE: No improvements over 5% of steps.
SQuAD: No improvements over 2.5% of steps.

Table 2: Hyperparameters in our experiments. If not shown, the hyperparameters for fine-tuning are the same as

the pretraining ones.
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Figure 3: The loss curves for BERT-BASE models. Each × denotes a checkpoint pretrained for 1 ≤ n ≤ 5 day(s).
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Figure 4: The loss curves for BERT-MEDIUM models. Each × denotes a checkpoint pretrained for 1 ≤ n ≤ 5
day(s).
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Figure 5: The loss curves for BERT-SMALL models. Each × denotes a checkpoint pretrained for 1 ≤ n ≤ 5 day(s).
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Figure 6: Results on SQUAD dev sets across (a) epochs and (b) days. Each point is a checkpoint pretrained for

1 ≤ n ≤ 5 day(s).


