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Consensus Speed Optimisation with Finite Leadership Perturbation in

k-Nearest Neighbour Networks

Ruaridh Clark, Giuliano Punzo and Malcolm Macdonald

Abstract— Near-optimal convergence speeds are found for
perturbed networked systems, with N interacting agents that
conform to k-nearest neighbour (k-NNR) connection rules, by
allocating a finite leadership resource amongst selected nodes.
These nodes continue averaging their state with that of their
neighbours while being provided with the resources to drive
the network to a new state. Such systems are represented by
a directed graph Laplacian with two newly presented semi-
analytical approaches used to maximise the consensus speed.
The two methods developed typically produce near-optimal re-
sults and are highly efficient when compared with conventional
numerical optimisation, where the asymptotic computational
complexity is O(n3) and O(n4) respectively. The upper limit for
the convergence speed of a perturbed k-NNR network is identi-
fied as the largest element of the first left eigenvector (FLE) of
a graph’s adjacency matrix. The first semi-analytical method
exploits this knowledge by distributing leadership resources
amongst the most prominent nodes highlighted by this FLE.
The second method relies on the FLEs of manipulated versions
of the adjacency matrix to expose different communities of
influential nodes. These are shown to correspond with the
communities found by the Leicht-Newman detection algorithm,
with this method enabling optimal leadership selection even in
low outdegree (< 12 connections) graphs, where the first semi-
analytical method is less effective.

I. INTRODUCTION

The focus of this paper is on developing the capabilities to

effectively control a mobile engineered swarm. Primarily by

considering how to identify optimal leadership for achieving

fast consensus, which provides a mechanism for influencing

the entire network without requiring control of all nodes.

But this work could be extended to leadership selection on

a range of networked systems, including leader election for

distributed computing, targeted release of genetically altered

mosquitoes or effective use of campaigning resources.

For a distributed system, attempting to reach consensus,

optimising the speed of convergence is desirable as it enables

the system to respond faster to inputs while also facilitating

cohesion. There has been notable work on how topology can

influence consensus with [1] finding that random rewiring

and the creation of small-world networks can dramatically

increase consensus speed.

In [1] unperturbed consensus dynamics are considered

whereas in this paper perturbation-driven consensus is the

focus, where leader nodes are required to drive the network

from one state to another. The selection of effective leaders

is therefore key and the problem has been considered by

[2], [3] for achieving controllability and by [4], [5], [6] for
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robustness by minimising the system error in the presence

of noise. There are also contributions to the problem of

achieving fast convergence through leadership. In [7] fast

consensus is pursued with leaders that are given external

input but only considers a single leader node, which will

be shown to often but not always be an optimal strategy.

The approach taken in the current paper is the same as [8]

where a limited leadership resource is applied to nodes across

the network. Leader selection is required due to the limited

resource constraint, without a limit all nodes could be fully

controlled making consensus trivial. Limited communication

is a viable constraint when considering the operation of such

a system where point-to-point communication may provide

greater security but prevent communication to all nodes at

once.

In [8] the leadership perturbation is defined as the network

Laplacian’s first left eigenvector (FLE), or Perron vector,

with a similar metric also vital in this paper where the FLE

of the adjacency matrix shall form the basis of the leadership

selection algorithms. The FLE of a graph’s adjacency matrix

is associated with the largest eigenvalue in magnitude and

details each node’s relative ability to serve as the origin of

many arbitrarily long walks on the network [9]. However the

perturbations, defined by the algorithms described herein,

provide a significant improvement upon the convergence

speeds achieved using the unmodified FLE.

To the best of the author’s knowledge there are no other

comparable methods for the limited perturbation case and

therefore much of this work requires comparison with con-

ventional numerical optimisers. Near-optimal is the phrase

used to describe the results of the algorithms developed

herein, highlighting that the results produced are on a par

with those of the numerical optimiser. The combinatorial

nature of the optimal perturbation problem results in common

numerical approaches often finding local minima. This in

turn makes identification of an optimal solution only possible

for a limited set of networks where the optimality can be

analytically proven. Numerical approaches also scale poorly

when tackling combinatorial problems, with leader selection

being no exception. It shall be seen that the computational

requirements of purely numerical approaches become pro-

hibitive as the network size grows.

When considering an engineered swarm there are many

sources of inspiration in nature. For example starling flocks,

which maintain a k-nearest neighbour (k-NNR) network

structure, with each starling usually observing its seven

nearest neighbours (k ≈ 7). These topological rules are

found to provide the starling swarm with robustness benefits



[10], therefore this work shall take the k-NNR structure as

its starting point and focus on how to achieve a highly

responsive system by perturbing the system through supply-

ing leadership resources. The networks considered are also

directed, emulating the communication graphs of flocks and

swarms in nature, where it has been shown that the commu-

nication/sensing cost of protocols, with directed information

flow, is smaller than that of their undirected counterparts

[11].

An upper limit for convergence speed to consensus shall

be defined by considering only the first left eigenvector of the

unperturbed system. This limit is used to validate the main

contribution of the paper, which is the development of semi-

analytical methods that effectively and efficiently identify

a network leadership perturbation. This limit could also

be applied as a distributed topology optimising algorithm,

where [12] presents a distributed algorithm for evaluating a

network’s first left eigenvector that could also be the foun-

dation for applying the leadership perturbation algorithms in

a distributed manner.

II. CONSENSUS MODEL

In [11] a theoretical framework for the analysis of consen-

sus algorithms for multi-agent systems is presented, where

a graph is used to represent a given network. Adopting this

framework results in the convergent rate to consensus being

represented by the smallest, non-zero, eigenvalue of a graph’s

Laplacian matrix [13].

The networks considered have N agents connected via

local communication with a static, time-invariant, topology.

This is represented with a directed graph G = (V,E), that

is at least weakly connected, where V = 1,2, ...,N is a set

of nodes and E ⊆ V × V is a set of edges. A uniform

signal u = u · {1,1, ...,1}T ∈ IRN is supplied to all agents

with different positive gains ci, where i = 1,2, ...,N. The

dynamics of this system are defined as

ẋi =
N

∑
i=1

ai j(xi − x j)+ ci(u− xi) (1)

where xi is the state of the ith agent and u is the scalar target

value that all agents must achieve. ai j is the i j entry of the

graph adjacency matrix, that is 1 if there exists a directed

edge from node i to j and 0 otherwise. Each connection as

documented in the adjacency matrix provides a directional

link for sharing information on an agents state. The resource

allocation, ci, ranges from 0 to 1, where ∑i ci = 1, and scales

the comparison between the uniform input signal, u, and the

current state xi. The collective dynamics of the network can

be expressed as

ẋ =−Lx+C(u−x) (2)

where L is the Laplacian matrix of graph G and C is the

perturbation matrix where C = diag(c) = diag(c1, ...,cN). The

Laplacian is defined as L = D−A where D = diag(d1, ...,dN)
is the degree matrix of G, with elements di = ∑ j ai j, and A

is the adjacency matrix.

Lemma 1 [14], [15] For a directed network G with

individual protocol (2), consensus is achieved if G contains

a directed spanning tree, that is there exists a vertex u such

that for any v ∈ V , there exists a directed path from u to v.

The essence of Lemma 1 implies that for a directed net-

work, the sufficient condition for achievement of consensus

is that each agent is reachable from the input u through a

directed path.

Eq. (2) can be rewritten

ẋ =−(L+C)x+Cu,

before removing the Cu term by means of a coordinate

change. Consider

y = x− (L+C)−1Cu.

After applying the coordinate change the model becomes

ẏ =−(L+C)y. (3)

The Laplacian matrix always has a zero eigenvalue for each

connected component of the directed graph, i.e. one zero

eigenvalue for a strongly connected graph, where |λ1|= 0 ≤
|λ2| ≤ ... ≤ |λN | with any complex eigenvalues occuring in

conjugate pairs. For the perturbed negated Laplacian, S =
−L−C, the smallest eigenvalue is non-zero and therefore the

magnitude of λ1(S) becomes the measure of convergence rate

to consensus for the system [16]. From the Perron-Frobenius

theorem we have the following:

Lemma 2 [17] The eigenvalue λ1(S) is a simple eigen-

value and the entries of the FLE share the same sign.

The dominant eigenvalue for the adjacency matrix, and

therefore also the Laplacian matrix, is real and, for a strongly

connected graph, strictly dominant with an algebraic multi-

plicity of 1 [18].

III. CONSENSUS SPEED LIMIT

In the following sections the notation (.)i is used to

indicate an element of the vector (.) whenever the vector’s

notation already includes a subscript or the vector is the result

of an operation indicated in the brackets

Theorem 1. Let L be the Laplacian of a connected,

directed graph with outdegree of k for all nodes (k-outdegree)

and C = diag([c1, ...,cN ]) the diagonal perturbation matrix

consisting of non-negative entries, where ∑i ci = 1. Then, the

limit for the smallest eigenvalue of the perturbed Laplacian

system, S =−L−C, is

λ1(S)>−maxi((vL)i) (4)

where (vL)i ∀ i ∈ V is an element of the FLE of L.

Theorem 1 can be proved as follows.

Proof: The first left eigenvector of S, vS, is defined as

v
⊺

SS = λ1(S)v
⊺

S from which the dominant eigenvalue can be

found, when ∑i(vS)i = 1 where (vS)i is an element of vS, to

be

λ1(S) = ∑
i

(λ1(S)v
⊺

S)i = ∑
i

(v⊺SS)i. (5)



Since L is a Laplacian matrix, ∑i(v
⊺

SL)i = 0, the diagonal

perturbation matrix, C, can be substituted into (5) as

λ1(S) = ∑
i

(v⊺SS)i =−∑
i

(v⊺SC)i =−∑
i

(vS)ici. (6)

The maximum dominant eigenvalue can then be defined as

max(λ1(S)) = max(−∑
i

(vS)ici) =−maxi((vS)i). (7)

For −maxi((vS)i) to be achieved, ci = 1/m for those i

corresponding to maxi((vS)i) and 0 elsewhere. Note that m

is the number of elements in vS equal to maxi((vS)i) and

∑i ci = 1 is maintained.

An equation that approximately represents the shift, δλ1,

in a distinct eigenvalue of a generic square matrix is defined

in [19] as

δλ1(S) = λ1(S)≈−
v
⊺

LCrL

v
⊺

LrL

, (8)

where vL and rL are the left and right eigenvectors respec-

tively of L corresponding to the eigenvalue, λ1(L). Given

that

λ1(S) =
v
⊺

S SrS

v
⊺

SrS

(9)

it can be deduced that vS ≈ vL and rS ≈ rL for small

perturbations.

In reality, vS 6= vL and rS 6= rL, in particular (vS)i < (vL)i

for i corresponding to maxi((vS)i) where the optimal pertur-

bation ci = 1/m, implicitly defined in (7), is applied. This

can be shown by first considering −v
⊺

LL = λ1(−L)v⊺L = 0

and Lemma 2, from which it can be noted that (v⊺LS)i = 0

when ci = 0. Observing that (v⊺SS)i = (λ1(S)v
⊺

S)i < 0 as long

as i is globally reachable. Then for S it can be seen that

(vS)i > (vL)i where ci = 0. Therefore, given that ∑i (vL)i =

∑i (vS)i = 1, it can be seen that for the optimal perturbation

case (vS)i < (vL)i for i corresponding to ci = 1/m. Hence,

the limit for the magnitude of the smallest eigenvalue of the

perturbed Laplacian is maxi((vL)i) and is approached when

(vS)i → (vL)i.

IV. ALGORITHMS

A. Power Optimisation

The FLE, vL, of the Laplacian matrix has been shown to be

a good strategy for allocating resources in certain cases [8].

However a numerical optimiser, using sequential quadratic

programming methods with an active-set algorithm1, is able

to consistently uncover better allocations [8]. The optimiser’s

search space is dependent on network size, resulting in

O(n) operations requiring the calculation of the matrix

eigenvalue O(n3) [21], producing a total run time of O(n4).
For a k-NNR network, the Power Optimisation strategy is

a semi-analytical approach that focuses resources on the

most prominent nodes by raising the FLE to some power,

p, according to

c =
v

p
L

∑i (vL)i
p (10)

1Numerical optimiser was implemented with the fmincon algorithm in
MATLAB [20].

with c being the resource allocation vector and where v
p
L

is an element-wise operation. The maximum magnitude for

the smallest eigenvalue, λ1(S), is sought by locally changing

p in IR using the bisection method [22]. This method

iteratively reduces the resources to less influential nodes

while increasing those assigned to the most prominent until

the convergence rate stops increasing, while maintaining

∑i ci = 1. The search space is dependent on the power, p, and

hence does not grow with an increasing number of nodes, n,

therefore the eigenvalue calculation is the dominant process

resulting in O(n3) for the Power Optimisation method.

In Theorem 1 the optimal perturbation matrix C is optimal

in that it can approach the upper limit for the smallest eigen-

value. The Power Optimisation vector, as defined in (10), will

be shown to converge towards an optimal perturbation and

in doing so will reveal the conditions in which the limit for

the smallest eigenvalue can be reached.

Defining the perturbation matrix as

C =−diag{c}=−diag
{ v

p
L

∑i (vL)i
p

}

, (11)

Fig. 1 displays the power, p, determined to produce the

maximum eigenvalue shift for 10 k-NNR networks at each

node interval between 50 and 150. The networks were

created by randomly distributing nodes in a plane before

applying k-NNR connection rules for an outdegree of 30.

It can be seen that a high power above 45 is usually

required to find the optimum resource allocation. By ap-

plying this high power assumption and also considering the

constraint ∑i ci = ∑i
(vL)

p
i

∑i (vL)
p
i

= 1 applied to (11), a case is

produced where ci 6≈ 0 ∀ i that approximately correspond

to maxi((vL)i) and ci ≈ 0 otherwise. Hence,

λ1(S)> ∑
i

(vL)i

(

−diag
{ (vL)

p
i

∑i (vL)
p
i

})

=−m ·maxi((vL)i) ·
1

m

=−maxi((vL)i)
(12)

Fig. 1: Power, p, found that produces highest consensus speed for
the Power Optimisation method.



where m is the number of elements for which ci 6≈ 0. Noting

that in (12),
(vL)

p
i

∑i (vL)
p
i

≈ 0 or
(vL)

p
i

∑i (vL)
p
i

≈ 1
m

for large p. The Power

Optimisation approach, therefore, attempts to achieve the

optimal perturbation highlighted in (4). This is not possible

for every graph but the method will be shown to be highly

effective for many scenarios, in particular high outdegree

networks.

1) Results: As stated in Theorem 1, the limit magnitude

for the smallest eigenvalue of the perturbed, negated, Lapla-

cian is equal to the largest element of the FLE, maxi((vL)i).
The results in Fig. 2 approach this limit for outdegrees

greater than 26, in a 50 node network where nodes have

been randomly distributed in a plane before applying k-NNR

connection rules for a range of outdegrees. The numerical

optimiser is described in Section IV-A and is considered to

be a near-optimal benchmark The consensus speeds for the

numerical and power optimisation approaches are seen to

converge with, but never exceed, the maxi((vL)i), achieving

better results than the unmodified FLE that was used as a

leadership allocation in [8].

B. Communities of Influence

The number of communities/modules detected by the

Leicht-Newman algorithm for directed networks [23], from

hereon referred to as Leicht-Newman modules, is com-

pared with the network outdegree. High outdegree, k-NNR,

networks are found to often be composed of fewer non-

overlapping modules (e.g. 2 modules for a 100 node network

with 50 outdegree) than lower outdegree scenarios where

many modules are present (e.g. 10 modules for 100 node

network with 5 outdegree). It is shown in section IV-B.2

that the Power Optimisation method achieves its best results

at higher outdegrees. This matches the findings in [24]

where a single node is seen to become an increasingly

effective leader in denser networks, i.e. those with a greater

number of connections. Therefore, a similar approach to

Power Optimisation is taken for low outdegree cases but

Outdegree
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Fig. 2: Consensus speed ratio with respect to maxi((vL)i) for various
resource allocation vectors over a range of outdegrees in a 50 node
k-NNR network.

it is repeated for multiple influential communities instead

of just focusing on the most prominent one. This method

will be referred to as the Communities of Influence (CoI)

approach, where the FLE of the adjacency matrix, va, is

calculated for manipulated versions of the network to find

different communities of influential nodes. The algorithm is

defined in Algorithm 1, where it is worth noting that for a

k-outdegree graph vL = va. However, after the deletion of a

node’s connections vL 6= va and va is required to reveal the

other influential communities.

Algorithm 1 CoI

procedure FINITE LEADERSHIP OPTIMISATION

Calculate the FLE, va, for the adjacency matrix,

A = (ai j) ∈ IRN×N .

for m = 1 : n ∈ IR+ do

Define the resource vector, cm = (va)m
p

∑i (va)m
p ∀ i ∈ V ,

where p = pm ∈ IR+.

∀ i ∈ V, j ∈ argmink((va)k), ai j = a ji = 0.

Calculate vm+1 for the updated adjacency matrix.

end for

Quasi-Newton solver2 maximises |λ1(S)| where

C = diag(cCoIn) with rm ∈ IR+ a weighting variable

for the different resource vectors.

cCoIn = f (c1, ...,cm, p1, ..., pm,r1, ...rm−1) with the

function f (...) defined in (13).

end procedure

In Algorithm 1, the number of communities required

to find a near-optimal leadership varies depending on the

topology in question. Five communities of influence were

deemed sufficient for the networks examined in this paper.

The resource combining function for n communities is

cCoIn =
c1 +∑

n
i=2

ci
ri−1

1+∑
n−1
i=1

1
ri

(13)

where the denominator, with weighting variables

{r1, ...,rn−1}, scales the combined vectors to ensure

∑i(cCoIn)i = 1 and {c1, ...,cn} is the resource vector defined

in Algorithm 1. The initial guesses for the powers (p1,...,pn)

were 50, given the results presented in Fig. 1 for the Power

Optimisation method, with the weighting variables set at 1.

The presence of more variables in the optimisation increases

the search space and the algorithm run time when compared

with the Power Optimisation, however the run time remains

defined by the eigenvalue calculation. The worst case for

CoI is therefore also O(n3), but the difference in actual

computational time is explored in the next section.

1) Communities: In Fig. 3, a sample analysis of a 50

node network depicts the influential nodes from four separate

communities of influence. The influence of each node for a

specific community is proportional to the radius of the asso-

ciated circle. The resource allocations, CoI4 and Numerical,

2Numerical optimiser was implemented with the fminunc algorithm in
MATLAB [25]



Fig. 3: 50 node, 5 outdegree, k-NNR network. Two-way connections
are depicted in dark green with one-way in light green. Coloured
circles are centred on nodes, with the circle radius proportional to
the resource allocation.

are also detailed in the figure; the CoI4 vector uses the CoI

method for four communities to achieve a consensus speed

that is on par with the numerically optimised result.

Figure 4 displays the modules detected, for the topology

shown in Fig. 3, by the Leicht-Newman algorithm [23]. By

comparing these plots it can be seen that the nodes selected

by CoI are based in different modules to facilitate the whole

graph in reaching consensus. Comm. 1 to 4 are all located

in separate modules, which shows some modules to be more

influential than others, with nodes from the black, magenta

and cyan modules in Fig. 4 not required for achieving fast

consensus.

Fig. 4: Five modules, as determined by the Leicht-Newman algo-
rithm [23], highlighted by different coloured circles.

Fig. 5: Consensus Speed Ratio for k-NNR networks with outdegree
set at 10. The error bars mark the maximum and minimum deviation
from the mean.

2) Results: The algorithms developed were validated

through comparisons with the numerical optimiser, described

in Section IV-A, that is considered to be a near-optimal

benchmark. In Fig. 5 the Power Optimisation and CoI5 meth-

ods were compared with the numerical optimiser, for forty k-

NNR networks with randomly distributed nodes at each node

interval between 100 and 900.The Consensus Speed Ratio

being defined in reference to the numerical approach where

a ratio value greater than 1 indicates a faster consensus speed

than the numerical result. Fig. 5 shows an improvement with

respect to the purely numerical approach as the networks

grow larger. The worst case run times are reiterated in Table

I and compared with the trend line for data in Fig. 5. The

coefficient of determination, R2, is also displayed in the table

to show the accuracy of the trend line fit.

TABLE I: Algorithm run time comparison for n nodes.

Algorithm Run Time Actual Trend [s] R2

Numerical O(n4) 5×10−7n3.5 0.998

CoI5 O(n3) 1×10−4n2.1 0.9898

Power Opt. O(n3) 7×10−6n2.1 0.9912

C. Large Networks

For large networks (N ≥ 1000) a comparison of the power

optimisation and CoI methods with the numerical optimiser

benchmark was not feasible, due to the computational time

required. Therefore the upper limit for consensus speed,

maxi((vL)i) as stated in Theorem 1, was used to show in

Fig. 6 that near-optimal results were still being achieved.

In the case of a high outdegree network, the CoI5 vector

only requires the contribution of one community and, hence,

closely matches the resource allocation generated by the

Power Optimisation approach. This is the case in Fig. 6

where an outdegree of 30 is large enough for Power Optimi-

sation analysis to find a near-optimum resource allocation. It

is worth noting that the Power Optimisation outperforms the

CoI5 vector, due to the CoI method relying on a numerical

optimiser, that finds suboptimal local minima when analysing



Fig. 6: Solver time and difference between optimised consensus
speed and maxi((vL)i) for large k-NNR networks with outdegree set
at 30 connections. Seven networks are analysed (one at each 1000
node interval) where maxi((vL)i) = {31,14,10,7,5,4,4}×10−4 for
the analysed networks.

such a large network. The Power Optimisation method is

effective even with very large networks (103 nodes) where

the calculation times for the numerical optimiser would be

extremely long, with the trend in Table. I predicting that a

7000 node network would take approximately 166 days to

evaluate.

V. CONCLUSIONS

The newly presented semi-analytical methods (Power Op-

timisation and Communities of Influence) leverage the first

left eigenvector (FLE) of a graph’s adjacency matrix and

manipulated versions of this matrix to effectively identify

the best candidates to be supplied with leadership resources

in k-nearest neighbour networks. The leadership resources

considered are finite and can be allocated to produce a near-

optimal consensus speed that can, in certain high outdegree

scenarios, approach the upper limit for consensus speed

driven by a finite perturbation. For a k-outdegree network

this limit is shown to be the largest element of the FLE of

the Laplacian or adjacency matrix. The methods presented

have a reduced time complexity, when compared with a con-

ventional numerical method, making these methods attractive

when considering larger networks where taking a numerical

approach can be computationally exhaustive.
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