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Abstract 
 
Mathematical models describing indirect contact transmission are an important component of 

infectious disease mitigation and risk assessment. A model that tracks microorganisms between 

compartments by coupled ordinary differential equations or a Markov chain is benchmarked 

against a mechanistic interpretation of physical transfer of microorganisms from surfaces to 

fingers and subsequently to a susceptible person’s facial mucosal membranes. The primary 

objective was to compare these models in their estimates of doses and changes in 

microorganism concentrations on hands and fomites over time. The abilities of the models to 

capture the impact of episodic events, such as hand hygiene, and of contact patterns were also 

explored. For both models, greater doses were estimated for the asymmetrical scenarios in 

which a more contaminated fomite was touched more often. Differing representations of hand 

hygiene in the Markov model did not notably impact estimated doses but affected pathogen 

concentration dynamics on hands. When using the Markov model, losses due to hand hygiene 

should be handled as separate events as opposed to time-averaging expected losses. The 

discrete event model demonstrated the effect of hand-to-mouth contact timing on dose. 

Understanding how model design influences estimated doses is important for advancing models 

as reliable risk assessment tools. 
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Introduction 
 
 Protecting environmental and occupational health in the built environment is an 

increasingly important topic, and the COVID-19 pandemic has highlighted that these concerns 

extend to infectious diseases. One of the exposure pathways of concern for many infectious 

diseases is “indirect contact” or “fomite” exposure. In this pathway, individuals touch surfaces 

contaminated with pathogens, usually with their hands, and transfer the pathogen between 

subsequently touched surfaces. For pathogens, this pathway is of particular concern in 

environments with immunocompromised individuals such as healthcare facilities (1–4), but the 

pathway is also relevant for exposures to pesticides and chemicals (5–7).   

Due to the complexity of human behaviour, the fate and transport of contaminants via 

the indirect contact route is commonly described using mathematical modelling. Such exposure 

modelling has long been a tool for relating data about environmental microbial contaminated to 

estimated exposures, doses, and risks within the quantitative microbial risk assessment 

(QMRA) research framework (8). One benefit to the application of exposure modelling within 

QMRA is the ability to address a range of scenarios and account for variability and uncertainty 

in environmental conditions and human behaviours that may drive the exposure magnitude (8). 

This provides value in not only assessing risk under a variety of conditions but also to compare 

engineering, behavioural, and administrative interventions for reducing exposure or risk; guide 

environmental microbial cleanliness standards for achieving specific risk thresholds; and gain 

insights regarding exposure determinants.  

Two modelling approaches that have commonly been used for indirect contact exposure 

include: 1) compartment models in which discrete Markov chains (or ordinary differential 

equations) which are used to describe the movement of microbes between compartments over 

time, and 2) discrete event models in which sequential human behaviours and other events 

result in the transfer of microbes between hands, surfaces, and facial mucosal membranes. The 

discrete Markov chain model approach typically utilizes time-averaged rate constants to 



describe microbial fate and transport, and has been recently used to estimate contributions of 

multiple SARS-CoV-2 exposure pathways to COVID-19 transmission (9). The discrete event 

approach originates from a fomite-mediated rotavirus model (10) and has recently been used to 

compare exposures for different types of healthcare worker behaviour sequences during various 

types of patient care (11) and to estimate SARS-CoV-2 exposures and COVID-19 risks for 

entire shifts of subsequent patient interactions and doffing events (12).  

While both modelling approaches have been used to estimate microbial exposures for 

specific scenarios, the approaches conceptualize the exposure process differently, and one 

approach may be more suitable over the other for a given exposure scenario or research 

question. For example, a strength of the discrete Markov chain approach is its flexibility in 

addressing the fate and transport of virus among myriad compartments with a time-averaged 

approach, lending itself to simultaneous analysis of exposure through multiple media and routes 

(9). Because compartment models typically represent time-averaged transport processes using 

rate constants, special consideration must be given to represent acute changes in 

concentrations, such as during hand hygiene events. Treating losses from these acute events 

as time-averaged loss over the simulation could result in overestimates of dose. For scenarios 

in which event sequences may be important, such as the timing of hand hygiene or a hand-to-

facial mucosal membrane contact following a contact with a highly contaminated surface, it is 

unknown how this approach may influence estimated exposures for such behaviours in 

comparison to an event-driven modelling strategy.  

The discrete event modelling strategy has been used to explore questions related to the 

timing of hand hygiene, surface disinfection, and errors in personal protective equipment 

doffing. The timing of events can be represented as random variables that describe the 

frequency and sequence of events. This allows for the generation of many sequences of 

behaviours to investigate how these sequences affect exposure and subsequent risks (12,13). 



In some cases where sequence data are lacking, events may only be informed by the frequency 

at which they are expected to occur with no regard to the sequence (14–16).  

Given that both exposure models are used to address questions of microbial exposure in 

similar scenarios, yet have different underlying conceptual frameworks, the objective of this 

study is to compare the performance of the compartmental model simulated via Markov chain 

and the discrete event model to provide insight as to when one modelling method should be 

preferred over the other. To facilitate comparison, a simple contact exposure case study was 

used: a single individual contacting two fomites contaminated with microorganisms with their 

hand, contacting their facial mucous membranes and performing hand hygiene. Using this case 

study, the models are compared with respect to 1.) ability to capture the impact of episodic 

events, such as hand hygiene, on dose and 2.) ability to capture the impact of contact patterns 

on dose.  

Methods 

Model Scenarios 

The case study that the models explored involved a single individual contacting two 

fomites contaminated with microorganisms with their hand, contacting their facial mucous 

membranes and performing hand hygiene. The model outcomes were the cumulative dose to 

the facial mucous membranes, and the change in microorganism concentrations on fomites 

over time. The case study was modelled using two methods – a discrete event model and a 

compartment model simulated by discrete time Markov chain (Markov model). Four scenarios 

were developed for each modelling method based on contact frequency and contact pattern. 

Two contact frequency conditions were explored: a) “symmetrical,” which we define as one in 

which contact frequencies with the fomites were equal over time and b) ”asymmetrical” contact 

frequencies, which we define as fomite A receiving more contact, and is the more contaminated 

fomite, as compared to fomite B.  



To evaluate these different approaches, we have developed two symmetrical and two 

asymmetrical contact frequency approaches for both the discrete event and Markov modelling 

methods for exposure estimation (Table 1). Discrete event models 1 and 2 related to the 

symmetrical contact frequency approach. Discrete event model 1 involved alternating fomite A 

and fomite B contacts with a hand hygiene event every 4 contacts, where discrete event model 

2 involved four sequential fomite A contacts followed by a hand hygiene event and four 

sequential fomite B contacts (Table 1).  

Two Markov model approaches were explored for symmetrical fomite contact scenarios, 

where Markov model 1 separated losses due to hand hygiene from other loss moments, by 

using a separate transition probability matrix during a hand hygiene event, followed by a return 

to the other transition probability matrix during non-hand-hygiene events (Table 1). Markov 

model 2 incorporated loss from the hands due to hand hygiene with loss due to inactivation per 

timestep as an ongoing process, without a specific hand hygiene event (Table 1).  

For asymmetrical contact scenarios, discrete event model 3 involved 3 rounds of 

repeated contacts with fomite A, followed by a hand hygiene event, and repeated contacts with 

fomite B (Table 1). Discrete event model 4 involved the following contact sequence between 

hand hygiene events: 3 contacts with fomite A and one contact with fomite B (Table 1). Markov 

model 3 was similar to Markov model 1, except that the assumption of greater contact frequency 

with fomite A increased the rate constant describing movement from hands to fomite A and 

decreased the rate describing movement from hands to fomite B (Table 1). Markov model 4 was 

similar to that of Markov model 1, except that transition probabilities between hands and fomite 

A were greater than those between hands and fomite B (Table 1). 

For hand-to-mouth contacts, discrete event models involved randomly sampling 

moments for hand-to-mouth contacts (excluding the first event so that at least one hand had 

touched a contaminated surface). These events did not overwrite hand-to-fomite contacts. 

Rather, the fomite contact events were adjusted to include an interruption of the fomite contact 



pattern with the hand-to-mouth contact, meaning hand hygiene events were sometimes offset 

by 1 minute from those in the Markov models. The Markov models accounted for transfer of 

microbes to the mouth per timestep, where the rate of transfer was either constant for the whole 

simulation or only occurring during time steps that did not involve hand hygiene events.  

Model Descriptions 

 In the Markov model, microbial transfer between compartments (states) was described 

through first order rate constants (9,17). These rates were informed by fomite contact 

frequencies, microbial transfer efficiency, and fractions of the hand used for contacts (Table 1). 

The rate of transfer from hand-to-fomites (𝜆ℎ𝑎𝑛𝑑𝑠→𝑓𝑜𝑚𝑖𝑡𝑒) was calculated by, 

  𝜆ℎ𝑎𝑛𝑑𝑠→𝑓𝑜𝑚𝑖𝑡𝑒 = 12 𝑆ℎ𝑇𝐸ℎ𝑓𝐻𝑓                                                               (1) 

 
where 𝑆ℎ is the fraction of the hand surface area of a single hand used for the contact, 𝑇𝐸ℎ𝑠 is 

the hand-to-surface transfer efficiency, and 𝐻𝑓  is the frequency of hand-to-fomite contacts. The 

rate accounts for the fact that only half of the available virus on the hands can transfer (single 

hand contact) as in the prior work (18). The calculation for the rate of transfer from hands to the 

mouth ( 𝜆ℎ𝑎𝑛𝑑𝑠→𝑚𝑜𝑢𝑡ℎ) was similar,  𝜆ℎ𝑎𝑛𝑑𝑠→𝑚𝑜𝑢𝑡ℎ = 12 𝑆𝑚𝑇𝐸ℎ𝑚𝐻𝑚      (2) 

where 𝑆𝑚 is the fraction of the hand surface area of a single hand used for the hand-to-mouth 

contact, 𝑇𝐸ℎ𝑚 is hand-to-mouth transfer efficiency,  𝐻𝑚 is the frequency of hand-to-mouth 

contacts, and the one-half accounts for the fact that only half of the available virus on the hands 

can transfer (single hand contact). The rate of transfer from fomite-to-hands (𝜆𝑓𝑜𝑚𝑖𝑡𝑒→ℎ𝑎𝑛𝑑𝑠) was 

calculated, 𝜆𝑓𝑜𝑚𝑖𝑡𝑒→ℎ𝑎𝑛𝑑𝑠 = 𝐴ℎ𝐴𝑓 𝑆ℎ𝑇𝐸𝑓ℎ𝐻𝑓      (3) 

 



where 𝐴ℎ is total hand surface area for a single hand, 𝐴𝑓 is fomite surface area, 𝑇𝐸𝑓ℎ is fomite-

to-hand transfer efficiency, and other variables are as previously defined. These rates were then 

used to tabulate the one-step transition probability matrix (9).  

For Markov models 2 and 4, a single transitional probability matrix per model was 

developed involving all activities, including hand hygiene (P3 for Markov model 2 and P5 for 

Markov model 4) (Table 1). For Markov models 1 and 3, two one-step transition probability 

matrices were developed: P1 and P4 involved all activities other than hand hygiene, and PH 

represented the event of hand hygiene (Table 1). Examples of the probability matrices can be 

found in supplemental materials (Figures S1-S4). For Markov models 1 and 3, it was assumed 

hand hygiene events would occur over a minute so that the same log10 reduction would be 

achieved for a single hand hygiene event as in the discrete event models, which means PH was 

multiplied 1 min ∆𝑡⁄  times, where 1 minute is the duration of hand hygiene and ∆𝑡 is the time-

step length. Results using timesteps of 0.01 min and 0.001 min were compared to choose a 

timestep that resulted in similar doses as runs with smaller timesteps while balancing 

computational cost. Comparisons of timesteps and iterations resulted in ∆𝑡 = 0.001 min being 

used. Dose was equated with the number of viruses that transitioned to the compartment 

representing the facial mucous membrane. 

In the discrete event models, microbial transfer between hands and a fomite was only 

calculated when a hand-to-fomite contact occurred. Inactivation, however, was calculated for 

every event. During a hand-to-fomite contact, transfer in both directions was accounted for, and 

new concentrations at time 𝑡 on the hand (𝐶ℎ,𝑡) and fomite (𝐶𝑓,𝑡) were calculated, 

𝐶𝑓,𝑡 = 𝐶𝑓,𝑡−1𝑒−𝑘𝑓∆𝑡 − 𝑆ℎ (𝐴ℎ𝐴𝑓) (𝑇𝐸𝑓ℎ𝑒−𝑘𝑓∆𝑡𝐶𝑓,𝑡−1 − 𝑇𝐸ℎ𝑓𝑒−𝑘ℎ∆𝑡𝐶ℎ,𝑡−1)  (4) 

 𝐶ℎ,𝑡 = 𝐶ℎ,𝑡−1𝑒−𝑘ℎ∆𝑡 − 𝑆ℎ(𝑇𝐸ℎ𝑓𝑒−𝑘ℎ∆𝑡𝐶ℎ,𝑡−1 − 𝑇𝐸𝑓ℎ𝑒−𝑘𝑓∆𝑡𝐶𝑓,𝑡−1)  (5) 

 
Where 𝑘𝑓 is the inactivation rate of viruses on the fomite, 𝑘ℎ is the inactivation rate of viruses on 

the hands, 𝑆ℎ is the fraction of total hand surface area of a single hand used for a hand-to-



fomite contact, 𝐴ℎ is the total hand surface area of a single hand, 𝐴𝑓 is the fomite surface area 

(constant across the simulation where a value was randomly sampled for fomite A and fomite B 

separately), 𝑇𝐸𝑓ℎ is the fomite-to-hand transfer efficiency, and 𝑇𝐸ℎ𝑓 is the hand-to-fomite 

transfer efficiency. Note that inactivation was accounted for, where the assumed time between 

events is 1 minute so that the simulated time of the discrete event models is consistent with the 

discrete Markov chain models. When an object was not contacted, its concentration per 

timestep was a function of what was remaining after inactivation occurring for that timestep. 

Dose (𝐷) and a change in concentration on the hand at time 𝑡 are calculated during a simulated 

hand-to-mouth contact, 

 𝐷 = 𝑇𝐸ℎ𝑚𝑆𝑚𝐴ℎ𝐶ℎ,𝑡−1𝑒−𝑘ℎ∆𝑡                 (6) 

 𝐶ℎ,𝑡 = (1 − 𝑇𝐸ℎ𝑚𝑆𝑚)𝐶ℎ,𝑡−1𝑒−𝑘ℎ∆𝑡    (7) 

 
Where 𝑇𝐸ℎ𝑚 is the hand-to-mouth transfer efficiency, and 𝑆𝑚 is the fraction of total hand surface 

area of a single hand used for the hand-to-mouth contact. 

Because events were assumed to occur at 1-minute intervals, the simulated time for the 

discrete event model was consistent with the discrete Markov chain models. The models were 

implemented using Monte Carlo simulation to account for variability and uncertainty in the input 

parameters. For both models, the number of iterations was evaluated to balance computational 

cost and consistency in results. Upon investigation, 5,000 iterations was deemed appropriate for 

both models for the Monte Carlo simulations. Skewness in estimated dose distributions was 

calculated using the e1071 R package and definition type 2 (19). 

Per iteration of each model, transfer efficiencies, the fraction of hand used for contacts 

with fomites or the mouth, inactivation rates, total hand surface area, surface areas of fomites A 

and B, and hand hygiene efficacy were randomly sampled. For the Markov models, this meant 

that rates and transitional probability matrices were recalculated per iteration. For the discrete 

event models, the timing of the hand-to-mouth contact was randomly sampled per iteration. For 



each iteration, Markov models 1-4 and discrete event models 1-4 were run using these same 

randomly selected inputs. These input parameters were then constant during the entire 

exposure simulation for that iteration. 

Sensitivity Analysis 

Monotonic relationships between randomly sampled input parameter values and 

estimated doses were evaluated using Spearman correlation coefficients, and the strength of 

these relationships were compared across models, where a larger absolute value of a 

Spearman correlation coefficient implies that a parameter is more influential on infection risk 

(assuming a monotonic relationship). This method has been used in other QMRA sensitivity 

analyses (9,10,20). 

Additionally, the effect of differences in initial concentration between fomites A and B on 

changes in concentration for fomites A and B and on hands over time was evaluated by 

rerunning the models where starting concentrations on fomites A and B were randomly sampled 

so that their sum was 100 viral particles/cm2. Changes in concentration over time were 

compared to those in the original models, where starting concentrations for fomites A and B 

were 100 viral particles/cm2 and 5 viral particles/cm2, respectively (Table 2). The distributions of 

the 1) starting concentration on the more frequently touched fomite in the asymmetrical models 

and 2) a ratio of concentration between the two fomites that resulted in the 15% largest doses 

were compared to distributions for all iterations. 

Results 

Concentrations on Hands and Fomites over Time 

 In all scenarios and for both modelling methods, the dynamics of the microorganism 

concentration on fomite A were similar (Figure 1), where fomite A was the more contaminated 

fomite initially (100 viral particles/cm2 vs. 5 viral particles/cm2) and, in asymmetrical contact 

frequency scenarios, was the more frequently contacted fomite (12 contacts vs. 4 contacts in 

per simulation). For fomite B, the dynamics of the microorganism concentration were quite 



similar for the two modelling methods in scenarios 1 and 4 (Figure 1). The dynamics of the 

microorganism concentrations, however, differed between the two modelling methods in 

scenarios 2 and 3 (Figure 1). These scenarios are characterized by an asymmetrical distribution 

of contact patterns before and after the hand hygiene events in the discrete event model that 

align with the “steps” visible in Figure 1. Given the patterns observed, it appears that two 

modelling methods diverge in predicted fomite contamination for asymmetrical contact patterns, 

independent of how the Markov model represents hand hygiene.  

 Changes in concentrations on hands were most similar between the two modelling 

methods for scenarios 1 and 3, where the decreases in concentration due to hand hygiene 

events are visible (Figure 1). The dynamics of microorganism concentrations on hands 

estimated by discrete event model 2 were notably different than the other scenarios. In discrete 

event model 2 there was no accumulation of microorganisms after the second and fourth hand 

hygiene events (minutes 5-10 and 15-20), which is consistent with the contact patterns between 

the two fomites; accumulation occurred during the period with sequential contacts with the more 

contaminated fomite, fomite A (Table 1).  

Dynamics of Cumulative Dose 

 Dynamics in mean cumulative dose over time were similar for the discrete event and 

Markov models, but mean dose was slightly greater over time for the discrete event models than 

for the Markov models (Figure 1). This is consistent with generally greater mean doses 

estimated with the discrete event models than for the Markov models (Table S1). 

In 5.5% of simulations, the discrete event model estimated the dose to be zero. This 

occurred because hand-to-mouth contact was made with an uncontaminated hand; all 

preceding hand-to-fomite contacts had been made with the other hand. Excluding these results, 

the two modelling methods had central tendencies of the estimated log10 dose of similar orders 

of magnitude (Figure 2). Distributions of log10 estimated doses were slightly more skewed for 

discrete-event models. Across the four model scenarios, Markov models’ skewness of log10 



dose ranged from -0.80 to -0.72, and discrete-event model skewness of log10 ranged from -0.93 

to -0.70. 

Comparison of Dose across Contact Patterns 

For both the Markov and discrete event models, larger mean and median doses were 

estimated for asymmetrical contact frequency models (models 3 and 4) (Table S1, Figure 2). 

When hand hygiene events were handled as independent events in the Markov model (models 

1 and 3), the median dose for asymmetrical scenarios was 41% greater relative to symmetrical 

scenarios (model 3 vs. 1). The median dose for discrete event model 4 (0.86) was 121% greater 

relative to the median risk for discrete event model 2 (Table S1). 

For symmetrical contact frequency models, median and mean doses were similar 

between the Markov and discrete event models, where the median dose for Markov model 1 

was 20% greater relative to discrete event model 1 and where the mean dose for Markov model 

1 was 40% smaller relative to discrete event model 1 (Table S1). Greater mean doses for 

discrete event models and greater median doses for Markov models were consistent across 

symmetrical and asymmetrical contact frequency scenarios, with the exception of Markov model 

4, which produced a median dose slightly smaller than that produced by discrete model 4 (Table 

S1). 

Comparison of Dose across Hand Hygiene Scenarios 

The handling of hand hygiene had little impact on estimated median or mean doses for 

symmetrical contact Markov models (Table S1). However, when contact frequencies were 

asymmetrical, differences in median and mean doses were seen, where the median and mean 

doses for Markov model 3 were approximately 9% and 7% greater, respectively, relative to 

Markov model 4. The handling of sequences of events for discrete event models translated to 

little difference in estimated median or mean dose for symmetrical contact models. However, a 

greater difference in median dose was observed for asymmetrical contact models, where the 



median dose for discrete event model 3 was 23% smaller than for discrete event model 4 (Table 

S1).  

Characteristics of High Dose Iterations & Sensitivity Analysis 

 Among the simulations that yielded the highest 15% of dose estimates, 64% were from 

the discrete event framework and 36% were from the Markov chain framework, indicating that 

both modelling methods can capture “high risk” conditions. Among the Markov simulations with 

the highest doses, more were from model scenarios 3 and 4 (model 1: 21%, model 2: 19%, 

model 3: 32.5%, model 4: 27.5%), where there were more contacts with the more contaminated 

fomite (Tables 1 and 2). This was consistent for the discrete event models (model 1: 25%, 

model 2: 20%, model 3: 26%, model 4: 29%).  

The model parameters most positively associated with cumulative dose estimates are 

fomite-to-hand transfer efficiency, hand-to mouth transfer efficiencies and the fraction of the 

hand used for fomite contacts (Table 3). The distributions of these variables among the 

simulations yielding the 15% highest dose estimates were notably different from the distributions 

of these parameters for all iterations combined (Figure 3).  

Hand hygiene efficacy had a strong negative association with cumulative dose among all 

scenarios of the discrete event model, while the relationship was stronger in Markov models that 

time-averaged losses due to hand hygiene (models 2 and 4) (Table 3). One potential 

explanation for consistently strong negative associations for the discrete event models is the 

variability in hand-to-mouth contact moments in the discrete event models, where a dose for a 

hand-to-mouth contact directly following a hand hygiene event would be notably different than if 

the hand-to-mouth contact occurred right before the hand hygiene event. In the iterations 

resulting in the 15% highest doses, the frequency of hand-to-mouth contacts were not uniformly 

distributed across the simulation time (Figure 4).  

In general, high risk hand-to-mouth contacts often occurred early in the simulation before 

reductions due to hand hygiene had taken effect. More specifically, the greatest number of 



hand-to-mouth contacts occurred at the 5th event in the simulation. Because events were moved 

1 minute forward after the insertion of a hand-to-mouth contact, a hand-to-mouth contact in the 

5th minute maximizes the number of hand-to-fomite contacts made before a hand hygiene 

event, since the hand hygiene event that would have happened in the 5 th minute is moved to the 

6th minute in the simulation. While this hand-to-mouth contact timing was frequently represented 

among the iterations resulting in high doses, there were differences in distributions of hand-to-

mouth contact timing among discrete models that resulted in highest doses, influenced by 

differences in concentration changes on the hands, driven by differences in hand-to-fomite 

contact sequences, contact frequencies with fomite A vs. fomite B, and in starting concentration 

between the fomites (Table 2, Figures 3 and 6). The sawtooth patterns of the hand-to-face 

contact timings that resulted in high doses mimic those of the changes in concentration on 

hands over time (Figures 1 and 4). 

Unlike in the discrete event models, the reductions due to hand-to-mouth contacts in the 

Markov models were averaged over time. For the discrete event models only, distribution 

differences in hand hygiene efficacies were seen for the iterations producing the 15% greatest 

doses relative to all iterations (Figure 3). Scatterplots of dose vs. inputs can be seen in Figures 

S5-S15. 

When the initial concentrations were allowed to vary between fomites A and B (but sum 

to 100 virus particles/cm2, temporal changes in mean concentration on fomite A remained 

similar to the primary models (Figures 1 and S16). Temporal changes for fomite B were more 

similar to those of fomite A in this condition, than in the primary models where fomite A 

consistently had greater initial contamination than fomite B. The iterations producing the top 

15% of dose estimates contained more instances of fomite A starting with large concentrations 

and fomite B starting with small concentrations, relative to distributions of starting 

concentrations for all iterations (Figure S17).  

Discussion 



Key Findings 

The two modelling methods evaluated in this study yielded mean and median doses of 

similar orders of magnitude for all scenarios tested, and both were able to capture “high risk” 

events (Table S1, Figures 1 and 3). The dynamics of microorganism concentrations were similar 

between the two modelling methods when the Markov model treated hand hygiene as a periodic 

event, described in a separate transition probability matrix (Figure 1). The Markov models 

resulted in generally less skewed distributions of estimated log10 doses (Figure 2) while the 

discrete event models offered insights regarding the influence of the timing of hand-to-mouth 

events on dose (Figure 4).  

For the discrete event model, mean estimated doses were less sensitive to the 

sequence of fomite contacts than to the distribution of contacts (symmetrical vs. asymmetrical) 

between the two fomites (Table S1). The doses estimated by the Markov models were also 

more sensitive to the symmetry of contacts with the two fomites than to the distribution of 

contacts, but the handling of hand hygiene had a greater effect on hand concentration dynamics 

than contact patterns (Figures 1 and 2, Table S1). Dose estimates from all models, regardless 

of framework type, were sensitive to the fraction of the hand used for hand-to-fomite contacts 

and the transfer efficiency from fomites to the hand and from the hand to the mouth (Table 3, 

Figure 3). While the fraction of the hand used for the hand-to-mouth contact would have been 

expected to be a more important parameter in estimating dose than the fraction of the hand 

used for hand-to-fomite contacts, the maximum of this distribution was 0.012 as opposed to 

0.25 for the fraction of the hand used for hand-to-fomite contacts, meaning hand-to-mouth 

transfer efficiencies had a smaller range and allowed for smaller magnitudes of transfer than for 

hand-to-fomite contacts (Table 2). The way hand hygiene events were handled in the Markov 

model framework influenced the magnitude of monotonic relationships between hand hygiene 

efficacy and estimated dose, with stronger relationships seen when losses due to hand hygiene 

were time-averaged rather than treated as separate events (Table 3) 



The discrete event model estimated doses of zero (Table S1) when one hand had been 

used for a series of contacts and the other was used for a later hand-to-mouth contact. This 

raises the issue of concentration dilution and how virus is spread homogeneously across a 

single hand or both hands over the course of the simulation. This issue has been addressed in 

previous modeling research (21), but is typically not accounted for in the frameworks used in 

this study. In the discrete event model, virus accumulation on each hand was tracked 

separately, while it was averaged across both hands in the Markov models over time. However, 

the Markov models could be further refined with the separation of the “hands” compartment into 

two compartments, representing the two hands. How specifically to track accruement on the 

whole hand or parts of the hand and the sensitivity of each of these frameworks to the handling 

of concentration dilution should be explored in future work, in addition to identifying human 

behaviour data gaps that may limit more detailed modelling of fomite-mediated exposures. 

Limitations 

 To focus on the objective of this study – to compare the two modelling methods – 

decisions were made regarding sequences of events and distributions or point values for 

parameters that will not represent any specific or all potential exposure scenarios. This means 

that other choices could lead to conditions that produce greater or lesser differences in the 

performance of the modelling methods. For example, it was assumed that all events in the 

discrete event models occurred at a fixed interval of one minute. Varying this interval may affect 

differences between the discrete event and Markov models, as the latter represents events as 

occurring at time-averaged rates. However, the ability to model concentration changes at very 

short intervals are limited, in part, by the lack of data describing variability in contact duration 

during micro-activities, which occur on the time-scale of seconds (22), and lack of 

understanding of how microbial transfer efficiency is affected by duration of contact (pressure 

changes, uncertainties regarding concentration equilibrium between skin and fomite, etc.). 

Longer duration of contact between food and equipment surfaces has been associated with 



greater microbial transfer in some cases (23) and not in others (24). Within the context of 

chemical exposures, there may be insignificant differences in transfer efficiency over small 

contact durations (2 sec vs. 20 sec contact duration (5,25)) but more meaningful differences for 

longer periods of contact (1 min vs. 60 min (26)). More transfer efficiency data and behaviour 

data connecting micro-activities to meso-activities, which occur on the timescale of minutes-to-

hours, would potentially be needed to address the impact of contact duration on microbial 

transfer that would result in meaningful differences in microbial accruement on hands. 

Recommendations and Considerations for Future Model Framework Choice 

 Exposure models have been used to understand exposure mechanisms in a variety of 

indoor environmental and occupational health contexts, including offices (27,28), healthcare 

environments (9,13,29), and publicly shared spaces (30,31). They are used to not only estimate 

exposures and subsequent risks but also to compare the relative contribution of one 

transmission route over another (9); to estimate intervention effectiveness (32); and to identify 

types of human behaviours, environmental conditions, and room designs that result in the 

greatest risks (33). Because of the wide application of exposure modeling, the accuracy and 

consistency in estimating exposures and describing human behaviours have important 

implications for infection prevention decision making.  

The comparison of these frameworks offers insights into how each framework may 

respond to choices regarding hand hygiene events, symmetry of contacts with multiple fomites, 

and differences in the exposure insights each framework may offer. For the case studied in this 

research, either modelling method is appropriate for determining dose to the facial mucous 

membranes through the indirect contact pathway and to explore determinants of exposure. 

However, the Markov model should represent hand hygiene as distinct event with a unique 

transition probability matrix, rather than as a continuous rate of microorganism loss from the 

hand. If the objective of the model is to gain insights regarding how the timing of events yields 



the highest doses or risks, the discrete event model may be more useful in providing these 

insights.  

Future work is needed to further develop our understanding of the conditions under 

which different exposure models are appropriate. The two models used in this study are 

relatively common in QMRA applications (9,10,17,33–36), but other models are also used. For 

example, Environment Infection Transmission System (EITS) modeling framework combines 

compartments common to epidemiologic models (e.g., susceptible-infectious-recovered or S-I-R 

models) with environmental compartments (e.g. hands) to track pathogens (37). Thus, not only 

is there further need to challenge the Markov model and discrete event model under a wider 

variety of conditions, and against experimental or observational data, but to compare 

performance of other models. Despite these needs, exposure models remain a valuable tool to 

support infection prevention and public health decision making. 
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Table 1. Descriptions of model scenarios, discrete event model contact patterns, and matrices 
used in Markov models* 

Scenario 
Contact 

Frequency 
Condition 

Contact Pattern Visual Description 

Discrete Event Models  

1 Symmetrical (FA FB FA FB H FA FB FA FB)x2 

 

2 Symmetrical (FA FA FA FA H FB FB FB FB)x2 

 

3 Asymmetrical (FA FA FA FA H)x3 FB FB FB FB
 

 

4 Asymmetrical (FA FA FA FB H FA FA FA FB)x2 

 

Markov Models 
 

1 Symmetrical (P1) xn (PH)x4 (P1) xn  

 

2 Symmetrical (P3)xn 

 



3 Asymmetrical (P4)xn (PH) x4 (P4)xn  

 

4 Asymmetrical (P5)xn 

 
*Timing of hand-to-mouth contact events were randomly selected. Subsequent events were 
moved forward by 1 minute. F1 indicates contact with fomite A. F2 indicates contact with fomite 
B. H indicates hand hygiene event. Each contact pattern for discrete event models repeats until 
21 events occur, with 4 hand hygiene events, 1 hand-to-mouth contact, and 16 fomite contacts. 
Markov models involved different one-step transition probability matrices to represent different 
contact patterns (P1, P2, etc.) and hand hygiene (PH) multiplied iteratively. 

 
  



Table 2. Model parameters, their distributions, and their sources 

Model Parameter Distribution/Point Value Source 

All Models 

Hand-to-surface transfer 
efficiency 

Lognormal 
(meanlog= -2.1, sdlog=1.4), 
Left- and right-truncated at 0 

and 1, respectively 
(38) 

Surface-to-hand transfer 
efficiency 

Lognormal 
(meanlog= -2.1, sdlog=1.4), 
Left- and right-truncated at 0 

and 1, respectively 

Hand-to-mouth transfer 
efficiency 

Normal 
(mean=0.3390, sd=0.1318), 
Left- and right-truncated at 0 

and 1, respectively 

(39) 

Total Hand Surface Area 
Uniform 

(min=445, max=535), cm2 
(40) 

Fraction of Total Hand Surface 
Area Used for Contact 

Uniform 
(min=0.008, max=0.25) 

(40) 

Fraction of Total Hand Surface 
Area Used for Hand-to-Mouth 

Contact 

Uniform 
(min=0.008, max=0.012) 

(40) 

Fomite A Surface Contamination 100 viral particles/cm2 
Assumed* 

Fomite B Surface Contamination 5 viral particles/cm2 

Hand Hygiene Efficacy (log10 
reduction) 

Normal 
(mean=1.06, sd =0.54), 

Left-and right-truncated at 0 
and 1.89, respectively 

(41) 

Exposure Duration 21 min Assumed* 

Fomite Surface Area 
Uniform 

(min=150, max=250), cm2 
Assumed* 

Inactivation Rate on Fomites 
Uniform 

(0.0048, 0.013), hr-1 
(42) 

Inactivation Rate on Hands 
Uniform 

(0.61, 1.7), hr-1 
(43) 

Frequency of Hand Hygiene 
Events 

4 hand washes/20 min Assumed* 

Hand-to-Mouth Contact 
Frequency 

1 contact/20 min (44) 

Discrete Models 1 and 
2, Markov Models 1 

and 2 

Frequency of Contacts with 
Fomite A 

8 contacts/20 min Assumed* 

Frequency of Contacts with 
Fomite B 

8 contacts/20 min Assumed* 

Discrete Models 3 and 
4, Markov Models 3 

and 4 

Frequency of Contacts with 
Fomite A 

12 contacts/20 min Assumed* 

Frequency of Contacts with 
Fomite B 

4 contacts/20 min Assumed* 

Descriptions of how data from original sources were used to inform these distributions can be 
found in supplemental materials. *These values are used for demonstration of model 
comparison purposes and not intended to reflect reality  
 



 
 
Figure 1. Dynamics in cumulative dose (mean± SD) and microbial concentrations (mean ± SD) 
on the hands, fomite A and fomite B predicted by the discrete event (discrete) and Markov 
models for scenarios 1-4. *Symmetrical hand contact frequency is reflected in scenarios 1 and 
2, while asymmetrical hand contact frequency is reflected in scenarios 3 and 4. Differences in 
the handling of hand hygiene can be seen between scenarios 1 and 3 (hand hygiene treated as 
an event) and scenarios 2 and 4 (hand hygiene loss is time-averaged across the simulation) for 
the Markov models. 



 
 

Figure 2. Distributions of estimated doses for discrete event and Markov chain models for the 4 
scenarios described in Table 1. 
 
 
  



Table 3. Spearman correlation coefficients 

 

Input Parameter 

Hand-to-
Fomite 

TE 

Fomite-
to-Hand 

TE 

Hand-
to-

Mouth 
TE 

Total 
Hand 
SA 

SA of 
Fomite 

A 

SA of 
Fomite 

B 

Inactivation 
Rate on 
Fomites 

Inactivation 
Rate on 
Hands 

Fraction of 
hand used in 

fomite 
contacts 

Fraction of 
hand used 
in mouth 
contacts 

Hand 
Hygiene 
Efficacy 

Markov 
Models 

1 -0.0092 0.78 0.30 0.049 0.043 -0.0094 -0.018 0.0021 0.47 0.10 -0.14 

2 -0.007 0.75 0.30 0.048 0.049 -0.0012 -0.021 0.00032 0.45 0.10 -0.30 

3 -0.0089 0.78 0.31 0.049 0.050 -0.011 -0.019 0.0013 0.46 0.11 -0.15 

4 -0.0065 0.73 0.31 0.047 0.059 -0.014 -0.022 -0.0012 0.44 0.11 -0.32 

Discrete
-event 
Models 

1 0.014 0.44 0.19 0.039 0.024 -0.016 -0.0037 -0.0038 0.27 0.056 -0.20 

2 -0.0050 0.43 0.17 0.045 0.025 0.0016 0.0027 -0.021 0.27 0.066 -0.28 

3 -0.0077 0.42 0.20 0.030 0.041 -0.0015 0.0031 -0.012 0.25 0.072 -0.26 

4 -0.023 0.44 0.19 0.040 0.062 0.0064 -0.0057 -0.022 0.27 0.068 -0.22 

  



  
 
Figure 3. Distributions of fomite-to-hand transfer efficiency, fraction of the hand used for a 
fomite touch, hand-to-mouth transfer efficiency, and log10 hand hygiene efficacy* for iterations 
producing the 15% largest doses and for all iterations 
 
*Distributions of log10 hand hygiene efficacies are only shown for the discrete event model 
iterations among the 15% producing the largest doses since hand hygiene efficacy did not have 
as large of an effect on estimated doses in the Markov models 
 
 
 
 
 
 
Figure 4. Distributions of discrete-event hand-to-face contact timing for iterations producing the 
15% largest doses and for all iterations 


