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a b s t r a c t

A flow-regulated infection rate is defined for a Susceptible-Infected-Susceptible (SIS) model revealing
the network structural properties that influence the spread of infections. The infection rate is linked
to the flow between compartments in the associated positive compartmental system, providing a self-
regulatory effect on the spreading dynamics. This translates to infection carriers preferring to visit
healthier sites over more infected ones. A flow-independent epidemic threshold is defined that sets
the conditions on the graph’s structure and the aggregate infection rate for a disease to either spread or
die out. An individual-based mean-field approach returns results comparable to models with constant
infection rates. This approach lends itself well to model the spread of infectious diseases as well as
threats in IT networks, pharmacokinetics and the spread of disruptions on infrastructure networks.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Epidemiological models have been proven valuable beyond
the understanding of infectious diseases. They have been asso-
ciated, for example, to the study of terrorist networks (Gutfraind,
2010), the spreading of rumors (Daley & Kendall, 1965) and
computer viruses (Garetto, Gong, & Towsley, 2003).

Epidemic spreading is modelled considering that infected in-
dividuals infect the susceptible ones with whom they are in
contact. The probability of contagion between an infected and
a susceptible individual is the infection rate β , while recovery
rate γ is the probability that an infected individual heals. In
epidemic models, a contagion spreads successfully depending on
a threshold, indicated by a basic reproduction number R0, which
depends on the infection and recovery rates, and on the network
of contacts, when this is considered (Nowzari, Preciado, & Pappas,
2016). An infection spreads throughout a population if R0 > 1
and dies out otherwise. An endemic state is achieved when all
the nodes are infected. For constant and scalar infection and
recovery rates, the basic reproduction number for the infection
spreading on a network is βλmax(A)/γ , where A is the graph
adjacency matrix, and λmax(·) indicates its largest eigenvalue in
magnitude (Mei, Mohagheghi, Zampieri, & Bullo, 2017). The adja-
cency matrix is a square matrix of size N (the population’s size),
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with entries indicating whether there is an interaction between

the row- and the column-population member. A more formal

definition is provided in Section 2.

Flow-driven networks (also called traffic-driven networks),

which include transportation and IT systems, may present more

complex contagion dynamics than those simply driven by static

contact networks. For example, congestions and routing strate-

gies change the epidemic threshold (Meloni, Arenas, & Moreno,

2009; Wu, Pu, Li, & Zhang, 2019). It is common to observe conges-

tion on a road segment following disruptions on a parallel traffic

route (Pregnolato, Ford, Wilkinson, & Dawson, 2017). Likewise,

cascading failures of power networks are accelerated by the load

transfer from disrupted sections of the network to the remain-

ing, functional ones (Schäfer, Witthaut, Timme, & Latora, 2018).

Pharmacokinetics focusses on understanding how drugs move

from compartment to compartment of an organism (e.g. tissues or

cells) depending on the target availability, to heal an infection as

opposed to spreading it. When the drug binds to the targets, the

availability of these decreases, i.e. the compartment gets health-

ier, and the drug accumulation reduces as a consequence (Mager

& Jusko, 2001). This eventually provides a self-regulatory mecha-

nism of the infection (or drug, as in the latter example) spreading.

Regulation of the spread dynamics (here the infection), has

been empirically observed in the dynamics of invasive species

and in relation to the Foot and Mouth animal disease (Arim,

Abades, Neill, Lima, & Marquet, 2006). There, the change in the

spreading rate is associated to a regulation effect, ultimately

linked to a negative feedback on the infection rate, leading to a

stable dynamics approaching asymptotic conditions.
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1.1. Contribution of this work

Spreading phenomena characterised by time-varying features
of the system have been recently investigated through time-
varying networks. Analytic results are only recently emerging
(Gracy, Pare, Sandberg, & Johansson, 2020; Paré, Beck, & Nedić,
2018), yet this remains an open problem (Enright & Kao, 2018).
In rare cases, the changes in the system characteristics have
been modelled through a coupled dynamics, which would be
particularly relevant for traffic-driven networks.

This work is therefore motivated by the challenge of modelling
epidemic spreading with variable infection rate, in a way it can
be expanded to flow-driven network systems. The question ad-
dressed here is ‘how does the healthy/infected state of a node change

the infection rate by altering the traffic flow in the network?’. The
heterogeneous mean field approach was previously considered
to address this question by mapping the spreading dynamics to
nodes grouped by degrees, therefore missing out on tracking the
evolution of individual nodes (Meloni et al., 2009). More recent
approaches considered a non-autonomous change of the infection
characteristics or of the network structure (Gracy et al., 2020;
Paré et al., 2018). In this work, instead, the loop is closed by
linking the infection characteristics (i.e. the infection rate) to the
traffic in the network and the dynamics of network traffic to the
infectious state of the nodes. A Susceptible-Infected-Susceptible
(SIS) model of infection spreading, where individuals can contin-
uously get infected and heal, is coupled with a dynamical system
(a so-called compartmental system) that captures the movement
of infection carriers, which are assumed to prefer healthy nodes
over more infected ones. This mimics a basic flow distribution
scenario in traffic networks. Examples include the pharmacoki-
netic dynamics discussed earlier but also transportation networks
where travellers tend to avoid already congested routes, leading
to congest the other available routes as well.

This work takes a deterministic approach, as pioneered by Laj-
manovich and Yorke (1976), where the Markov chain description
of the infection dynamics is reduced through an individual mean
field (Pagliara, Dey, & Leonard, 2018). This way, it retrieves and
extends some of the results obtained for constant infection rates
in works such as Fall, Iggidr, Sallet, and Tewa (2007), Khanafer,
Başar, and Gharesifard (2016), Mei et al. (2017) and Mieghem,
Omic, and Kooij (2009). As in Fall et al. (2007), the existence
and stability of infection-free and endemic equilibrium points is
established. As in Mieghem et al. (2009) an approximation of
the system steady state at the endemic equilibrium is provided,
but instead of using a recursive formula, the approximation is
obtained in the limit for very high and very low infection rates
as in Mei et al. (2017). Finally, results are obtained for simply
connected graphs whereas the literature’s main focus is on the
strongly connected case only (e.g. Khanafer et al., 2016).

2. The model

In this work, the infection rate is a dynamic variable described
through nodal load, with the load transfer rate from donor to
receiver depending on the health of the receiving node. To this
purpose, we define a graph G = {V, E} where V = {1, 2 . . .N} is a
set of nodes and E ∈ V×V is a set of ordered pairs of nodes, called
edges. A path is an ordered sequence of vertices such that any pair
of consecutive vertices in the sequence is an edge of the graph.
A node is globally reachable if there exist a path from any other
vertex to it. When a graph has a single globally reachable node,
this is called a sink. The existence of a globally reachable node
guarantees that the graph is connected, and vice-versa. If all nodes
are globally reachable, the graph is said to be strongly connected.
The graph adjacency matrix A = [aij] is defined as aij = 1 if

(i, j) ∈ E , otherwise aij = 0. No self-loop are considered, hence
aii = 0 ∀i. A graph is said to be balanced if (1A)T = A1.

A healthy node will receive flows from the neighbouring
nodes. As the load accumulates in a node, its susceptibility to
the infection increases. The incoming flows will reduce propor-
tionally to the reduced health of the node. This corresponds to
a donor-and-receptor controlled compartmental system (Jacquez
& Simon, 1993). This setting is particularly relevant for systems
such as IT networks or integrated transport networks, where
routing and congestions play a major role. The network de-
terministic SIS model can be formulated in terms of the rate
of the change of susceptible individuals ṡ and that of infected
individuals ẋ (see for example Fall et al., 2007) as:

ṡi(t) = −βisi(t)
∑

j̸=i

aijxj(t) + γ xi(t) ,

ẋi(t) = βisi(t)
∑

j̸=i

aijxj(t) − γ xi(t) . (1)

For a constant number of nodes, it is sufficient to consider the
infected fraction, being this complementary to the susceptible
part. Hence the second equation in (1) fully defines the SIS model.

The infection rate βi in Eq. (1) is the probability that node i

gets infected by any one of its neighbours at each iteration, while
γ is the recovery rate for any node. While the recovery rate is a
constant, the infection rate is a dynamic variable, i.e. βi = βi(t),
defined through a positive compartmental model (see Bullo, 2019,
Ch. 10 and Jacquez & Simon, 1993). For such a model, with no
flow to or from the environment, the dynamics can be expressed
as:

β̇i(t) ≜ q̇i(t) = −qi(t)
∑

j̸=i

fij +
∑

j̸=i

fjiqj , (2)

where qi(t) is the accumulated flow at node i at time t , which is
set equal to the infection rate of node i, βi(t). The parameter fij
is the flow constant on the edge from node i to node j, that is,
the proportionality constant between qi(t) and its flow towards
node j. The model is completed by setting the flow rates between
nodes equal to the receivers’ health. Dropping the explicit time
dependence for a more simplified notation, this is expressed as
qi
∑

j̸=i fij = βi

∑

j̸=i aij(1 − xj) and
∑

j̸=i qjfji = (1 − xi)
∑

j̸=i ajiβj

that is, the flow from node i to j depends on how infected node
j is. The equations for the SIS system describing the unforced
dynamics with load dependent infection rates are

ẋi = βi(1 − xi)
∑

j̸=i

aijxj − γ xi , (3)

β̇i = −
∑

j̸=i

aij(1 − xj)βi + (1 − xi)
∑

j̸=i

ajiβj ; (4)

or in vector form

ẋ = B(I − X)Ax − γ x , (5)

β̇ = −BA(1 − x) + (I − X)ATβ , (6)

where B = diag(β) and X = diag(x). Eq. (2) introduces the
fundamental assumption of preferential movement of infection
carriers from more infected to healthier nodes. This can be effec-
tively pictured through a hydraulic network analogy, where water
distributes according to the filling levels of the reservoirs (nodes).
The water in the ith reservoir is replaced by the infection rate
βi, whose dynamics is described by Eq. (4). The flow constants,
that could be thought of as the pipe diameters, are replaced by
the health of the receiving nodes j to which node i is connected
(1 − xj). Therefore, Eq. (4) is a balance equation for the infection
rate βi (water) shifting across nodes (reservoirs). The changes of
the single nodes’ infection rates are fed back onto the health of
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the nodes through the infection dynamics in Eq. (3). This returns
the regulatory effect previously discussed with reference to, for
example, pharmacokinetics and network congestion problems.
In its simplicity, this approach is a novelty in the modelling of
infection dynamics.

In the remaining of the paper, unless otherwise specified, the
graph will be considered simply connected.

3. Boundness and general solution for β

The system in Eq. (5) has bounded trajectories in [0, 1] for the
susceptible/infected state of each node, and bounded to positive
values for the infection rate β . This is established in the following

Lemma 1. The trajectories of x for the system in Eq. (5) are bounded

to the hypercube of sides [0; 1]N for initial conditions within the

hypercube. The trajectories of β are bounded to R
N
≥0 for nonnegative

initial conditions.

Proof. Consider the value of ẋ on the boundary of the set. Eq. (3)
yields ẋi ≥ 0 when xi = 0 and ẋi ≤ 0 when xi = 1. In particular,
ẋi = βi

∑

j̸=i aijxj ≥ 0 when xi = 0 ẋi = −γ when xi = 1.
Similarly, β elements cannot take negative values as each

element’s derivative β̇i is positive semidefinite for βi = 0, as it
can be seen immediately from Eq. (4).

The upper bound on β is provided by the conservation prop-
erty defined in the following

Lemma 2. The total infection rate for the system in Eq. (5) remains

constant across the network.

Proof. It is sufficient to prove that the net variation is null, that
is 1T β̇ = 0, and indeed

1T β̇ = β̇
T
1 = −(1 − x)TATB1 + βTA(I − X)1

= −
∑

i

∑

j

(1 − xj)aijβi +
∑

j

∑

i

βiaij(1 − xj) = 0 .

A generalised solution for β is obtained next for which the graph
Laplacian matrix, or simply the Laplacian L, is introduced as L =
D − A, where D is a diagonal matrix with nonzero entries dii =
di =

∑N

j aij, corresponding to the nodal outdegree. The Laplacian
has zero row sum and a null rightmost eigenvalue to which an
eigenvector with all identical entries corresponds.

Lemma 3. Let (x∗, β∗) be an equilibrium point for the system in

Eq. (5) and let ξ = 1 − x∗. Then β∗ = ω is the left eigenvector

associated with the 0 eigenvalue of the Laplacian matrix obtained

from the graph adjacency matrix Aξ = A diag(ξ).

Proof. Eq. (6) is linear in β and can be written as

β̇ = Kξβ , (7)

where Kξ is a matrix with diagonal elements equal to −
∑

j̸=i aijξj,
and off diagonal elements ajiξi, with ξi = 1− xi. It is evident that
Kξ is the transposed, negated Laplacian of a graph weighted by
the value ξ of the edge end node. As such, it has a zero eigenvalue
with multiplicity 1 corresponding to a right eigenvalue with
positive entries. The Gershgorin circle theorem (Horn & Johnson,
1990, Ch. 6) guarantees that all the other eigenvalues have neg-
ative real part. β will hence converge to the right eigenvector
corresponding to the zero eigenvalue of the matrix Kξ . This holds,
in particular, at equilibrium, that is for constant ξ.

Lemma 1 guarantees that each node has a nonnegative in-
fection value not greater than 1, hence the model is consis-
tent with the phenomenon studied. The bound on the aggregate
flow volume indicates that the model is particularly suitable for
networked systems with null or balanced exchange with the
environment.

4. Equilibrium points and stability in the infection-free state

In the infection-free state, the following result is obtained.

Theorem 1. In a graph with more than one globally reachable node,

the system in Eq. (5) has a unique infection-free equilibrium point:

(x∗, β∗) = (0, β̂NwL); where wL is the left eigenvector of the graph

Laplacian corresponding to the zero eigenvalue with unit L1 norm

and β̂ =
∑N

i βi(0)/N. Moreover, (x∗, β∗) = (0, β̂1) if the graph is

balanced, (x∗, β∗) = (0, 0) for β(0) = 0. The equilibrium point is

asymptotically stable if and only if
β̂Nλmax(diag(wL)A)

γ
< 1.

Proof. First, note that x = 0, the right hand side of Eq. (6)
becomes −BA1 + ATβ. Therefore:

β̇ = −BA1 + ATβ = −Bd + ATβ = −Dβ + ATβ

= −LTβ . (8)

The left hand side is null for β = 0 or for β = wL, meaning that
any vector parallel to the eigenvector wL would be an equilibrium
for β. This is also obtainable from Lemma 3 for x = 0. The actual
expression (0, β∗) = (0, β̂NwL) is guaranteed by the conservation
of the total infection rate through Lemma 2.

To prove that the infection-free equilibrium is asymptotically
stable, consider the coordinate transformation x̄ = x, β̄ = β −
β̂NwL and the Lyapunov function V (x̄) = 1

2
x̄T x̄. In the new

coordinates, the origin is a stable equilibrium point. The time
derivative yields

V̇ (x̄, β̄) = x̄Tdiag(β̄ + β̂NwL)(I − X̄)Ax̄ − x̄Tγ x̄

≤ x̄Tdiag(β̄ + β̂NwL)Ax̄ − x̄Tγ x̄ ,

where X̄ = diag(x̄). The condition for V̇ ≤ 0 is then λmaxdiag(β̄ +
β̂NwL)A ≤ γ . Note that β must satisfy Lemmas 1 and 2, therefore
1T (β̄ + β̂NwL) = β̂N implies β̄ = 0. This makes the Lyapunov
function negative semidefinite if β̂Nλmax(diag(wL)A) ≤ γ . The
derivative is only negative semidefinite as the equality is satisfied
for any value of β. Using the La Salle–Krasovskii theorem (Khalil,
2002, Ch. 4), however, it can be seen that the equilibrium is
asymptotically stable as the solution set for which V̇ = 0 reduces
to (0, β̂NwL). It is sufficient to note that the trajectories of the
systems confined to x = 0 must satisfy Eq. (8), that together with
Lemma 2 proves the theorem. It is moreover easy to verify that
the Jacobian of the system, obtained linearising at the infection-
free equilibrium point, has all the eigenvalue in the closed left

plane only for
β̂Nλmax(diag(wL)A)

γ
≤ 1.

Remark 1. The equilibrium point (0, 0) is a special case of the
infection-free equilibrium, that, because of the conservation of β,
is only achievable for identically null initial conditions.

Remark 2. In case of a single globally reachable node, i.e. a sink,
the left eigenvector of the graph Laplacian has a single nonzero
entry, corresponding to such a node. If this is node i, then aij =
0 ∀ j and the only nonzero element of wL is its ith element.
This means that, the infection free equilibrium is always asymp-
totically stable, for any value of β̂N for γ > 0. The particular
expression for the equilibrium point becomes (x∗, β∗) = (0, βs),

3
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where βs = [0, . . . , 0, β̂N, 0, . . . , 0]T ∈ R
N , that is a vector

where the only nonzero component β̂N corresponds to the sink
node. This and (x∗, β∗) = (0, β̂1) derive from the property of the
eigenvector corresponding to the zero eigenvalue of the Laplacian
matrix, where nonzero entries correspond to globally reachable
nodes (Punzo, Young, Macdonald, & Leonard, 2016).

The stability analysis highlights the conditions that make the
infection-free equilibrium unstable making the system unable
to dissipate the infection before it spreads. These map to net-
work characteristics, recovery rate and total infection rate. As the
equilibrium (0,Nβ̂wL) is stable for γ ≥ β̂Nλmax(diag(wL)A) and
unstable otherwise, the epidemic threshold, which is a function of
the network structure, the recovery rate and the initial conditions
can be defined as

Rβ ≜
β̂Nλmax(diag(wL)A)

γ
. (9)

Rβ = 1 is the critical threshold. For Rβ < 1 the system converges
to an infection-free equilibrium while for Rβ > 1 the infection
will spread through the network.

5. Behaviour above the threshold

The equilibrium in the endemic state is not immediately re-
coverable by inspection of Eq. (5) and (6), with the exception
of balanced, degree-regular graphs, as detailed later. Moreover,
an endemic equilibrium, is only achievable in strongly connected
graphs, as it will be shown next together with the system’s
stability and approximated equilibrium expressions above the
threshold.

5.1. Stability of the equilibrium above the threshold

The stability of the endemic equilibrium is here analysed
for simply connected graph, leveraging and extending (Khanafer
et al., 2016) through the new model.

Theorem 2. For Rβ > 1 the equilibrium for the system in Eq. (5)
and (6) is globally asymptotically stable. Moreover, an endemic equi-
librium can only be achieved in the strongly connected component
of the graph.

Proof. Consider Eq. (5) and define x̃ = x−x∗ that is the difference
between the state x and the equilibrium. Then

˙̃x + ẋ∗ = B

(

I − X̃ − X∗
)

A(x̃ + x∗) − Γ (x̃ + x∗)

= Λ(x∗)x∗ + Λ(x∗)x̃ − BX̃Ax , (10)

where Γ = γ I and Λ(x∗) = B[I − X∗]A − Γ . Note that Λ(x∗) is a
Metzler matrix as all its off-diagonal elements are nonnegative.

First, consider a strongly connected graph for which A is ir-
reducible, which makes Λ(x∗) irreducible too (Khanafer et al.,
2016). At equilibrium, it holds Λ(x∗)x∗ = 0, hence x∗ is the
eigenvector corresponding to the zero eigenvalue of Λ(x∗) and
because all entries of x∗ are positive and Λ(x∗) is irreducible, the
Perron–Frobenius theorem (Farina & Rinaldi, 2000) guarantees
that x∗ is the Frobenius vector of Λ(x∗) corresponding to the zero
eigenvalue. All the other eigenvalues are negative, hence Λ(x∗) is
negative semidefinite. It follows that ∃R ∈ R

N×N diagonal and
positive, such that Λ(x∗)TR + RΛ(x∗) is negative semidefinite.
Consider the Lyapunov function V (x̃) = x̃TRx̃.

dV (x̃)

dt
=

dV

dx̃

dx̃

dt
=

d

dx̃
(x̃TRx̃)

(

Λ(x∗)x̃ − BX̃Ax

)

= x̃T
(

Λ(x∗)TR + RΛ(x∗)
)

x̃ − 2x̃TRBX̃Ax

≤ −2x̃TRBX̃Ax = −2x̃T X̃RBAx . (11)

The last equality holds as diagonal matrices commute. Because
R, B and A are positive semidefinite, and because the elements of
x are nonnegative, it can be concluded that the right hand side is
negative semidefinite. The first part of the proof is concluded not-
ing that for Rβ > 1 x = 0 is unstable. Note that no assumptions
are made about B other than having positive diagonal entries (as
per Lemma 3 and the strong connectivity).

Consider now a simply connected graph, where a subset of
nodes are not globally reachable. Without loss of generality, as-
sume that the first n nodes are not globally reachable and the
remaining m = N − n belong to the strongly connected compo-
nent of the graph. Such a graph has an adjacency matrix with an
all-zero lower-left partition with m rows and n columns. Eq. (7),
Lemma 3, Remark 2 and Punzo et al. (2016), guarantee that, at
equilibrium, the first n elements of β∗ are null. Therefore, from

Eq. (5), the equilibrium for x is x∗ =
[

0, . . . .0, x∗
n+1 . . . x∗

m

]T
.

The all-zero lower-left partition of A is found in Λ(x∗) as well,
meaning that the spectrum of Λ(x∗) is the union of its upper-left
and lower-right partitions’ spectra. The first n rows and column
of Λ(x∗) form a diagonal matrix −γ In, hence Λ(x∗)x∗ = 0
implies that that the zero eigenvalue belongs to the lower-right
partition, which describes the dynamics of the strongly connected
component. The corresponding eigenvector of Λ(x∗) has the first
n entries null and the last m entries positive. As Λ(x∗) is still neg-
ative semidefinite, the proof can be completed as in the strongly
connected case and is here omitted for brevity.

Proving the stability above the threshold means that once
the conditions in terms of γ , network structure and total infec-
tion rate support the infection spreading, this achieves a steady
value for each node, i.e. an asymptotically stable equilibrium.
Although this work cannot offer a general expression for such an
equilibrium, approximate expressions are offered next.

5.2. Endemic equilibrium

Approximated expressions are here provided for very high
and very low levels of infection considering just the strongly
connected case, as the endemic equilibrium can only be achieved
in the strongly connected component of any graph. These ap-
proximations leverage (Mei et al., 2017), and the newly proposed
epidemic threshold (9).

Define λBA as the largest eigenvalue of diag(wL)A. Let vBA and
wBA being the corresponding right and left eigenvectors. Note that
vBA and wBA are also eigenvectors of β̂Ndiag(wL)A corresponding
to the eigenvalue λBA ≜ β̂NλBA. In order to simplify the notation,
define V ≜ diag(vBA), β̃ ≜ Nβ̂wL and B̃ ≜ diag(β̃). It is now
possible to state the following result.

Theorem 3. For a strongly connected graph, the infection in the
nodes in the endemic state equilibrium for the system (5)–(6) can
be approximated as

• ζ ≜ x∗ + η = αvBA for λBA/γ − 1 → 0+,

• χ ≜ x∗ + e = 1 − γ B∗−1 D−1
1 for maxi γ /βi → 0+,

where the equilibrium value for β is β̃ ≜ β∗ = β̂NwL and α is a

constant equal to α =
λBA−γ

λBA

wT
BA

vBA

wT
BA

VvBA
. The error vectors η and e have

elements ηi = O

(

((λBA−γ )(I−Ωdiag(vBA))ζ)i
mini gi

)

, ei = O

(

(γ λ
LS

χ)i

mini hi

)

, λLS is

the largest eigenvalue in magnitude of the scaled Laplacian LS which

has each row scaled by the node outdegree; Ω = α
λBA

λBA−γ
=

wT
BA

vBA

wT
BA

VvBA
.

gi = ∥−λBAζi −γ + (1−αvBAi)β̃idi∥ and hi = ∥β̃idi − β̃iγ
∑

j

aij

βjdj
∥.

Proof. At equilibrium, Eq. (5) yields

ẋ = B(I − X)Ax − γ x = (I − X)BAx − γ x = 0 (12)

4
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as the diagonal matrix product is commutable. Note that λBA/γ −
1 → 0+ implies that Rβ is only marginally larger than unity,
hence the elements of x will be positive but much smaller than 1.
Eq. (12) then yields diag(β∗)Ax∗ ≈ γ x∗, that is, as x∗ gets smaller,
the equation resembles an eigenvalue-eigenvector problem. It
is then possible to consider αvBA as an approximate solution.
Substituting it in the last equality of Eq. (12) yields

B̃AαvBA − B̃α2VAvBA − γαvBA = 0 ,

∴ λBAvBA − αλBAVvBA − γ vBA = 0 ,

∴ (λBA − γ )vBA = αλBAdiag(vBA)vBA (13)

The first part of the theorem is proved by pre-multiplying both
sides by wT

BA, which yields α. Note that for λBA/γ − 1 → 0+,
λBA/γ → 1, hence α → 0+, which confirms the approximate
equilibrium is characterised by a small value of the infection.

For the second part of the theorem, note that if maxi γ /β̃i →
0+, then also maxi γ /(β̃idi) → 0+ as di ≥ 1 ∀ i (strong connectiv-
ity). Consider now the first of Eq. (3) and its approximate solution
χ. Substituting the values for χi, it yields the residual dynamics
ϵi = (γ /di)

∑

j̸=i aij
(

1 − γ /(β̃jdj)
)

− γ
(

1 − γ /(β̃idi)
)

, which in
vector form becomes

− γD−1Lχ = −γ Lsχ = ϵ. (14)

Strong connectivity guarantees that D is not singular and Ls ≜

D−1L is a scaled Laplacian with diagonal entries equal to 1. The
eigenvalues of the scaled Laplacian Ls in Eq. (14) are confined
between 0 and 2 by Gershgorin. In particular, for γ ≤ 0.5 the
spectrum of γ Ls is confined between 0 and 1, ensuring that the
right hand side is ‘‘smaller’’ than χ. For the Laplacian’s properties
(Section 3), if χ ∈ span{1}, then the residuals are null.

For the approximation errors η and e, first it is shown that
the residual dynamics is ‘‘small’’, which justifies to consider a
linearised approach to obtain the difference between the ap-
proximate expressions and the exact equilibrium. Consider x =
ζ = αvBA in Eq. (5) and define the remainder r as the residual
dynamics,

r =[I − αV ]B̃AαvBA − γαvBA

=Ω
(λBA − γ )2

λBA

vBA − Ω2 (λBA − γ )2

λBA

VvBA (15)

=Ω
(λBA − γ )2

λBA

(I − ΩV )vBA = (λBA − γ )(I − ΩV )ζ

Clearly, r → 0 as long as λBA − γ → 0+, as per the hypothesis.
The Jacobian at ζ is J(ζ) = B̃(I − αV )A − αB̃ diag(AvBA) − γ I.

Because B̃ diag(AvBA) = diag(B̃AvBA) = λV , then J(ζ) =
(I−αV )B̃A−αλBAV −γ I , where the off-diagonal elements of row i

sum to (1−αvBAi)β̃idi and the diagonal element is −αλBAvBAi −γ .
Through the Gershgorin disk, the lower bound for magnitude of
the largest eigenvalue of J(χ) is

∥λmax(J(ζ))∥ ≥ min
i

∥ − λBAζi − γ + (1 − αvBAi)β̃idi∥

= min
i

gi. (16)

Consider now the error e = χ − x and the limit to the residual
dynamics from Eq. (14). The Jacobian at χ is: J(χ) = γD−1A −
B̃ diag{[A(I − γD−1B̃−1)]1} − γ I J(χ ) is diagonally dominated
provided that γ /(βjdj) ≤ 1. This is actually the case as, for χj to
be a meaningful approximation of xj, it must be 0 ≤ χj ≤ 1.

It can be concluded that the magnitude of the largest eigen-
value of J(χ) is bounded from below by

∥λmax(J(χ))∥ ≥ min
i

∥ − β̃i

∑

j̸=i

aij

(

1 −
γ

β̃jdj

)

∥

= min
i

∥ − β̃idi + γ β̃i

∑

j̸=i

aij

β̃jdj
∥ = min

i
hi . (17)

Fig. 1. Examples of equilibrium points on 4 node graphs. Solid and dashed
lines correspond to x and β dynamics respectively (a): Generic graph, below
the threshold. (b): Sink, below the threshold. (c): Balanced graph, below the
threshold. (d): Balanced with constant degree, above the threshold.

These approximate solutions hold for the strongly connected
component of any graph. For the not globally reachable nodes,
the value of χ is zero, as proved. The quantifiable errors ensure
the model’s predictive abilities in both the infection-free and the
endemic states.

5.3. Equilibrium at consensus, a special case

In the case of a balanced graph with constant degree, the
left and right eigenvectors of the adjacency matrix and of the
Laplacian corresponding to λmax are both ∈ span{1}. Considering
Eq. (5), β ∈ span{1} implies x to be either 0 or [1 − γ /(β̂d)]1,
where d is the (uniform) degree of the graph and also the domi-
nant eigenvalue of the adjacency matrix. The linearisation at the

equilibrium point (x∗, β∗) = ( β̂d−γ

β̂d
1, β̂1) yields

J(
β̂d−γ

β̂d
1,β̂1

) =

⎡

⎣

−β̂

(

β̂d−γ

β̂d
L − A

)

− γ I
γ

β̂

(

β̂d−γ

β̂d

)

I

−β̂L − γ

β̂d
L

T

⎤

⎦ .

The first N rows define N identical Gershgorin circles centred at

−β̂

(

β̂d−γ

β̂d

)

d−γ . It is easy to verify, and here omitted for brevity,

that for Rβ > 1, these Gershgorin circles are all contained in
the left open plane. In this special case, the epidemic threshold
reduces to β̂ ≥ γ

λmax(A)
= γ

d
, as in Mei et al. (2017). Fig. 1 shows

the behaviour of the system converging to the infection free and
endemic equilibria for different 4-node graphs.

6. Numerical simulations

Numerical simulations are provided by integrating numeri-
cally Eqs. (5) and (6) for two 5-node graphs, for the London urban
railway system and the US Western power grid.

6.1. 5-Node graphs

The system (5)–(6) has been integrated numerically for con-
nected and strongly connected, 5-node graphs (Fig. 2) with initial
conditions (x(0), β(0)) selected from uniform distributions over
the interval [0, 1], imposing

∑

i βi(0) = 1. The value of critical
threshold is achieved for γ = λBA = 0.3965 for the connected
graph and γ = λBA = 0.3965 for the fully connected graph. γ was
then altered to produce a behaviour, slightly above (Rβ = 1.01),
and well above the threshold (Rβ = 20).

5
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Fig. 2. Behaviour slightly above the threshold Rβ = 1.01 (a,c) and well above
the threshold Rβ = 20. (b,d) for a 5 node strongly connected network (a,b) and

a simply connected one (c,d) with
∑

i(βi(0)) = 1 in all cases. The β̃ markers △
for the cyan and green nodes are superimposed in panes c and d.

Table 1

The approximate solutions ζ and χ, and β̃ = β̂NwL from Theorem 3 are
compared to the result of the numerical simulations through the root mean
square error (RMS).

RMS error

Nodes Rβ ζ or χ β̃ = β̂NwL

5 1.01 3.37e−4 4.87e−4

20 2.42e−2 3.35e−2

301 1.01 5.16e−3 2.35e−5

20 1.98e−2 5.67e−4

1722 1.01 9.5e−4 4.77e−6

20 4.4e−2 1.60e−4

6.2. Infrastructure networks

The model is applied to the London railway system (De Dome-
nico, Solé-Ribalta, Gómez, & Arenas, 2014), and to the US Western
powergrid network (Rossi & Ahmed, 2015), which are both undi-
rected. For the London urban railway network (N = 301), the
initial conditions for β are set equal to the 2015 daily average
passenger counts per station (Transport for London, 2021), pi,
scaled so that

∑

i pi =
∑

i βi(0) = 1 for i = 1, 2 . . .N . The initial
conditions x(0) are selected at random in [0, 1]N . The critical
threshold is obtained for γ = λBA = 0.0127. Fig. 3 shows the
results for the dynamics below the threshold (Rβ = 0.8), slightly
above the threshold (Rβ = 1.01), and well above the threshold
(Rβ = 20). In the appendix, it is shown that the model can rank
stations and lines more likely to suffer disruptions, comparing
real and simulated results through the Kendall-τ coefficient. For
the US Western powergrid network, the giant connected com-
ponent was considered (N = 1722). Random initial conditions
for β are set, scaled so that

∑

i pi =
∑

i βi(0) = βi(t) = 1
for i = 1, 2 . . .N . The initial conditions x(0) are selected at
random as in the London railway system. For such a network and
choice of β, the critical threshold is obtained for γ = λBA =
0.00289. This network was simulated for Rβ = 1.01 and for
Rβ = 20). The approximated equilibria and the simulation output
were compared through the mean square errors in Table 1 for
all the strongly connected networks considered, showing good
agreement.

7. Conclusions

This work proposed a novel SIS model with dynamic infec-
tion rate, relevant to flow driven networks where self-regulatory

Fig. 3. Threshold behaviour for the London railway system network (a) be-
haviour below the threshold (Rβ = 0.8, γ = 0.0159). (b) behaviour slightly
above the threshold (Rβ = 1.01, γ = 0.0126). (c) behaviour highly above the
threshold (Rβ = 20, γ = 6.34 × 10−4).

mechanisms are often present, including engineering and bio-
logical systems. The infection-free equilibrium was exactly com-
puted. Approximate expressions were provided for the equilib-
rium above the threshold in strongly connected components of
graphs, an exact one for balanced graphs with constant degree
and for the non globally-reachable nodes. The stability of the
equilibria was analysed and related to the epidemic threshold,
with numerical simulations supporting the results.

Preserving the aggregate infection rate, which represents the
total network’s traffic volume, derives from the compartmental
system modelling choice. This hypothesis, is key to obtain ana-
lytic results comparable and beyond models featuring a constant
infection rate.

The epidemic threshold links the network structure to the
total flow volume. By looking at the epidemic threshold in Eq. (9),
whether a disease spreads or dies out depends on the total
infection rate (β̂N), the network topology (λmax(diag(wL)A)) and
the nodes’ recovery ability (γ ). It can be concluded that flow-
driven networks are more resistant against infectious spreading
if the structure minimises the largest eigenvalue of the matrix
diag(wL)A. This threshold is in agreement with the literature as it
reduces to the one in Fall et al. (2007) and Khanafer et al. (2016)
for constant infection rate. While in general, there is no closed
form expression for the spectral radius of a matrix, higher degrees
and link densities are associated with higher values of the spectral
radius (Mieghem et al., 2009), which is the present case too.
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Appendix. Comparison with excess journey time on the Lon-

don underground lines

The London urban railway system includes several subnet-
works, which share a number of stations. Transport for London
(TFL) publishes yearly figures of daily average of passengers’
inflow and outflow per station for the London underground, the
Overground and the Dockland Light Railway (DLR) (Transport for
London, 2021). Excess journey time (EJT) per line (a measure of
delay) is also available as a network performance indicator for
the London underground, although figures are available across
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Fig. A.1. Comparison of the ranking of the most delayed lines in the London
underground, according to the extra journey time (EJT), in the year 2014/15
with the ranking from the simulations above the threshold. The passenger loads
per station are extracted from the 2015 average daily inflows per station. Blue-
cold colours correspond to lines that have accumulated the higher delays. The
simulations award 1 point to the top 3, 15 and 30 most infected station, that
are summed up to the line they belong. Lines from Central to Waterloo never
appear when the 3 most affected stations only are considered and are therefore
shaded with the same colour, having all null score. The Kendall-τ coefficient
and associated p-value are reported at the bottom.

the years, as opposed than per solar year. The model has been
run 100 times by randomizing the initial conditions for x and β
within ±10% of the 2015 and 2016 passenger inflow counts per
stations, after scaling the initial figures so that the sum is unit, as
in Section 6. For each run, the highest 3, 15 and 30 stations (1%,
5% and 10% of the nodes, respectively) were given a unit score,
and the scores were summed up by the line on which stations
are. That is, if 2 of the most infected stations are on the same
line, such a line gets a score 2. Likewise, if a station is amongst
the most infected, all the lines passing through that station get
a score 1. Over the 100 runs, this ranks the lines in the endemic
case, where γ was calculated by randomly sampling Rβ between
1 and 20. The excess journey time figures for 2014–15 and 2015–
16 were compared to the ranking obtained from simulations, as
described above, for the inflow of passengers recorded in 2015
and 2016, respectively. A proper validation of the model would
require several of such comparisons. The one comparison shown
here provides an indication that the model captures real system’s
features. Figs. A.1 and A.2 show in the first column the lines,
indicated by their names, that have accumulated more delay in
2014–15 and 2015–16, in decreasing order. The second, third and
forth columns are the rankings from the simulations. The heat
map (same line, same colour) shows that the ranking does not
change considerably, with cold-blue colours, representing lines
with higher delays in the TFL data, consistently appearing on top
of the ranking from simulations. In all cases bar one, three out
of the first four more delayed lines are also present in the first 4
positions in the simulated results.

The Kendall-τ correlation coefficient (Kendall, 1938) has been
calculated to quantify the change in ranking with respect to
the TFL data. The coefficient measures the agreement of two
rankings and it is calculated in a pairwise fashion comparing
each of the rankings from the simulation results with the data
available. The Kendall-τ correlation coefficient is positive when
the two rankings are in agreement and unit when identical. It is
negative when in disagreement, with −1 corresponding to the

Fig. A.2. Comparison of the ranking of the most delayed lines in the London
underground, according to the extra journey time (EJT), in the year 2015/16
with the ranking from the simulations above the threshold. The passenger loads
per station are extracted from the 2016 average daily inflows per station. Blue-
cold colours correspond to lines that have accumulated the higher delays. The
simulations award 1 point to the top 3, 15 and 30 most infected station, that
are summed up to the line they belong. Lines from Central to Waterloo never
appear when the 3 most affected stations only are considered and are therefore
shaded with the same colour, having all null score. The Kendall-τ coefficient
and associated p-value are reported at the bottom.

Table A.1

Ranking of the stations from the more infected to the healthier for the 5
more infected stations from the 600 simulations performed. Stations tend to be
amongst the most infected when at the intersection of more lines. The number
of intersecting lines reported in the third column includes lines (e.g. Thameslink
and DLR) for which delay data are not available and hence are not included in
the line ranking.

Rank Station name Number of lines

1 Bank 4
2 King’s Cross-St Pancras 7
3 Banker St 4
4 Green Park 3
5 Oxford Circus 4

rankings being opposite. The values are reported at the bottom
of the heat map in Figs. A.1 and A.2 together with the associated
statistical significance through the p-value and show that all the
rankings are in agreement. Finally, the nodes that more often are
selected by the numerical simulations as showing a high infection
tend are those at the intersection of more lines. Table A.1 shows
the five stations that consistently show the five highest value of
infection in the simulations. The p-value suggests that it is often
not possible to discard the null hypothesis (here that the model
does not capture the data). However, the small sample of only
10 aggregated data points would make it difficult to obtain low
p-values if the null hypothesis was indeed false. Nevertheless, the
positive Kendall-τ correlation coefficients confirm the model’s
ability to capture spreading of disruptions in transport networks.
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