
This is a repository copy of Point-of-interest type prediction using text and images.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178205/

Version: Submitted Version

Article:

Villegas, D.S. and Aletras, N. orcid.org/0000-0003-4285-1965 (Submitted: 2021) Point-of-
interest type prediction using text and images. arXiv. (Submitted) 

© 2021 The Author(s). For reuse permissions, please contact the Author(s).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Point-of-Interest Type Prediction using Text and Images

Danae Sánchez Villegas Nikolaos Aletras

Computer Science Department, University of Sheffield, UK

{dsanchezvillegas1, n.aletras}@sheffield.ac.uk

Abstract

Point-of-interest (POI) type prediction is the

task of inferring the type of a place from where

a social media post was shared. Inferring a

POI’s type is useful for studies in computa-

tional social science including sociolinguistics,

geosemiotics, and cultural geography, and has

applications in geosocial networking technolo-

gies such as recommendation and visualiza-

tion systems. Prior efforts in POI type pre-

diction focus solely on text, without taking vi-

sual information into account. However in re-

ality, the variety of modalities, as well as their

semiotic relationships with one another, shape

communication and interactions in social me-

dia. This paper presents a study on POI type

prediction using multimodal information from

text and images available at posting time. For

that purpose, we enrich a currently available

data set for POI type prediction with the im-

ages that accompany the text messages. Our

proposed method extracts relevant information

from each modality to effectively capture in-

teractions between text and image achieving

a macro F1 of 47.21 across eight categories

significantly outperforming the state-of-the-art

method for POI type prediction based on text-

only methods. Finally, we provide a detailed

analysis to shed light on cross-modal interac-

tions and the limitations of our best perform-

ing model.1

1 Introduction

A place is typically described as a physical space

infused with human meaning and experiences that

facilitate communication (Tuan, 1977). The mul-

timodal content of social media posts (e.g. text,

images, emojis) generated by users from specific

places such as restaurants, shops, and parks, con-

tribute to shaping a place’s identity, by offering

information about feelings elicited by participating

1Code and data are available here: https://github
.com/danaesavi/poi-type-prediction

imagine all the people

sharing all the world ∼

Next stop: NYC

Figure 1: Example of text and image content of sam-

ple tweets. Users share content that is relevant to their

experiences and feelings in the location.

in an activity or living an experience in that place

(Tanasescu et al., 2013).

Fig. 1 shows examples of Twitter posts consist-

ing of image-text pairs, shared from two different

places or Point-of-Interests (POIs). Users share

content that is relevant to their experience in the lo-

cation. For example, the text imagine all the people

sharing all the world which is accompanied by a

photograph of the Imagine Mosaic in Central Park;

and the text Next stop: NYC along with a picture

of descriptive items that people carry at an airport

such as luggage, a camera and a takeaway coffee

cup.

Developing computational methods to infer the

type of a POI from social media posts (Liu et al.,

2012; Sánchez Villegas et al., 2020) is useful for

complementing studies in computational social sci-

ence including sociolinguistics, geosemiotics, and

cultural geography (Kress et al., 1996; Scollon and

Scollon, 2003; Al Zydjaly, 2014), and has applica-

tions in geosocial networking technologies such as

recommendation and visualization systems (Alaz-

zawi et al., 2012; Zhang and Cheng, 2018; van

Weerdenburg et al., 2019; Liu et al., 2020b).

Previous work in natural language processing

(NLP) has investigated the language that people
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use in social media from different locations, by

inferring the type of a POI of a given social me-

dia post using only text and posting time, ignoring

the visual context (Sánchez Villegas et al., 2020).

However, communication and interactions in social

media are naturally shaped by the variety of avail-

able modalities and their semiotic relationships (i.e.

how meaning is created and communicated) with

one another (Georgakopoulou and Spilioti, 2015;

Kruk et al., 2019; Vempala and Preoţiuc-Pietro,

2019).

In this paper, we propose POI type prediction us-

ing multimodal content available at posting time by

taking into account textual and visual information.

Our contributions are as follows:

• We enrich a publicly available data set of so-

cial media posts and POI types with images;

• We propose a multimodal model that com-

bines text and images in two levels using: (i)

a modality gate to control the amount of infor-

mation needed from the text and image; (ii)

a cross-attention mechanism to learn cross-

modal interactions. Our model significantly

outperforms the best state-of-the-art method

proposed by Sánchez Villegas et al. (2020);

• We provide an in-depth analysis to uncover

the limitations of our model and uncover

cross-modal characteristics of POI types.

2 Related Work

2.1 POI Analysis

POIs have been studied to classify functional re-

gions (e.g. residential, business, and transportation

areas) and to analyze activity patterns using so-

cial media check-in data and geo-referenced im-

ages (Zhi et al., 2016; Liu et al., 2020a; Zhou

et al., 2020a; Zhang et al., 2020). Zhou et al.

(2020a) presents a model for classifying POI func-

tion types (e.g. bank, entertainment, culture) using

POI names and a list of results produced by search-

ing for the POI name in a web search engine. Zhang

et al. (2020) makes use of social media check-ins

and street-level images to compare the different

activity patterns of visitors and locals, and uncover

inconspicuous but interesting places for them in a

city. A framework for extracting emotions (e.g. joy,

happiness) from photos taken at various locations

in social media is described in Kang et al. (2019).

2.2 POI Type Prediction

POI type prediction is related to geolocation pre-

diction of social media posts that has been widely

studied in NLP (Eisenstein et al., 2010; Roller et al.,

2012; Dredze et al., 2016). However, while geolo-

cation prediction aims to infer the exact geographi-

cal location of a post using language variation and

geographical cues, POI type prediction is focused

on identifying the characteristics associated with

each type of place, regardless of its geographic

location.

Previous work on POI type prediction from so-

cial media content has used Twitter posts (text and

posting time), to identify the POI type from where

a post was sent from (Liu et al., 2012; Sánchez Vil-

legas et al., 2020). Liu et al. (2012) incorporate

text, temporal features (posting hour) and user his-

tory information into probabilistic text classifica-

tion models. Rather than a user-based study, our

research aims to uncover the characteristics associ-

ated with various types of POIs. Sánchez Villegas

et al. (2020) analyze semantic place information

of different types of POIs by using text and tem-

poral information (hour, and day of the week) of

a Twitter’s post. To the best of our knowledge,

this is the first study to combine textual and visual

features to classify POI types (e.g. arts & entertain-

ment, nightlife spot) from social media messages,

regardless of its geographic location.

2.3 Social Media Analysis using Text and

Images

The combination of text and images of social me-

dia posts has been largely used for different appli-

cations such as sentiment analysis, (Nguyen and

Shirai, 2015; Chambers et al., 2015), sarcasm de-

tection (Cai et al., 2019) and text-image relation

classification (Vempala and Preoţiuc-Pietro, 2019;

Kruk et al., 2019). Moon et al. (2018b) propose a

model for recognizing named entities from short

social media texts using image and text. Cai et al.

(2019) use a hierarchical fusion model to integrate

image and text context with an attention-based fu-

sion. Chinnappa et al. (2019) examine the posses-

sion relationships from text-image pairs in social

media posts. Wang et al. (2020) use texts and im-

ages for predicting the keyphrases (i.e. representa-

tive terms) for a post by aligning and capturing the

cross-modal interactions via cross-attention. Pre-

vious text-image classification in social media re-

quires that the data is fully paired, i.e. every post



Train Dev Test

Category # Tweets # Images # Tweets # Images # Tweets # Images Tokens

Arts & Entertainment 40,417 20,711 4,755 2,527 5,284 2,740 14.41

College & University 21,275 9,112 2,418 1,057 2,884 1,252 15.52

Food 6,676 2,969 869 351 724 280 14.34

Great Outdoors 27,763 13,422 4,173 2,102 3,653 1,948 13.49

Nightlife Spot 5,545 2,532 876 385 656 353 15.46

Professional & Other Places 30,640 13,888 3,381 1,499 3,762 1,712 16.46

Shop & Service 8,285 3,455 886 266 812 353 15.31

Travel & Transport 16,428 6,681 2,201 829 1,872 789 14.88

All 157,029 72,679 (46.28%) 19,559 9,006 (46.05%) 19,647 9,410 (47.90%) 14.92

Table 1: POI categories and data set statistics showing the number of tweets for each category, and number (%) of

tweets having an accompanying image

contains an image and a text. However, this require-

ment may not be satisfied since not all posts contain

both modalities 2. This work considers both cases,

(1) all modalities (text-image pairs) are available,

and content in only one modality (text or image) is

available.

Social media analysis research has also looked

at the semiotic properties of text-image pairs in

posts (Alikhani et al., 2019; Vempala and Preoţiuc-

Pietro, 2019; Kruk et al., 2019). Vempala and

Preoţiuc-Pietro (2019) investigate the relationship

between text and image content by identifying over-

lapping meaning in both modalities, those where

one modality contributes with additional details,

and cases where each modality contributes with

different information. Kruk et al. (2019) analyze

the relationship between the text-image pairs and

find that when the image and caption diverge semi-

otically, the benefit from multimodal modeling is

greater.

3 Task & Data

Sánchez Villegas et al. (2020) define POI type pre-

diction as a multi-class classification task where

given the text content of a post, the goal is to clas-

sify it in one of the M POI categories. In this work,

we extend this task definition to include images in

order to capture the semiotic relationships between

the two modalities. For that purpose, we consider

a social media post P (e.g. tweet) to comprise of

a text and image pair (xt, xv), where xt ∈ R
dt

and xv ∈ R
dv are the textual and visual vector

representations respectively.

2https://buffer.com/resources/twitter

-data-1-million-tweets/

3.1 POI Data

We use the data set introduced by Sánchez Villegas

et al. (2020) which contains 196, 235 tweets writ-

ten in English, labeled with one out of the eight POI

broad type categories shown in Table 1, which cor-

respond to the 8 primary top-level POI categories

in ‘Places by Foursquare’, a database of over 105

million POIs worldwide managed by Foursquare.

To generalize to locations not present in the training

set, we use the same location-level data splits (train,

dev, test) as in Sánchez Villegas et al. (2020), where

each split contains tweets from different locations.

3.2 Image Collection

We use the Twitter API to collect the images that

accompany each textual post in the data set. For

the tweets that have more than one image, we se-

lect the first available only. This results in 91, 224
tweets with at least one image. During the image

processing (see Section 5.3) we removed 129 im-

ages because we found they were either damaged,

absent3, or no objects were detected, resulting in

91, 095 text-image pairs (see Table 1 for data statis-

tics). In order to deal with the rest of the tweets

with no associated image, we pair them with a sin-

gle ‘average’ image computed over all images in

the train set: xv = avg(xvtr). The intuition be-

hind this approach is to generate a ‘noisy’ image

that is not related and does not add to the meaning

(Vempala and Preoţiuc-Pietro, 2019).4

3.3 Exploratory Analysis of Image Data

To shed light on the characteristics of the collected

images, we apply object detection on the images

3Removed by Twitter due to violations to the Twitter Rules
and Terms of Service.

4Early experimentation with associating tweets with the
image of the most similar tweet that contains a real image
from the training data yielded similar performance.



Category Common Objects in Images

Arts & Entertainment
light, pants, shirt, arm, picture,

hair, glasses, line, girl, jacket

College & University
pants, shirt, line, hair, arm,

picture, light, glasses, girl, trees

Food
cup, picture, spoon, meat, knife,

arm, glasses, shirt, pants, handle

Great Outdoors
trees, arm, pants, cloud, hill,

line, shirt, grass, picture, glasses

Nightlife Spot
arm, picture, shirt, light, hair,

pants, glasses, mouth, girl, cup

Professional & Other Places
pants, shirt, picture, light, hair,

screen, line, arm, glasses, girl

Shop & Service
picture, pants, arm, shirt, glasses,

light, hair, line, girl, letters

Travel & Transport
pants, shirt, light, screen, arm,

hair, glasses, picture, chair, line

Table 2: Most common objects for each POI category.

collected using Faster-RCNN (Ren et al., 2016)

pretrained on Visual Genome (Krishna et al., 2017;

Anderson et al., 2018). Table 2 shows the most

common objects for each specific category. We

observe that most objects are related to items one

would find in each place category (e.g. ‘spoon’,

‘meat’, ‘knife’ in Food). Clothing items are com-

mon across category types (e.g. ‘shirt’, ‘jacket’,

‘pants’) suggesting the presence of people in the im-

ages. A common object tag of the Shop & Service

category is ‘letters’, which concerns images that

contain embedded text. Finally, the category Great

Outdoors includes object tags such as ‘cloud’, ‘hill’,

and ‘grass’, words that describe the landscape of

this type of place.

4 Multimodal POI Type Prediction

4.1 Text and Image Representation

Given a text-image post P = (xt, xv), xt ∈ R
dt ,

xv ∈ R
dv , we first compute text and image encod-

ing vectors f t, fv respectively.

Text We use Bidirectional Encoder Representa-

tions from Transformers (BERT) (Devlin et al.,

2019) to obtain the text feature representations f t

by extracting the ‘classification’ [CLS] token.

Image For encoding the images, we use Xcep-

tion (Chollet, 2017) pre-trained on ImageNet (Deng

et al., 2009).5 We extract convolutional feature

maps for each image and we apply average pooling

to obtain the image representation fv.

5Early experimentation with ResNet101 (He et al., 2016)
and EfficientNet (Tan and Le, 2019) yielded similar results.

4.2 MM-Gate

Given the complex semiotic relationship between

text and image, we need a weighting strategy

that assigns more importance to the most relevant

modality while suppressing irrelevant information.

Thus, a first approach is to use gated multimodal fu-

sion (MM-Gate), similar to the approach proposed

by Arevalo et al. (2020) to control the contribution

of text and image to the POI type prediction. Given

f t, fv the text and visual vectors, we obtain the

multimodal representation h of a post P as follows:

ht = tanh(W tf t + bt) (1)

hv = tanh(W vfv + bv) (2)

z = σ(W z[f t; fv] + bz) (3)

h = z ∗ ht + (1− z) ∗ hv (4)

where W t ∈ R
dt , W v ∈ R

dv and W z ∈ Rdt+dv

are learnable parameters, tanh is the activation func-

tion and ht, hv ∈ R are projections of f t and fv.

[; ] denotes concatenation and σ is the sigmoid ac-

tivation function. h is a weighted combination of

the textual and visual information ht and hv respec-

tively. We fine-tune the entire model by adding a

classification layer with a softmax activation func-

tion for POI type prediction

4.3 MM-XAtt

The MM-Gate model does not capture interactions

between text and image that might be beneficial

for learning semiotic relationships. To model cross-

modal interactions, we adapt the cross-attention

mechanism (Tsai et al., 2019; Tan and Bansal,

2019) to combine text and image information

for multimodal POI type prediction (MM-XAtt).

Cross-attention consists of two attention layers, one

from textual f t to visual features fv and one from

visual to textual features. We first linearly project

the text and visual representations to obtain the

same dimensionality (dproj). Then, we compute

the scaled dot attention (a = softmax
(Q(K)T )√

dproj
V )

with the projected textual vector as query (Q), and

the projected image vector as the key (K) and val-

ues (V ), and vice versa. The multimodal represen-

tation h is the sum of the resulting attention layers.

The entire model is fine-tuned by adding a classifi-

cation layer with a softmax activation function.

4.4 MM-Gated-XAtt

Vempala and Preoţiuc-Pietro (2019) have demon-

strated that the relationship between the text and



Figure 2: Overview of our MM-Gated-XAtt model which combines features from text and image modalities for

POI type prediction.

image in a social media post is complex. Images

may or may not add meaning to the post and the text

content (or meaning) may or may not correspond to

the image. We hypothesize that this might actually

happen in posts made from particular locations, i.e.

language and visual information may or may not

be related. To address this, we propose (1) using

gated multimodal fusion to manage the flow of in-

formation from each modality, and (2) also learn

cross-modal interactions by using cross-attention

on top of the gated multimodal mechanism. Fig.

2 shows an overview of our model architecture

(MM-Gated-XAtt). Given the text and image repre-

sentations f t, fv respectively, we compute ht, hv,

and z as in Equation 1, 2 and 3. Next, we apply

cross-attention using two attention layers where the

query and context vectors are the weighted repre-

sentations of the text and visual modalities, z ∗ ht
and (1− z) ∗ hv, and vice versa. The multimodal

context vector h is the sum of the resulting atten-

tion layers. Finally, we fine-tune the model by

passing h through a classification layer for POI

type prediction with a softmax activation function.

5 Experimental Setup

5.1 Baselines

We compare our models against (1) text-only; (2)

image-only; and (3) other state-of-the-art multi-

modal approaches.6

Text-only We fine-tune BERT for POI type clas-

sification by adding a classification layer with soft-

max activation function on top of the [CLS] token

which is the best performing model in Sánchez Vil-

legas et al. (2020).

Image-only We fine-tune three pre-trained mod-

els that are popular in various computer vision clas-

sification tasks: (1) ResNet101 (He et al., 2016);

6We include a majority class baseline (i.e. assigning all
instances in the test set the most frequent label in the train set).

(2) EfficientNet (Tan and Le, 2019); and (3) Xcep-

tion (Chollet, 2017). Each model is fine-tuned on

POI type classification by adding an output softmax

layer.

Text and Image For combining text and image

information, we experiment with different stan-

dard fusion strategies: (1) we project the image

representation fv, to the same dimensionality as

f t ∈ R
dt using a linear layer and then we con-

catenate the vectors (Concat); (2) we project the

textual and visual features to the same space and

then we apply self-attention to learn weights for

each modality (Attention); (3) we also adapt the

guided attention introduced by Anderson et al.

(2018) for learning attention weights at the object-

level (and other salient regions) rather than equally

sized grid-regions (Guided Attention); (4) we

compare against LXMERT, a transformer-based

model that has been pre-trained on text and image

pairs for learning cross-modality interactions (Tan

and Bansal, 2019). All models are fine-tuned by

adding a classification layer with a softmax acti-

vation function for POI type prediction. Finally,

we evaluate a simple ensemble strategy by using

LXMERT for classifying tweets that are originally

accompanied by an image and BERT for classify-

ing text-only tweets (Ensemble).

5.2 Text Processing

We use the same tokenization settings as in

Sánchez Villegas et al. (2020). For each tweet, we

lowercase text and replace URLs and @-mentions

of users with placeholder tokens.

5.3 Image Processing

Each image is resized to (224× 224) pixels repre-

senting a value for the red, green and blue color

in the range of [0, 255]. The pixel values of all

images are normalized. For LXMERT and Guided

Attention fusion, we extract object-level features

using Faster-RCNN (Ren et al., 2016) pretrained



Model F1 P R

Majority 5.30 3.36 12.50

BERT (Sánchez Villegas et al., 2020) 43.67 (0.01) 48.44 (0.02) 41.33 (0.01)

ResNet 21.11 (1.81) 23.23 (2.09) 29.90 (3.31)

EfficientNet 24.72 (0.76) 28.05 (0.28) 35.48 (0.23)

Xception 23.64 (0.44) 25.62 (0.50) 34.12 (0.49)

Concat-BERT+ResNet 43.28 (0.37) 42.72 (0.51) 47.59 (0.45)

Concat-BERT+EfficientNet 41.56 (0.71) 41.54 (0.88) 43.97 (0.79)

Concat-BERT+Xception 44.00 (0.52) 43.34 (0.70) 48.35 (0.75)

Attention-BERT+Xception 42.89 (0.44) 42.74 (0.19) 46.78 (1.28)

Guided Attention-BERT+Xception 41.53 (0.57) 41.10 (0.55) 45.36 (0.48)

LXMERT 40.17 (0.62) 40.26 (0.24) 42.25 (2.38)

Ensemble-BERT+LXMERT 43.82 (0.47) 43.50 (0.20) 44.67 (0.66)

MM-Gate 44.64 (0.65) 43.67 (0.49) 48.50 (0.18)

MM-XAtt 27.31 (1.58) 37.06 (2.66) 29.71 (0.60)

MM-Gated-XAtt (Ours) 47.21† (1.70) 46.83 (1.45) 50.69 (2.21)

Table 3: Macro F1-Score, precision (P) and recall (R) for POI type prediction (± std. dev.) Best results are in bold.

† indicates statistically significant improvement (t-test, p < 0.05) over BERT (Sánchez Villegas et al., 2020).

on Visual Genome (Krishna et al., 2017) following

Anderson et al. (2018). We keep 36 objects for

each image as in Tan and Bansal (2019).

5.4 Implementation Details

We select the hyperparameters for all models using

early stopping by monitoring the validation loss

using the Adam optimizer (Kingma and Ba, 2014).

Because the data is imbalanced, we estimate the

class weights using the ‘balanced’ heuristic (King

and Zeng, 2001). All experiments are performed

using a Nvidia V100 GPU.

Text-only We fine-tune BERT for 20 epochs

and choose the epoch with the lowest validation

loss. We use the pre-trained base-uncased model

for BERT (Vaswani et al., 2017; Devlin et al.,

2019) from HuggingFace library (12-layer, 768-

dimensional) with a maximal sequence length of 50

tokens. We fine-tune BERT for 2 epochs and learn-

ing rate η = 2e−5 with η ∈ {2e−5, 3e−5, 5e−5}.

Image-only For ResNet101, we fine-tune for 5

epochs with learning rate η = 1e−4 and dropout

δ = 0.2 (δ in [0, 0.5] using random search) be-

fore passing the image representation through the

classification layer. EfficientNet is fine-tuned for

7 epochs with η = 1e−5 and δ = 0.5. Xcep-

tion is fine-tuned for 6 epochs with η = 1e−5 and

δ = 0.5.

Text and Image Concat-BERT+Xception,

Concat-BERT+ResNet and Guided Attention-

BERT+Xception are fine-tuned for 2 epochs

with η = 1e−5 and δ = 0.25; Concat-

BERT+EfficientNet for 4 epochs with η = 1e−5

and δ = 0.25; Attention-BERT+Xception for 3

epochs with η = 1e−5 and δ = 0.25; MM-XAtt

for 3 epochs with η = 1e−5 and δ = 0.15;

MM-Gate and MM-Gated-XAtt for 2 epochs with

η = 1e−5 and δ = 0.05; η ∈ {2e−5, 3e−5, 5e−5},

δ from [0, 0.5] (random search) before passing

through the classification layer. The dimensionality

of the multimodal representation h (Eq. 4) is set

to 200. We fine-tune LXMERT for 4 epochs with

η = 1e−5 where η ∈ {1e−3, 1e−4, 1e−5} and

dropout δ = 0.25 (δ in [0, 0.5], random search)

before passing through the classification layer.

5.5 Evaluation

We evaluate the performance of all models using

macro F1, precision, and recall. Results are ob-

tained over three runs using different random seeds

reporting the average and the standard deviation.

6 Results

The results of POI type prediction are presented

in Table 3. We first examine the impact of each

modality by analyzing the performance of the uni-

modal models, then we investigate the effect of

multimodal methods for POI type prediction, and

finally we examine the performance of our pro-

posed model MM-Gated-XAtt by analyzing each

component independently.



Text-Image Only

Model F1

LXMERT 47.72 (0.98)

MM-Gate 45.87 (1.48)

MM-XAtt 48.93 (2.08)

MM-Gated-XAtt (Ours) 57.64 (3.64)

Table 4: Macro F1-Score for POI type prediction on

tweets that are originally accompanied by an image.

Best results are in bold.

We observe that the text-only model (BERT)

achieves 43.67 F1 which is substantially higher

than the performance of image-only models (e.g.

the best performing EfficientNet model obtains

24.72 F1). This suggests that text encapsulates

more relevant information for this task than images

on their own, similar to other studies in multimodal

computational social science (Wang et al., 2020;

Ma et al., 2021).

Models that simply concatenate text and image

vectors have close performance to BERT (44.0
for Concat-BERT+Xception) or lower (41.56 for

Concat-BERT+EfficientNet). This suggests that

assigning equal importance to text and image infor-

mation can deteriorate performance. It also shows

that modeling cross-modal interactions is necessary

to boost performance of POI type classification

models.

Surprisingly, we observe that the pre-trained

multimodal LXMERT fails to improve over BERT

(40.17 F1) while its performance is lower than sim-

pler concatenative fusion models. We speculate

that this is because LXMERT is pretrained on data

where both, text and image modalities share com-

mon semantic relationships which is the case in

standard vision-language tasks including image

captioning and visual question answering (Zhou

et al., 2020b; Lu et al., 2019). On the other hand,

text-image relationships in social media data for

inferring the type of location from which a mes-

sage was sent are more diverse, highlighting the

particular challenges for modeling text and images

together (Hessel and Lee, 2020).

Our proposed MM-Gated-XAtt model achieves

47.21 F1 which significantly (t-test, p < 0.05) im-

proves over BERT, the best performing model in

Sánchez Villegas et al. (2020) and consistently out-

performs all other image-only and multimodal ap-

proaches. This confirms our main hypothesis that

modeling text with image jointly to learn the in-

teractions between modalities benefit performance

in POI type prediction. We also observe that us-

ing only the gating mechanism (MM-Gate) outper-

forms (44.64 F1) all other models except for MM-

Gated-XAtt. This highlights the importance of

controlling the information flow for the two modal-

ities. Using cross-attention on its own (MM-XAtt),

on the other hand, fails to improve over other mul-

timodal approaches, implying that learning cross-

modal interactions is not sufficient on its own. This

supports our hypothesis that language and visual in-

formation in posts sent from specific locations may

be or may not be related, and that managing the

flow of information from each modality improves

the classifier’s performance.

Finally, we investigate using less noisy text-

image pairs in alignment with related computa-

tional social science studies involving text and im-

ages (Moon et al., 2018b; Cai et al., 2019; Chin-

nappa et al., 2019). We train and test LXMERT,

MM-Gate, MM-XAtt, and MM-Gated-XAtt on

tweets that are originally accompanied by an im-

age (see Section 3), excluding all text-only tweets.

The results are shown in Table 4. In general, per-

formance is higher for all models using less noisy

data. Our proposed model MM-Gated-XAtt con-

sistently achieves the best performance (57.64 F1).

In addition, we observe that LXMERT and MM-

XAtt produce similar results (47.72 and 48.93 F1

respectively) suggesting that cross-attention can be

applied directly to text-image pairs in low-noise

settings without hurting the model performance.

The benefit of controlling the flow of information

through a gating mechanism, on the other hand,

strongly improves model robustness.

6.1 Training on Text-Image Pairs Only

To compare the effect of the ‘average’ image (see

Section 3) on the performance of the models, we

train MM-Gate, MM-XAtt, and MM-Gated-XAtt

on tweets that are originally accompanied by an

image excluding all text-only tweets; and we test

on all tweets as in our original setting (text-only

tweets are paired with the ‘average’ image). The

results are shown in Table 5. MM-Gated-XAtt is

consistently the best performing model, followed

by MM-Gate. However, their performance is in-

ferior than when models are trained on all tweets

using the ‘average’ image as in the original setting.

This suggests that the gate operation not only reg-

ulates the flow of information for each modality

but also learns how to use the noisy modality to



Text-Image Only -> All

Model F1

MM-Gate 40.67 (0.45)

MM-XAtt 31.00 (0.89)

MM-Gated-XAtt (Ours) 42.45 (2.94)

Table 5: Macro F1-Score for POI type prediction. Mod-

els are trained on tweets that are originally accompa-

nied by an image. Results are on all tweets. Best results

are in bold.

Figure 3: Average percentage of MM-Gated-XAtt ac-

tivations for the textual and visual modalities for each

POI category on the test set.

improve classification prediction. This result is

similar to findings by (Arevalo et al., 2020).

7 Analysis

7.1 Modality Contribution

To determine the influence of each modality in

MM-Gated-XAtt when assigning a particular label

to a tweet, we compute the average percentage of

activations for the textual and visual modalities for

each POI category on the test set. The outcome of

this analysis is depicted in Fig. 3. As anticipated,

the textual modality has a greater influence on the

model prediction, which is consistent with our find-

ings in Section 6. The category where the visual

modality has greater impact on the predicted label

is Professional & Other Places (43.20%) followed

by Shop & Service (43.11%).

To examine how the visual information impacts

the POI type prediction task, Fig. 4 shows exam-

ples of posts where the contribution of the image

is large while the text-only model (BERT) misclas-

sified the POI category. We observe that the text

content of Post (a) misled BERT towards Food,

Post (a)

#mywife finding a deep

first track through the

#powder <mention> <url>

Post (b)

it’s getting cold up

here <mention> <url>

BERT: Food

Ours: Great Outdoors

Txt: 65% - Img: 35%

BERT: Arts & Entertainment

Ours: Shop & Service

Txt: 60% - Img: 40%

Figure 4: POI type predictions of MM-Gated-XAtt

(Ours) and BERT Sánchez Villegas et al. (2020) show-

ing the contribution of each modality (%) and the XAtt

visualization. Correct predictions are in bold.

probably due to the term ‘powder’. On the other

hand, MM-Gated-XAtt can filter irrelevant infor-

mation from the text, and prioritize relevant content

from the image in order to assign the correct POI

category for Post (a) (Great Outdoors). Likewise,

Post (b) was correctly classified by MM-Gated-

XAtt as Shop & Service and misclassified by BERT

as Arts & Entertainment. For this post 40% of the

contribution corresponds to the image and 60% to

text. This shows how image information can help

to address the ambiguity in short texts (Moon et al.,

2018a), improving POI type prediction.

7.2 Cross-attention (XAtt)

Fig. 4 shows examples of the XAtt visualization.

We note that the model focuses on relevant nouns

and pronouns (e.g. ‘track’, ‘it’), which are common

informative words in vision-and-language tasks

Tan et al. (2019). Moreover, our model focuses

on relevant words such as ‘track’ for classifying

Post (a) as Great Outdoors. Lastly, we observe

that the XAtt often captures a general image infor-

mation, with emphasis on specific sections for the

predicted POI category such as the pine trees for

Great Outdoors and the display racks for Shop &

Service.



7.3 Error Analysis

To shed light on the limitations of our multimodal

MM-Gated-XAtt model for predicting POI types,

we performed an analysis of misclassifications. In

general, we observe that the model struggles with

identifying POI categories where people might per-

form similar activities in each of them such as Food,

Nightlife Spot, and Shop & Service similar to find-

ings by Ye et al. (2011).

Fig. 5 (a) and (b) show examples of tweets mis-

classified as Food by the MM-Gated-XAtt model.

Post (a) belongs to the category Nightlife Spot and

Post (b) belongs to the Shop & Service category.

In both cases, the text and image content is re-

lated to the Food category, misleading the classifier

towards this POI type. Posting about food is a com-

mon practice in hospitality establishments such

as restaurants and bars (Zhu et al., 2019), where

customers are more likely to share content such

as photos of dishes and beverages, intentionally

designed to show that are associated with the par-

ticular context and lifestyle that a specific place

represents (Homburg et al., 2015; Brunner et al.,

2016; Apaolaza et al., 2021). Similarly, Post (b)

shows an example of a tweet that promotes a POI

by communicating specific characteristics of the

place (Kruk et al., 2019; Aydin, 2020). To correctly

classify the category of POIs, the model might need

access to deeper contextual information about the

locations (e.g. finer subcategories of a type of place

and how POI types are related to one another).

8 Conclusion and Future Work

This paper presents the first study on multimodal

POI type classification using text and images from

social media posts motivated by studies in geosemi-

otics, visual semiotics and cultural geography. We

enrich a publicly available data set with images

and we propose a multimodal model that uses: (1)

a gate mechanism to control the information flow

from each modality; (2) a cross-attention mecha-

nism to align and capture the interactions between

modalities. Our model achieves state-of-the-art

performance for POI type prediction significantly

outperforming the previous text-only model and

competitive pretrained multimodal models.

In future work, we plan to perform more gran-

ular prediction of POI types and user information

to provide additional context to the models. Our

models could also be used for modeling other tasks

where text and images naturally occur in social

Post (a)

miso creamed kale with

mushrooms <mention>

Post (b)

celebrate the fruits of

#fermentation’s labor at

#bostonfermentationfestival!

next sun 10-4 <mention>

True: Nightlife Spot

Ours: Food

True: Shop & Service

Ours: Food

Figure 5: Example of misclassifications made by our

MM-Gated-XAtt model.

media such as analyzing political ads (Sánchez Vil-

legas et al., 2021), parody (Maronikolakis et al.,

2020) and complaints (Preoţiuc-Pietro et al., 2019;

Jin and Aletras, 2020, 2021).
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