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We present, for the first time, a Lagrangian multiform for the complete Kadomtsev–

Petviashvili hierarchy—a single variational object that generates the whole hierarchy

and encapsulates its integrability. By performing a reduction on this Lagrangian

multiform, we also obtain Lagrangian multiforms for the Gelfand–Dickey hierarchy

of hierarchies, comprising, among others, the Korteweg–de Vries and Boussinesq

hierarchies.

1 Introduction

A feature of integrable systems is the existence of hierarchies of mutually compatible

equations. A significant limitation of using traditional Lagrangians for such hierarchies

is that they do not capture this compatibility. This limitation was overcome by the

Lagrangian multiform [7], which allows compatible Lagrangians (i.e., Lagrangians of

compatible equations) to be combined into a single variational object. In recent years,

numerous examples of Lagrangian multiforms for continuous one- and two-dimensional

integrable hierarchies have been found (e.g., Calogero-Moser [16], Toda [9], potential KdV

[14], and AKNS [2, 10, 12, 13]). It is natural to expect that there should exist a Lagrangian

multiform for the most well-known three-dimensional integrable hierarchy, the Kadomt-

sev–Petviashvili (KP) hierarchy [6, 11]. A Lagrangian multiform for the discrete KP

hierarchy (the first example of a Lagrangian 3-form) was given in [8], while a Lagrangian
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Lagrangian Multiforms 1421

multiform for the first two flows of the continuous KP hierarchy was presented in [13].

This continuous KP Lagrangian multiform was limited in the sense that extending it to

contain higher flows of the hierarchy would result in non-local terms in the multiform,

and also there was no algorithmic method to perform such an extension.

In [3], Dickey gives a family of Lagrangians in terms of pseudodifferential

operators for the individual equations of the KP hierarchy. In this paper, we assemble

Dickey’s KP Lagrangians, along with a new set of Lagrangians to create Lagrangian

multiform for the full KP hierarchy. This is the first ever example of a continuous

Lagrangian 3-form for a complete integrable hierarchy. Then, based on the reduction

of KP to the Gelfand–Dickey hierarchy, we perform a reduction on the KP Lagrangian

multiform to obtain Lagrangian multiforms for each of the integrable hierarchies that

comprise the Gelfand–Dickey hierarchy.

We begin by giving a brief introduction to Lagrangian multiforms in Section 1.1

and then summarise key results relating to pseudodifferential operators in Section 1.2.

In Section 2, we introduce the KP hierarchy in terms of pseudodifferential operators, and

also its reduction to the Gelfand–Dickey hierarchy. In Section 3, we introduce Dickey’s

KP Lagrangian. Our main result, a Lagrangian multiform for the KP hierarchy, is given

in Section 4, followed by its reduction to Gelfand–Dickey in Section 5.

1.1 Lagrangian multiforms

Lagrangian multiforms were first conceived of in [7] to allow a variational description

of compatible systems of equations and have subsequently generated considerable

research interest. The traditional variational approach involves a Lagrangian that is

a volume form, that is,

L(x, u(n))dx1 ∧ . . . ∧ dxk, (1)

on a k-dimensional base manifold. We use the notation u(n) to represent u and its

derivatives with respect to the independent variables xi, up to the nth order. This can

only give as many equations of motion as there are components of u. A Lagrangian

multiform

M =
∑

1≤i1<...<ik≤N

L(i1...ik)(x, u(n)) dxi1 ∧ . . . ∧ dxik (2)

is a k-form in an N dimensional base manifold with k < N, subject to the following

variational principle. We require that any u that is a critical point of the action

S[u; σ ] =
∫

σ

M(x, u(n)) (3)
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1422 D. Sleigh et al.

must be a critical point for all k-dimensional surfaces of integration σ . This results in

the multiform Euler–Lagrange equations, given by δdM = 0. Furthermore, we require

that, on the equations given by δdM = 0, any interior deformation of the surface σ must

leave the critical action S unchanged (i.e., that on the equations defined by δdM = 0, we

require that dM = 0). The multiform Euler–Lagrange equations can also be presented

as a set of equations in terms of variational derivatives of the L(i1...ik) that includes

the usual Euler–Lagrange equations of each L(i1...ik). In [15] and [13], proofs are given

that show the equivalence of these two presentations of the multiform Euler–Lagrange

equations. In Appendix A, we go further and show explicitly the link between these two

presentations of the multiform Euler–Lagrange equations.

We shall use the convention that Lagrangians L(i...j) are anti-symmetric when

permuting the sub-indices so, for example, L(123) = L(312) = −L(132).

1.2 Pseudodifferential operators

The main results in this paper require the use of pseudodifferential operators. Here we

give a brief summary based on [4, Chapter 1] and the references therein. We introduce

the differential algebra A with generators u1, u2, u3, . . . and derivation Dx, the total

derivative with respect to x, such that Dxu(i)
α = (u(i)

α )x = u(i+1)
α , where u(0)

α = uα. Also, Dx

obeys the Leibnitz rule Dxu(i)
α u(j)

β = u(i+1)
α u(j)

β + u(i)
α u(j+1)

β . Elements of A are polynomials

with real or complex coefficients in the generators uα and their derivatives of arbitrary

order. The operator ∂ is defined such that for f ∈ A,

∂kf = f ∂k +
(

k

1

)
f ′∂k−1 +

(
k

2

)
f ′′∂k−2 + . . . (4)

where f ∈ A, f ′ = Dxf and

(
k

i

)
= k(k − 1) . . . (k − i + 1)

i!
. (5)

When k > 0 this sum naturally truncates, whereas when k < 0 the sum is infinite. Using

these definitions for Dx and ∂, we note that for f ∈ A, Dxf is also in A, whereas ∂f is

not, since ∂f = Dxf + f ∂, which is an operator.

The ring of pseudodifferential operators R consists of elements

X =
m∑

i=−∞
Xi∂

i, Xi ∈ A. (6)
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Lagrangian Multiforms 1423

Elements of R can be added (in the natural way) and multiplied term by term, moving

all ∂s to the right hand side according to the commutation rule given in (4). Using the

commutation rule (4), elements of R can also be written in the equivalent “left” form

X =
m∑

i=−∞
∂ iX̃i, X̃i ∈ A. (7)

If the leading coefficient of X, Xm, is 1, then there exists a unique inverse X−1

also with leading coefficient 1, such that XX−1 = X−1X = 1. There also exists a unique

mth root of X, X1/m starting with ∂. Then Xp/m = (X1/m)p and (X1/m)m = X. We define

R+ to be the set of all elements

X+ =
m∑

i=0

Xi∂
i (8)

and R− to be the set of all elements

X− =
−1∑

i=−∞
Xi∂

i (9)

The residue of a pseudodifferential operator, res{X} = X−1, the coefficient of ∂−1 in X.

We shall make use of two important properties relating to residues. Firstly,

res
{
X+Y

} = res
{
X+Y−

} = res
{
XY−

}
. (10)

The second property we shall use is given on the following lemma.

Lemma 1.1. The residue of a commutator of two pseudodifferential operators X

and Y,

res{[X, Y]} = Dxh (11)

for some h ∈ A, so is a total x derivative.

This lemma is given in [4, Chapter 1], but the proof contains errors that are

corrected here.

Proof. We verify this for single term pseudodifferential operators S = s ∂m and

T = t ∂n. We shall use the notation s(k) = Dk
xs and similarly for t. We first note that

res{[S, T]} is only non-zero if one of m and n is greater than or equal to zero while the
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1424 D. Sleigh et al.

other is negative. Without loss of generality, we shall assume that m ≥ 0 and n < 0. The

product

ST =
∞∑

k=0

(
m

k

)
st(k)∂m+n−k, (12)

so

res{ST} =
(

m

m + n + 1

)
st(m+n+1) (13)

when m + n + 1 ≥ 0. Otherwise, res{ST} = 0 since k ≥ 0 in (12). It follows that

res{[S, T]} =
(

m

m + n + 1

)
st(m+n+1) −

(
n

m + n + 1

)
st(m+n+1). (14)

We notice that

(
m

m + n + 1

)
= m(m − 1) . . . (−n)

(m + n + 1)!
and

(
n

m + n + 1

)
= n(n − 1) . . . (−m)

(m + n + 1)!
(15)

so

(
n

m + n + 1

)
= (−1)m+n+1

(
m

m + n + 1

)
. (16)

Then

res{[S, T]}=
(

m

m + n + 1

)
(st(m+n+1)+(−1)m+nst(m+n+1))

=
(

m

m + n + 1

)
(st(m+n+1)+s(1)t(m+n) − s(1)t(m+n)−s(2)t(m+n−1) + s(2)t(m+n−1) + . . .

. . . − (−1)m+nt(1)s(m+n) + (−1)m+nt(1)s(m+n) + (−1)m+nts(m+n+1))

(17)

where, to get the expression on the second line, we have added and subtracted∑m+n
α=1 s(α)t(m+n+1−α). We recognise this as a total x derivative, so

res{[S, T]} =
(

m

m + n + 1

)
Dx

m+n∑
α=0

(−1)αs(α)t(m+n−α). (18)
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Lagrangian Multiforms 1425

It follows that, for general pseudodifferential operators X and Y, their residue,

res{[X, Y]} can be expressed as the sum of total derivatives of the form given in (18)

for pairs Xi and Yj, so is a total x derivative. �

2 The KP Hierarchy and Its Reduction to Gelfand–Dickey

2.1 The KP hierarchy

Here we give a brief summary of Sato’s scheme [11] for the KP hierarchy [6]. We let

L = ∂ + u1∂−1 + u2∂−2 + . . . = ∂ +
∞∑

α=1

uα∂−α. (19)

Using the notation Li+ to represent (Li)+, for i > 0

Lxi
= [Li+, L] (20)

gives us the KP hierarchy. For each i, this produces an infinite set of partial differential

equations (PDEs) containing derivatives with respect to xi and x. From the case where

i = 1, we see that Lx1
= DxL, allowing us to identify x1 with x. A consequence of (20) is

that

(Ln)xi
= [Li+, Ln] (21)

for all n ≥ 1. This can be proved by induction on n. It follows that

(Lj
+)xi

− (Li+)xj
= [Li+, Lj]+ − [Lj

+, Li]+

= [Li+ − Li, Lj]+ + [Li, Lj
+]+

= [−Li−, Lj]+ + [Li, Lj
+]+

= [−Li−, Lj
+]+ + [Li, Lj

+]+

= [Li+, Lj
+].

(22)

This gives us the “zero-curvature” equations for KP,

(Lj
+)xi

− (Li+)xj
= [Li+, Lj

+]. (23)
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1426 D. Sleigh et al.

For each i, j > 0, this produces a finite set of PDEs containing derivatives with respect

to xi, xj and x. In the case where i = 2 and j = 3, (23) gives us

3(u1)x2
= 3u(2)

1 + 6u(1)
2

3(u(1)
1 )x2

+ 3(u2)x2
− 2(u1)x3

= u(3)
1 + 3u(2)

2 − 6u1u(1)
1 .

(24)

Letting 2u1 = u and eliminating u2, this gives us

3ux2x2
= (4ux3

− u(3) − 6uu(1))x, (25)

the KP equation that gives its name to the hierarchy.

For a fixed choice of i and j, the PDEs given by (20) for i and j are not equivalent

to the PDEs given by (23) for the same i and j, since (20) gives an infinite set of PDEs

while (23) gives a finite one. However, the set of PDEs given by (20) for all i > 0 is

equivalent to the set of PDEs given by (23) for all i, j > 0. We have already shown that we

can obtain (23) from (20). The following lemma relates to the converse.

Lemma 2.1. The set of equations given by

(Lj
+)xi

− (Li+)xj
= [Li+, Lj

+] (26)

for all 1 ≤ i < j is equivalent to the set of equations given by

Lxi
= [Li+, L] (27)

for all i ≥ 1.

Proof. We have already shown that (27) for i and j implies (26) for the same i and j. To

show that (26) for all 1 ≤ i, j implies (27) for all i ≥ 1, we consider (23) in the form

(Lj
+)xi

− (Li+)xj
= [Li+, Lj]+ − [Lj

+, Li]+, (28)

and without loss of generality assume that j > i. The first j − i terms of this (i.e., the

coefficients of ∂k for k from i − 1 to j − 2) are identical to the first j − i terms of

Lj
xi

= [Li+, Lj]. (29)
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Lagrangian Multiforms 1427

We now let j = n + 1 in (29) and multiply from the left by L−n, and from this we subtract

(29) with j = n, multiplied on the left by L−n, and on the right by L to obtain

L−n(Ln+1
xi

− Ln
xi

L) = L−n([Li+, Ln+1] − [Li+, Ln]L). (30)

The left hand side of this is just Lxi
, while the right hand side simplifies to [Li+, L].

Therefore, two copies of (23) with j = n and j = n + 1 give us the first n − i terms of

Lxi
= [Li+, L]. (31)

Since n is arbitrary, we are able to obtain all terms of (20). �

In [13], a Lagrangian multiform incorporating a re-scaled version of (25) and the

corresponding equation arising from (23) with i = 2 and j = 4 was presented with the

following Lagrangian coefficients:

L(123) = 1

2
vx1x1

vx1x3
− 1

2
v2

3x1
− 1

2
v2

x1x2
+ v3

x1x1
(32a)

L(412) = 1

2
vx1x1

vx1x4
− 2v3x1

vx1x1x2
− 2

3
vx1x2

vx2x2
+ 4v2

x1x1
vx1x2

(32b)

L(234) = −1

2
vx1x3

vx1x4
− 4vx1x3

v3x1x2
+ 2vx1x1x3

vx1x1x2
− 2

3
vx2x2

vx2x3
+ vx2x2

vx1x4

+ 4vx2x2
v3x1x2

− 8

3
vx1x2x2

vx1x1x2
− v3x1

vx1x1x4
+ 4

3
v3x1

v3x2
− 4v2

3x1
vx1x2

(32c)

+ 8vx1x1
v3x1

vx1x1x2
+ 8vx1x1

vx1x2
vx2x2

+ 4

3
v3

x1x2
− 8vx1x1

vx1x2
vx1x3

− 8v3
x1x1

vx1x2

L(341) =2

3
v2

x2x2
+ 2v2

4x1
− 2v3x1

vx1x1x3
− 4

3
vx2x2

vx1x3
− 2

3
vx1x2

vx2x3
+ vx1x2

vx1x4

− 4

3
v2

x1x1x2
+ 4

3
v3x1

vx1x2x2
+ 12v2

x1x1
v4x1

+ 4v2
3x1

vx1x1
− 4v2

x1x1
vx2x2

+ 4vx1x1
v2

x1x2
+ 4v2

x1x1
vx1x3

+ 10v4
x1x1

,

(32d)

where the dependent variable vx1x1
= u has been used to eliminate non-local terms.

These Lagrangians were found using the variational symmetries method outlined in the

same paper. Although it is possible to extend this Lagrangian multiform to incorporate

more flows of the hierarchy, the resultant Lagrangians become increasingly unwieldy.

Also, as we progress up the hierarchy, an ever increasing number of non-local terms

appear in the Lagrangians, and the Lagrangians grow very large very quickly. Expanding

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/2/1420/6396183 by U
niversity of Leeds user on 25 January 2023



1428 D. Sleigh et al.

this multiform to include the x5 flow results in Lagrangians that are many pages

long. Also, this approach does not yield an explicit formula for all of the constituent

Lagrangians of the multiform for the complete hierarchy, so in order to obtain a

multiform for the entire hierarchy, a different approach is needed.

2.2 The Gelfand–Dickey hierarchy as a reduction of KP

The nth Gelfand–Dickey hierarchy [5] can be formulated as follows. We let

LGD = ∂n + vn−2∂n−2 + vn−3∂n−3 + . . . + v0 (33)

and let

Pm = (Lm/n
GD )+. (34)

We note that while LGD is not a pseudodifferential operator, in general a fractional

power of LGD will be. The nth Gelfand–Dickey hierarchy is then given by

(LGD)xm
= [Pm, LGD]. (35)

In the case where n = 2, this gives the KdV hierarchy, while for n = 3 we get the

Boussinesq hierarchy. We now consider the KP equation (21)

Ln
xm

= [Lm+ , Ln]. (36)

In order to reduce the KP hierarchy to the nth Gelfand–Dickey hierarchy, we impose the

constraint that Ln− = 0. We note that

Ln− = 0 	⇒ Ln = Ln+, (37)

an nth order differential operator that we equate with LGD. It follows that L1/n
GD = L, so

Pm is given by Lm+ , making (35) and the right hand expression in (36) equivalent. We also

note that Ln− = 0 	⇒ Lkn− = 0 for all k ∈ Z+, so (36) gives Ln
xm

= 0 whenever n divides m.

This is as expected since, by (35), (LGD)xm
= 0 whenever Pm is an integer power of LGD,

which happens when n divides m.
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3 A Lagrangian for the KP Hierarchy

In this section, we present a Lagrangian for the KP hierarchy that was originally given

in [3]. We define Aϕ to be the differential algebra analogous to A with generators

ϕ0, ϕ1, ϕ2, . . . (i.e., where elements of Aϕ are differential polynomials in the generators

ϕβ ), and we define Rϕ to be the ring of pseudodifferential operators with coefficients

in Aϕ . We define Rϕ+ and Rϕ− analogously to R+ and R−. We make the dressing

substitution

L = φ∂φ−1 (38)

where

φ = 1 +
∞∑

β=0

ϕβ∂−β−1, (39)

noting that because of the leading 1, a unique φ−1 exists. Expanding (38) we find that

L = ∂ − ϕ′
0∂−1 + (ϕ0ϕ′

0 − ϕ′
1)∂−2 + (ϕ1ϕ′

0 + ϕ0ϕ′
1 − (ϕ′

0)2 − ϕ2
0ϕ′

0 − ϕ′
2)∂−3 + . . . , (40)

where ϕ′
β denotes the x derivative of ϕβ . Equating coefficients with (19), we see that

u1 = −ϕ′
0, u2 = ϕ0ϕ′

0 − ϕ′
1, u3 = ϕ1ϕ′

0 + ϕ0ϕ′
1 − (ϕ′

0)2 − ϕ2
0ϕ′

0 − ϕ′
2 etc., giving an injective

map from A to Aϕ .

In order to determine the resulting KP equation in terms of φ, we invoke the idea

of homogeneity in the sense of all terms of an expression carrying equal weight. Let us

consider this in the case of the KP equation

3ux2x2
= (4ux3

− u(3) − 6uu(1))x. (41)

We begin by assigning a weight of 1 to the derivative with respect to x. On the left

hand side of the equation, we see a ux2x2
term, which we compare to the u(4) term on

the right hand side. In order for these terms to have equal weight, an x2 derivative

must have weight 2. Similarly, by comparing the u(1)
x3 and u(4) terms, it follows that an

x3 derivative has weight 3. Finally by comparing u(3) and uu(1) we see that u carries

weight 2. Whenever it is possible to assign weights in this manner such that all terms

of an expression carry equal weight, we say that the expression is homogeneous.
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1430 D. Sleigh et al.

Homogeneity can also be introduced directly on the level of the pseudodifferen-

tial operators. Applying this to the KP operator

L = ∂ + u1∂−1 + u2∂−2 + . . . , (42)

we again assign a weight of 1 to the derivative with respect to x, so the leading ∂ carries

weight 1. In order for all terms to carry equal weight, it follows that u1 has weight 2, u2

has weight 3, and in general uα has weight α + 1. Similarly, the leading 1 of the operator

φ = 1 + ϕ0∂−1 + ϕ1∂−2 + . . . (43)

tells us that φ has weight 0, so ϕ0 has weight 1, ϕ1 has weight 2, and ϕβ has weight β + 1

in order that each term has weight 0. In this paper, we only deal with homogeneous

equations. With this in mind, we have the following lemma.

Lemma 3.1. We let L = φ∂φ−1 ∈ Rϕ . Then

Lxi
= [Li+, L] ⇐⇒ φxi

= −Li−φ. (44)

Proof. Using that L = φ∂φ−1, the equation

Lxi
= [Li+, L] (45)

becomes

[φxi
φ−1 − Li+, L] = 0, (46)

This is equivalent to the statement that

φxi
φ−1 − Li+ + fi = 0 (47)

for some fi in Rϕ such that [L, fi] = 0. Letting f̃i = φ−1fiφ, the requirement that [L, fi] = 0

is equivalent to the requirement that [∂, f̃i] = Dxf̃i = 0. Therefore, f̃i is a constant in

Rϕ , so

f̃i =
m∑

j=−∞
γj∂

j (48)
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Lagrangian Multiforms 1431

for some m, where each γj is a constant in Aϕ (i.e., a real or complex number), and

consequently

fi =
m∑

j=−∞
γjL

j (49)

for the same constants γj. In (47) we see that both φxi
φ−1 and Li+ are of weight i, so we

require that fi is also of weight i. Therefore, γj = 0 whenever j �= i, so fi is of the form

γiL
i. When fi takes this form, the coefficient of ∂ i in (47) is γi − 1, and setting this equal

to zero gives us that γi = 1. Then (47) becomes

φxi
φ−1 + Li− = 0, (50)

so the resulting equation for φxi
is

φxi
= −Li−φ. (51)

That is,

Lxi
= [Li+, L] 	⇒ φxi

= −Li−φ. (52)

Conversely, we see that if (51) holds then

Lxi
= (φ∂φ−1)xi

= φxi
∂φ−1 − φ∂φ−1φxi

φ−1

= −Łi−φ∂φ−1 + φ∂φ−1Łi−

= [−Li−, L]

= [Li+, L]

(53)

so (51) implies (45). �

Corollary 3.1. Lemmas 2.1 and 3.1 together tell us that the set of equations given by

(Lj
+)xi

− (Li+)xj
= [Li+, Lj

+] (54)

in R for all 1 ≤ i, j is equivalent to the set of equations given by

φxi
φ−1 + Li− = 0 (55)

in Rϕ for all i ≥ 1.

We now consider a Lagrangian L(1ij)dx1 ∧ dxi ∧ dxj with L(1ij) ∈ Aϕ . For such

a Lagrangian, we can take variational derivatives
δL(1ij)

δϕβ

(i.e., the Euler operator with
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1432 D. Sleigh et al.

respect to ϕβ acting on L(1ij)) to obtain expressions in Aϕ . However, it is convenient to

define the variational derivative with respect to the pseudodifferential operator φ,

δL(1ij)

δφ
=

∞∑
β=0

∂β
δL(1ij)

δϕβ

. (56)

According to this definition,
δL(1ij)

δφ
is a pseudodifferential operator in Rϕ+ that can be

put in the usual form with all ∂s on the right using (4). The motivation for this definition

is made clear by the following lemma.

Lemma 3.2. If there exist h1, h2, and h3 such that

δL(1ij) = res{X δφ} + Dxh1 + Dxi
h2 + Dxj

h3 (57)

for some X ∈ Rϕ , then the variational derivative of L(1ij) with respect to φ,

δL(1ij)

δφ
= X+ (58)

Proof. Since δφ = δϕ0∂−1 +δϕ1∂−2 + . . . has only negative powers of ∂, (57) is equivalent

to

δL(1ij) = res{X+ δφ} + Dxh1 + Dxi
h2 + Dxj

h3. (59)

We write X+ in the “left” form described in equation (7), so

X+ =
m∑

k=0

∂kX̃k, X̃k ∈ Aϕ , (60)

and consider the product of an arbitrary term in X+ with an arbitrary term in δφ. This

will be of the form

∂nX̃n δϕm∂−m−1 = X̃n δϕm∂n−m−1 +
n∑

i=1

(
n

i

)
Di

x(X̃n δϕm)∂n−m−i−1 (61)
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Lagrangian Multiforms 1433

and the only term on the right hand side that is not a total derivative is X̃n δϕm∂n−m−1.

Therefore,

δL(1ij) = res{X+ δφ} + Dxh1 + Dxi
h2 + Dxj

h3 =
m∑

k=0

X̃k δϕk + Dxh̃1 + Dxi
h2 + Dxj

h3 (62)

for some h̃1, so the variational derivative

δL(1ij)

δϕk
= X̃k (63)

for 0 ≤ k ≤ m and is zero for k > m. It follows that

δL(1ij)

δφ
=

∞∑
k=0

∂k
δL(1ij)

δϕk
=

m∑
k=0

∂kX̃k = X+ (64)

�

Following the formulation in [3], we introduce

φp = 1 + p
∞∑

β=0

ϕβ∂−β−1. (65)

where p ∈ R.

Proposition 3.2. The Lagrangian density

L(1ij) = res
{

−
∫ 1

0
p−1[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]φ−1

p dp + ∂ jφ−1φxi
− ∂ iφ−1φxj

}
(66)

gives Euler–Lagrange equations that are equivalent to the KP equation

(Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+] = 0. (67)

It is important to note that where ∂ appears in this Lagrangian, it signifies an

operator that acts on everything to its right, rather than the x derivative of whatever

is immediately to its right. Also, even though φ consists of an infinite number of

components, because this Lagrangian is a residue, only a finite number of these

components actually feature. A proof that (66) gives the KP equation as its Euler–

Lagrange equations is given in [3] and repeated here. We shall require the following

lemma:
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1434 D. Sleigh et al.

Lemma 3.3. The following formula holds:

δres
{∫ p

0
p̃−1[(φp̃∂ iφ−1

p̃ )+, (φp̃∂ jφ−1
p̃ )+]φ−1

p̃ dp̃
}
=−res

{
[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]δφp φ−1

p

}+Dxh1

(68)

with

h1 =
∫ ∫ p

0
p̃−1res

{
[T[V, S], U] + [[T, U]+S, V] + [U[V, S]+, T] + [UT, [V, S]+] + [T[S, U], V]

+ [U, [T, V]+S] + [V[S, U]+, T] + [VT, [S, U]+] + [[U, V], TS] + [T, [U, V]S]
}
dp̃dx.

(69)

where S = φ−1
p̃ , T = δφp̃ φ−1

p̃ , U = (φp̃∂ iφ−1
p̃ )+, and V = (φp̃∂ jφ−1

p̃ )+. This h1 is local.

The first part of this result is essentially the same as the one given by Dickey in

[3]. However, Dickey does not give an explicit expression for h1, since when considering

a single Lagrangian, it is only necessary to show that it is a total x derivative. In the

Lagrangian multiform case, we will require an expression for h1, so it is included here.

Proof of Lemma 3.3. We proceed by taking the p derivative of

δres
{ ∫ p

0
p̃−1[(φp̃∂ iφ−1

p̃ )+, (φp̃∂ jφ−1
p̃ )+]φ−1

p̃ dp̃
}

+ res
{
[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]δφp φ−1

p

}
,

(70)

multiplying by p, and using that p
∂φp

∂p
= φp − 1. This gives us

δres
{
[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]φ−1

p

} + res
{
[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]δφp φ−2

p

}
+ res

{(
p

∂

∂p
[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]

)
δφp φ−1

p

}
.

(71)

Again using p
∂φp

∂p
= φp − 1 we find that

p
∂

∂p
(φp∂ iφ−1

p )+ = −[φ−1
p , (φp∂ iφ−1

p )+]+. (72)
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Lagrangian Multiforms 1435

We shall also use that

δ(φp∂ iφ−1
p )+ = [δφp φ−1

p , (φp∂ iφ−1
p )+]+. (73)

Letting S = φ−1
p , T = δφp φ−1

p , U = (φp∂ iφ−1
p )+, and V = (φp∂ jφ−1

p )+, (71) is equivalent to

res
{
[[T, U]+, V]S + [U, [T, V]+]S + [U, V]TS − [U, V]ST − [[S, U]+, V]T − [U, [S, V]+]T

}
(74)

In order to show that this is a total x derivative, we make use of (11), the property that

the residue of a commutator is a total x derivative. We consider (74) two terms at a time.

Firstly,

res{[[T, U]+, V]S − [U, [S, V]+]T}
=res{[T, U]+[V, S] + [[T, U]+S, V] + [T, U][V, S]+ + [U[V, S]+, T] + [UT, [V, S]+]}
=res{[T, U][V, S] + [[T, U]+S, V] + [U[V, S]+, T] + [UT, [V, S]+]}
=res{T[U, [V, S]] + [T[V, S], U] + [[T, U]+S, V] + [U[V, S]+, T] + [UT, [V, S]+]}.

(75)

Then

res{[U, [T, V]+]S − [[S, U]+, V]T}
=res{[T, V]+[S, U] + [U, [T, V]+S] + [T, V][S, U]+ + [V[S, U]+, T] + [VT, [S, U]+]}
=res{[T, V][S, U] + [U, [T, V]+S] + [V[S, U]+, T] + [VT, [S, U]+]}
=res{T[V, [S, U]] + [T[S, U], V] + [U, [T, V]+S] + [V[S, U]+, T] + [VT, [S, U]+]}.

(76)

Finally,

res{[U, V]TS − [U, V]ST}
=res{[U, V][T, S]}
=res{T[S, [U, V]] + [[U, V], TS] + [T, [U, V]S]}.

(77)

Adding (75), (76), and (77) together, we notice that

res{T([U, [V, S]] + [V, [S, U]] + [S, [U, V]])} = 0 (78)
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1436 D. Sleigh et al.

by the Jacobi identity, so (74) is equal to

res{[T[V, S], U] + [[T, U]+S, V] + [U[V, S]+, T] + [UT, [V, S]+] + [T[S, U], V] + [U, [T, V]+S]

+ [V[S, U]+, T] + [VT, [S, U]+] + [[U, V], TS] + [T, [U, V]S]}.
(79)

Since every term is the residue of a commutator, this is a total x derivative. We set h1

equal to the local expression obtained by letting p → p̃ in (79), integrating with respect

to p̃ from 0 to p, integrating with respect to x, and setting the constant of integration

equal to zero (i.e., the expression given in (69)). It follows that, for this choice of h1, (68)

holds. �

Proof of Proposition 3.2. We use Lemma 3.3 with p = 1 to obtain

δres
{∫ 1

0
p−1[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]φ−1

p dp
}
=−res

{
[(φ∂ iφ−1)+, (φ∂ jφ−1)+]δφ φ−1}+Dx(h1|p=1).

(80)

Variation of the rest of the Lagrangian (66) gives us

δres{∂ jφ−1φxi
− ∂ iφ−1φxj

}

=Dxi
res{∂ jφ−1δφ} − Dxj

res{∂ iφ−1δφ}

+ res{φ∂ jφ−1φxi
φ−1δφ φ−1} − res{φ∂ iφ−1φxj

φ−1δφ φ−1}

− res{φxi
∂ jφ−1δφ φ−1} + res{φxj

∂ iφ−1δφ φ−1} + ∂h2

=Dxi
res{∂ jφ−1δφ} − Dxj

res{∂ iφ−1δφ}

+ res{((Li+)xj
− (Lj

+)xi
)δφ φ−1} + Dxh2,

(81)

where we have made use of (10) and the fact that δφ φ−1 ∈ R− to obtain the the final

expression. Combining (80) and (81) we get

δL(1ij) =res{((Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+]
)
δφ φ−1}

=res{φ−1(
(Li+)xj

− (Lj
+)xi

+ [Li+, Lj
+]

)
δφ} + Dxh3,

(82)
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Lagrangian Multiforms 1437

so

δL(1ij)

δφ
= {φ−1(

(Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+]
)}+, (83)

and when set equal to zero, this is equivalent to (23). �

Example 3.3. The explicit form of L(123) given by (66) is

L(123) = − Uxxx3
+ Xx2

− VUxx2
− WUx2

− VVx2
− U2Ux3

+ VUx3
+ UUxx3

+ U2Uxx2

+ UVx3
+ U2Vx2

− UUxxx2
− U3Ux2

− UWx2
− 2UVxx2

− 3VxUx2
− 3UxxUx2

+ 2UxUx3

− 3UxVx2
− 3UxUxx2

− Wx3
+ Uxxxx2

− 3

2
UVxxx − 3

2
UxxxV − 3VxxV − 3

2
Ux

2U2

+ 2UxxxU2 + 2VxxU2 + 2Ux
2V − 1

2
UUxxxx − 3

2
UxUxxx− 3UxVxx − 3

2
UxxU3+ 2Ux

3

+ 3Wxx2
− 2Vxx3

+ 3Vxxx2
+ 5UUxUx2

+ 2UVUx2
+ 3UxxUxU + 2UxxVU,

(84)

where U = ϕ0, V = ϕ1, W = ϕ2, and X = ϕ3. This was calculated using Maple and

PSEUDO [1]. Note that although X and Y appear in this Lagrangian, their presence

is trivial in that they do not contribute to or feature in the resulting Euler–Lagrange

equations. We can simplify L(123) considerably by subtracting total derivatives to obtain

the equivalent Lagrangian

L̃(123) = 3U2
xU2 − 3

2
Uxx2

U2 + 3VxxU2 + 5

2
U3

x + UxUx3
+ U2

xx − 3UxVx2
− 3UxVxx + 3V2

x

(85)

that gives identical Euler–Lagrange equations. The variational derivatives with respect

to U and V are

δL(123)

δU
= − 6U2Uxx − 6UU2

x − 6UUxx2
+ 6UVxx − 3UxU2 − 15UxUxx − 2Uxx3

+ 2Uxxxx

+ 3Vxx2
+ 3Vxxx

δL(123)

δV
= 6UUxx + 6U2

x − 3Uxxx + 3Uxx2
− 6Vxx,

(86)
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1438 D. Sleigh et al.

giving us that

δL(123)

δφ
=∂

δL(123)

δV
+ δL(123)

δU

=δL(123)

δV
∂ + Dx

δL(123)

δV
+ δL(123)

δU

=(6UUxx + 6U2
x − 3Uxxx + 3Uxx2

− 6Vxx)∂ − Uxxxx + 6UUxxx + 3Uxxx2
− 3Vxxx

+ −6U2Uxx + 3UxUxx − 6UU2
x − 6UUxx2

+ 6UVxx − 3Ux2
Ux − 2Uxx3

+ 3Vxx2

(87)

Since the Euler–Lagrange equations (83) have a pre-factor of φ−1, we calculate

(
φ

δL(123)

δφ

)
+

= (6UUxx + 6U2
x − 3Uxxx + 3Uxx2

− 6Vxx)∂ − 3Ux2
Ux − 3UUxx2

+ 3Uxxx2
+ 3Vxx2

− 2Uxx3
+ 3UUxxx + 3UxUxx − Uxxxx − 3Vxxx.

(88)

Making the substitution u1 = −Ux, u2 = UUx − Vx (based on the expansion (40)), this

becomes

(3u(2)
1 − 3(u1)x2

+ 6u(1)
2 )∂ + 2(u1)x3

− 3(u(1)
1 )x2

− 3(u2)x2
− 6u1u(1)

1 + u(3)
1 + 3u(2)

2 . (89)

Setting this equal to zero gives us equations that are equivalent to (24).

4 Lagrangian Multiforms for the KP Hierarchy

In this section, we present two closely related Lagrangian multiform structures for the

KP hierarchy. Let

M =
∑

1≤i<j<k

L(ijk)dxi ∧ dxj ∧ dxk. (90)

be a differential 3-form. We shall define the coefficients L(ijk) such that the PDEs

defined by δdM = 0 are the full set of equations of the KP hierarchy, and we shall show

that on these equations dM = 0. We define P(ijkl) such that

dM =
∑

1≤i<j<k<l

P(ijkl)dxi ∧ dxj ∧ dxk ∧ dxl, (91)
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Lagrangian Multiforms 1439

and will show that each P(1ijk) has a double zero on the equations of the KP hierarchy,

so the coefficients P(1ijk) will be of the form

n∑
γ=1

Aγ Bγ (92)

where each Aγ and Bγ is zero on the equations of the KP hierarchy. More specifically,

the Aγ will be of the form

(Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+] (93)

while the Bγ will be of the form

φxi
φ−1 + Li−, (94)

giving us the required double zero. Then

δP(1ijk) =
n∑

γ=1

δAγ Bγ + Aγ δBγ (95)

so the equations given by δP(1ijk) = 0 will be a subset of the equations of the KP

hierarchy. In order for the equations given by δP(1ijk) = 0 for all 1 < i, j, k to be the

full set of equations of the KP hierarchy, we require that the factors Aγ and Bγ span the

set of equations of the KP hierarchy, and also that the Aγ and Bγ are non-degenerate.

Rather than show this directly, we will instead show the equivalent result that the full

set of equations of the KP hierarchy arise from the Euler–Lagrange equations of the

L(1ij) Lagrangians. Then, for the P(ijkl) where 1 < i, j, k, l we will show that δP(ijkl) = 0 on

the equations of the KP hierarchy. Together, these results will show that the multiform

Euler–Lagrange equations given by δdM = 0 are a subset of the equations of the KP

hierarchy and include the entire KP hierarchy. It follows that the multiform Euler–

Lagrange equations are precisely the equations of the KP hierarchy.

The factorised form of P(1ijk) in terms of the Aγ and Bγ would suggest that as

well as giving us equations in the form

(Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+] = 0, (96)
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1440 D. Sleigh et al.

the multiform Euler–Lagrange equations should also include KP equations of the type

φxi
φ−1 + Li− = 0. (97)

However, Corollary 3.1 tells us that the set of equations of the form of (96) for all i, j > 0

is equivalent to the set of equations of the form of (97) for all i > 0, so we are free

to view either of these equivalent sets of equations as the complete set of multiform

Euler–Lagrange equations for M.

4.1 A Lagrangian multiform for KP based on Dickey’s Lagrangian

We define


ijk :=1

2
([φ∂kφ−1φxi

φ−1φxj
, φ−1] + [φ∂ jφ−1φxk

φ−1φxi
, φ−1] + [φ∂ iφ−1φxj

φ−1φxk
, φ−1]

− [φ∂kφ−1φxj
φ−1φxi

, φ−1] − [φ∂ jφ−1φxi
φ−1φxk

, φ−1] − [φ∂ iφ−1φxk
φ−1φxj

, φ−1]

+ [φxj
, ∂kφ−1φxi

φ−1] + [φxi
, ∂ jφ−1φxk

φ−1] + [φxk
, ∂ iφ−1φxj

φ−1]

− [φxi
, ∂kφ−1φxj

φ−1] − [φxk
, ∂ jφ−1φxi

φ−1] − [φxj
, ∂ iφ−1φxk

φ−1]),

(98)

�ij,k := −
∫ 1

0
p−1(

[T[V, S], U] + [[T, U]+S, V] + [U[V, S]+, T] + [UT, [V, S]+] + [T[S, U], V]

+ [U, [T, V]+S]+[V[S, U]+, T]+[VT, [S, U]+] + [[U, V], TS]+[T, [U, V]S]
)
dp

(99)

where S = φ−1
p , T = (φp)xk

φ−1
p , U = (φp∂ iφ−1

p )+, and V = (φp∂ jφ−1
p )+,

�ij,k := 1

2

(
[φxk

φ−1, Li+Lj
−] + [Lj

−, Li+φxk
φ−1] + [Lj

+φxk
φ−1, Li−] + [Lj

+Li−, φxk
φ−1]

)
(100)

and

ijk := 1

2

(
[Li+Lj

− − Lj
+Li−, Lk] + [Lk+Li−, Lj

+] + [Li+, Lk+Lj
−] + [Li−, Lj+k] + [Li+k, Lj

−]
)
. (101)

In these definitions, L is used as an abbreviation of φ∂φ−1, so all of the above are

pseudodifferential operators whose coefficients are in terms of ϕβ and their derivatives.

Theorem 4.1. The 3-form

M =
∑

1≤i<j<k

L(ijk)dxi ∧ dxj ∧ dxk (102)

with coefficients

L(1jk) = res
{

−
∫ 1

0
p−1[(φp∂ jφ−1

p )+, (φp∂kφ−1
p )+]φ−1

p dp + ∂kφ−1φxj
− ∂ jφ−1φxk

}
(103)
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Lagrangian Multiforms 1441

and

L(ijk) =
∫

res
{

ijk + �ij,k + �jk,i + �ki,j + �ij,k + �jk,i + �ki,j + ijk

}
dx (104)

(with the constant of integration set to zero) when i > 1 is a Lagrangian multiform for

the KP hierarchy. Each L(ijk) is a local expression in the fields ϕβ and their derivatives.

The multiform Euler–Lagrange equations given by δdM = 0 are the full set of equations

of the KP hierarchy and consequences thereof. On the equations of the KP hierarchy,

dM = 0.

We have constructed L(ijk) in this way so that

dM =
∑

1≤i<j<k<l

P(ijkl)dxi ∧ dxj ∧ dxk ∧ dxl (105)

has a double zero on the equations of the KP hierarchy. In particular, this L(ijk) is such

that

P(1ijk) = − Dxk
L(1ij) − Dxi

L(1jk) + Dxj
L(1ik) + Dx1

L(ijk)

= − res
{1

2
((Li+)xj

− (Lj
+)xi

+ [Li+, Lj
+])(φxk

φ−1 + Lk−)

+ 1

2
((Lj

+)xk
− (Lk+)xj

+ [Lj
+, Lk+])(φxi

φ−1 + Li−)

+ 1

2
((Lk+)xi

− (Li+)xk
+ [Lk+, Li+])(φxj

φ−1 + Lj
−)

}
.

(106)

Before we can show this to be the case, we shall require a number of lemmas.

Lemmas 4.1 and 4.2 are closely related to Dickey’s computations to obtain the Euler–

Lagrange equations of his KP Lagrangian that we reproduced in Section 3. Lemma 4.3

then re-arranges some of the resulting terms to get us closer to (106), while Lemma 4.4

gives us the terms in (106) that do not contain any xi, xj, or xk derivatives. Also, it is

important to note that each of 
ijk, �ij,k, �ij,k, and ijk are expressed in terms of the

residue of commutators. Therefore, they are all total x derivatives so can be integrated

with respect to x to obtain a local expression for L(ijk).

Lemma 4.1. The 
ijk defined in (98) is such that

Dxi
(∂kφ−1φxj

− ∂ jφ−1φxk
) + Dxj

(∂ iφ−1φxk
− ∂kφ−1φxi

) + Dxk
(∂ jφ−1φxi

− ∂ iφ−1φxj
)

= 1

2
(−(Lk)xj

φxi
+ (Lj)xk

φxi
− (Li)xk

φxj
+ (Lk)xi

φxj
− (Lj)xi

φxk
+ (Li)xj

φxk
)φ−1 + 
ijk.

(107)
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1442 D. Sleigh et al.

Proof of Lemma 4.1.

Dxi
(∂kφ−1φxj

− ∂ jφ−1φxk
) + Dxj

(∂ iφ−1φxk
− ∂kφ−1φxi

) + Dxk
(∂ jφ−1φxi

− ∂ iφ−1φxj
)

= ∂kφ−1φxj
φ−1φxi

+ ∂ iφ−1φxk
φ−1φxj

+ ∂ jφ−1φxi
φ−1φxk

− ∂kφ−1φxi
φ−1φxj

− ∂ iφ−1φxj
φ−1φxk

− ∂ jφ−1φxk
φ−1φxi

.

(108)

We now use commutators to get this in the form (Li)xj
φxk

φ−1:

=1

2
(−φ∂kφ−1φxi

φ−1φxj
φ−1 + φ∂ jφ−1φxi

φ−1φxk
φ−1 − φ∂ iφ−1φxj

φ−1φxk
φ−1

+ φ∂kφ−1φxj
φ−1φxi

φ−1 − φ∂ jφ−1φxk
φ−1φxi

φ−1 + φ∂ iφ−1φxk
φ−1φxj

φ−1)

+ 1

2
(−φxj

∂kφ−1φxi
φ−1 + φxk

∂ jφ−1φxi
φ−1 − φxk

∂ iφ−1φxj
φ−1

+ φxi
∂kφ−1φxj

φ−1 − φxi
∂ jφ−1φxk

φ−1 + φxj
∂ iφ−1φxk

φ−1)

+ 1

2
([φ∂kφ−1φxi

φ−1φxj
, φ−1] + [φ∂ jφ−1φxk

φ−1φxi
, φ−1] + [φ∂ iφ−1φxj

φ−1φxk
, φ−1]

− [φ∂kφ−1φxj
φ−1φxi

, φ−1] − [φ∂ jφ−1φxi
φ−1φxk

, φ−1] − [φ∂ iφ−1φxk
φ−1φxj

, φ−1]

+ [φxj
, ∂kφ−1φxi

φ−1] + [φxi
, ∂ jφ−1φxk

φ−1] + [φxk
, ∂ iφ−1φxj

φ−1]

− [φxi
, ∂kφ−1φxj

φ−1] − [φxk
, ∂ jφ−1φxi

φ−1] − [φxj
, ∂ iφ−1φxk

φ−1])

=1

2
(−(Lk)xj

φxi
+ (Lj)xk

φxi
− (Li)xk

φxj
+ (Lk)xi

φxj
− (Lj)xi

φxk
+ (Li)xj

φxk
)φ−1 + 
ijk.

(109)

�

Lemma 4.2. The �ij,k defined in (99) is such that

Dxk
res

{
−

∫ 1

0
p−1[(φp∂ iφ−1

p )+, (φp∂ jφ−1
p )+]φ−1

p dp
}

=res
{
[(φ∂ iφ−1)+, (φ∂ jφ−1)+]φxk

φ−1} + res{�ij,k}.
(110)

Proof of Lemma 4.2. Since each L(1ij) is autonomous, we notice that Dxk
L(1ij) =

δL(1ij)|δφ=φxk
. It follows from Lemma 3.3 that the left hand side of (110) is equal to

res
{
[(φ∂ iφ−1)+, (φ∂ jφ−1)+]φxk

φ−1} − Dxh1|δφp̃=(φp̃)xk
(111)
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Lagrangian Multiforms 1443

evaluated at p = 1. We note that res{�ij,k} as defined in (99) is precisely −Dxh1|δφp̃=(φp̃)xk

evaluated at p = 1. That is,

�ij,k := −
∫ 1

0
p−1(

[T[V, S], U] + [[T, U]+S, V] + [U[V, S]+, T] + [UT, [V, S]+] + [T[S, U], V]

+ [U, [T, V]+S] + [V[S, U]+, T] + [VT, [S, U]+] + [[U, V], TS] + [T, [U, V]S]
)
dp (112)

with S = φ−1
p , T = (φp)xk

φ−1
p , U = (φp∂ iφ−1

p )+ and V = (φp∂ jφ−1
p )+. �

Lemma 4.3. The �ij,k defined in (100) is such that

res{[Li+, Lj
+]φxk

φ−1} = 1

2
res{[Li+, Lj

+]φxk
φ−1 + (Lj

+)xk
Li− − (Li+)xk

Lj
−} + res{�ij,k}. (113)

Proof of Lemma 4.3. Using the identity

0 = [Li, Lj]+ = [Li+, Lj
+] + [Li+, Lj

−]+ + [Li−, Lj
+]+, (114)

we see that

res{[Li+, Lj
+]φxk

φ−1} =1

2
res{[Li+, Lj

+]φxk
φ−1} − 1

2
res{[Li+, Lj

−]φxk
φ−1 + [Li−, Lj

+]φxk
φ−1}

=1

2
res{[Li+, Lj

+]φxk
φ−1} + 1

2
res{Li+φxk

φ−1Lj
− − φxk

φ−1Li+Lj
−

+ φxk
φ−1Lj

+Li− − Lj
+φxk

φ−1Li− + [φxk
φ−1, Li+Lj

−] + [Lj
−, Li+φxk

φ−1]

+ [Lj
+φxk

φ−1, Li−] + [Lj
+Li−, φxk

φ−1]}

=1

2
res{[Li+, Lj

+]φxk
φ−1 + (Lj

+)xk
Li− − (Li+)xk

Lj
−}

+ 1

2
res{[φxk

φ−1, Li+Lj
−] + [Lj

−, Li+φxk
φ−1] + [Lj

+φxk
φ−1, Li−]

+ [Lj
+Li−, φxk

φ−1]}

=1

2
res{[Li+, Lj

+]φxk
φ−1 + (Lj

+)xk
Li− − (Li+)xk

Lj
−} + res{�ij,k},

(115)

where

�ij,k := 1

2

(
[φxk

φ−1, Li+Lj
−] + [Lj

−, Li+φxk
φ−1] + [Lj

+φxk
φ−1, Li−] + [Lj

+Li−, φxk
φ−1]

)
. (116)

�

Lemma 4.4. The identity

res{[Li+, Lj
+]Lk− + [Lj

+, Lk+]Li− + [Lk+, Li+]Lj
−} = −2res{ijk}, (117)

holds.
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1444 D. Sleigh et al.

Proof of Lemma 4.4. We consider res{[Li, Lj]Lk}, (which is clearly zero) and express this

in terms of the positive and negative parts of the powers of L:

0 = res{[Li, Lj]Lk} = res
{
[Li+, Lj

+]Lk− + [Li−, Lj
+]Lk+ + [Li+, Lj

−]Lk+

+[Li−, Lj
−]Lk+ + [Li+, Lj

−]Lk− + [Li−, Lj
+]Lk−

}
.

(118)

The first three terms on the right hand side of (118) can be written as

res
{
[Li+, Lj

+]Lk− + [Lj
+, Lk+]Li− + [Lk+, Li+]Lj

−

+[Li−, Lj
+Lk+] + [Lk+, Lj

+Li−] + [Li+Lj
−, Lk+] + [Li+Lk+, Lj

−]
} (119)

while the final three terms on the right hand side of (118) can be written as

res
{1

2
([Lj

−, Lk+] + [Lj
+, Lk−])Li− + 1

2
([Lk−, Li+] + [Lk+, Li−])Lj

− + 1

2
([Li−, Lj

+] + [Li+, Lj
−])Lk−

+1

2
([Li−, Lj

−Lk+] + [Lk+, Lj
−Li−] + [Li−Lj

−, Lk+] + [Li−Lk+, Lj
−] + [Li+Lj

−, Lk−] + [Li+Lk−, Lj
−]

+[Li−, Lj
+Lk−] + [Lk−, Lj

+Li−]
}
.

(120)

By (114), this is equal to

1

2
res

{ − [Lj
+, Lk+]Li− − [Lk+, Li+]Lj

− − [Li+, Lj
+]Lk− + [Li−, Lj

−Lk+] + [Lk+, Lj
−Li−]

+ [Li−Lj
−, Lk+] + [Li−Lk+, Lj

−] + [Li+Lj
−, Lk−] + [Li+Lk−, Lj

−] + [Li−, Lj
+Lk−] + [Lk−, Lj

+Li−]
}
.

(121)

Since (119) and (121) sum to zero, it follows that

res
{
[Li+, Lj

+]Lk− + [Lj
+, Lk+]Li− + [Lk+, Li+]Lj

−
}

= − res
{
2[Li−, Lj

+Lk+] + 2[Lk+, Lj
+Li−] + 2[Li+Lj

−, Lk+] + 2[Li+Lk+, Lj
−] + [Li−, Lj

−Lk+]

+ [Lk+, Lj
−Li−] + [Li−Lj

−, Lk+] + [Li−Lk+, Lj
−] + [Li+Lj

−, Lk−] + [Li+Lk−, Lj
−] + [Li−, Lj

+Lk−]

+ [Lk−, Lj
+Li−]

}
,

(122)

which simplifies to

−res
{
[Li+Lj

− − Lj
+Li−, Lk] + [Lk+Li−, Lj

+] + [Li+, Lk+Lj
−] + [Li−, Lj+k] + [Li+k, Lj

−]
}

= −2res{ijk}
(123)
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Lagrangian Multiforms 1445

where

ijk := 1

2

(
[Li+Lj

− − Lj
+Li−, Lk] + [Lk+Li−, Lj

+] + [Li+, Lk+Lj
−] + [Li−, Lj+k] + [Li+k, Lj

−]
)
. (124)

�

Proof of Theorem 4.1. Since 
ijk, �ij,k, �ij,k, and ijk are composed entirely of

commutators, it follows from Lemma 1.1 that

L(ijk) =
∫

res
{

ijk + �ij,k + �jk,i + �ki,j + �ij,k + �jk,i + �ki,j + ijk

}
dx (125)

is local. Since the multiform Euler–Lagrange equations arising from δdM = 0 include

the Euler–Lagrange equations of the L1ij, we know that the set of equations given by

δdM = 0 includes all KP equations of the form

(Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+] = 0. (126)

By Corollary 3.1, δdM = 0 also gives us KP equations of the form

φxi
+ Li−φ = 0. (127)

In order to proceed, we again use the notation P(ijkl) such that

dM =
∑

1≤i<j<k<l

P(ijkl)dxi ∧ dxj ∧ dxk ∧ dxl. (128)

Combining the results of Lemmas 4.1 to 4.4, we see that

P(1ijk) = − Dxk
L(1ij) − Dxi

L(1jk) + Dxj
L(1ik) + Dx1

L(ijk)

= − res
{1

2
((Li+)xj

− (Lj
+)xi

+ [Li+, Lj
+])(φxk

φ−1 + Lk−)

+ 1

2
((Lj

+)xk
− (Lk+)xj

+ [Lj
+, Lk+])(φxi

φ−1 + Li−)

+ 1

2
((Lk+)xi

− (Li+)xk
+ [Lk+, Li+])(φxj

φ−1 + Lj
−)

}
,

(129)

and since equations of the form (Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+] = 0 and φxi
φ−1 + Li− = 0 are

both equations of the KP hierarchy, P1ijk has a double zero on the hierarchy.
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1446 D. Sleigh et al.

In order to complete the proof, we must show that for

P(ijkl) = Dxi
L(jkl) − Dxj

L(ikl) + Dxk
L(ijl) − Dxl

L(ijk), (130)

δP(ijkl) = 0 and P(ijkl) = 0 on the equations of the KP hierarchy. We require that δP(ijkl) = 0

on the equations of the KP hierarchy in order to confirm that δP(ijkl) = 0 does not define

any equations that are not part of the KP hierarchy, and we require that P(ijkl) = 0 in

order that dM = 0 on the equations of the hierarchy. To show this, we first note that

from its definition in terms of the L(ijk), P(ijkl) is a polynomial with no constant term,

in (ϕ
(n)
β )I where n gives the order of derivative with respect to x and I is a multi-index

representing derivatives with respect to xi for i > 1. Also, since d2M is identically zero,

DxP(ijkl) = Dxi
P(1jkl) − Dxj

P(1ikl) + Dxk
P(1ijl) − Dxl

P(1ijk). (131)

This is an identity, so we do not require the ϕβ to satisfy the equations of the KP

hierarchy for this to hold. Since each of P(1ijk), P(1ikl), P(1ijl), and P(1jkl) has a double zero

on the equations of the KP hierarchy, it follows that DxP(ijkl) also has a double zero on

the equations of the KP hierarchy, and therefore that

∂

∂(ϕ
(n)
β )I

DxP(ijkl) = 0 (132)

for all I and n. Using the identity

∂

∂(ϕ
(n+1)
β )I

DxP(ijkl) = Dx
∂

∂(ϕ
(n+1)
β )I

P(ijkl) + ∂

∂(ϕ
(n)
β )I

P(ijkl) (133)

we see that for a fixed choice of I, if n is the largest such that (ϕ
(n)
β )I appears in P(ijkl),

then

∂

∂(ϕ
(n)
β )I

P(ijkl) = 0 (134)

on the equations of the KP hierarchy. It also follows from (133) that, on the equations of

the KP hierarchy, if

∂

∂(ϕ
(n)
β )I

P(ijkl) = 0 then
∂

∂(ϕ
(n−1)
β )I

P(ijkl) = 0. (135)
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Therefore, on the equations of the KP hierarchy,

∂

∂(ϕ
(n)
β )I

P(ijkl) = 0 (136)

for all I and n, so δP(ijkl) = 0. Since P(ijkl) is autonomous, (136) tells us that

Dxi
P(ijkl) = 0 ∀i > 0 (137)

so P(ijkl) is constant, and since the KP hierarchy admits the zero solution, we conclude

that this constant is zero, and P(ijkl) = 0 on the equations of the KP hierarchy.

Thus, the set of equations defined by δdM = 0 is precisely the full set of

equations of the KP hierarchy, and on these equations, dM = 0, so M is a Lagrangian

multiform for the KP hierarchy. �

4.2 An alternative KP Lagrangian multiform

In the KP Lagrangian multiform of Theorem 4.1, we used Dickey’s KP Lagrangian for the

L(1ij), and the Lagrangian defined in (104) for the L(ijk) when 1 < i, j, k. Here we present

an alternative version of the KP Lagrangian multiform in which every Lagrangian is of

the same type.

Theorem 4.2. The differential 3-form

M̃ =
∑

1≤i<j<k

L̃(ijk) dxi ∧ dxj ∧ dxk (138)

where

L̃(ijk) =
∫

res
{

ijk + �ij,k + �jk,i + �ki,j + �ij,k + �jk,i + �ki,j + ijk

}
dx (139)

(i.e., the Lagrangian defined in (104)), is a Lagrangian multiform for the KP hierarchy.

Proof. We recall that in Section 2 we identified x1 with x. For now we choose not to

do so and treat them as separate co-ordinates. This allows us to consider a 3-form M1

such that the coefficient of dx ∧ dxi ∧ dxj with 1 ≤ i < j is Dickey’s KP Lagrangian L(xij),

while the coefficient of dxi ∧ dxj ∧ dxk with 1 ≤ i < j < k is the Lagrangian L(ijk) defined

in (104). It then follows from the proof of Theorem 4.1 that this is also a Lagrangian

multiform for the KP hierarchy. The multiform Euler–Lagrange equations for M1 will be
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1448 D. Sleigh et al.

the multiform Euler–Lagrange equations of M plus an additional set of equations that

tell us to equate derivatives with respect to x1 with derivatives with respect to x, arising

from equations of the form

(L+)xj
− (Lj

+)x1
+ [L+, Lj

+] = 0, (140)

and dM1 will have a double zero on these equations. We now define M2 to be the

restriction of M1 to a submanifold with co-ordinates x1, x2, x3, . . ., obtained by fixing

x = c, a constant. It follows that dM2 still has a double zero on this same set of

equations. If we then equate x1 with x in M2, we get M̃ and it follows that dM̃ has a

double zero on the equations of the KP hierarchy. Therefore, the equations defined by

δdM̃ = 0 are a subset of the equations of the KP hierarchy.

To complete the proof that M̃ is a Lagrangian multiform for the KP hierarchy, we

must show that the equations defined by δdM̃ = 0 are precisely the full set of equations

of the KP hierarchy. We shall do this by showing that the Euler–Lagrange equations of

the L(1jk) Lagrangians give us these equations.

We first consider the coefficient P(xijk) from dM1.

P(xijk) = − Dxk
L(xij) − Dxi

L(xjk) + Dxj
L(xik) + DxL(ijk)

= − res
{1

2
((Li+)xj

− (Lj
+)xi

+ [Li+, Lj
+])(φxk

φ−1 + Lk−)

+ 1

2
((Lj

+)xk
− (Lk+)xj

+ [Lj
+, Lk+])(φxi

φ−1 + Li−)

+ 1

2
((Lk+)xi

− (Li+)xk
+ [Lk+, Li+])(φxj

φ−1 + Lj
−)

}
,

(141)

so in the case where i = 1 this becomes

P(x1jk) = − Dxk
L(x1j) − Dx1

L(xjk) + Dxj
L(x1k) + DxL(1jk)

= − res
{1

2
(−(Lj

+)x1
+ (Lj

+)x)(φxk
φ−1 + Lk−)

+ 1

2
((Lj

+)xk
− (Lk+)xj

+ [Lj
+, Lk+])(φx1

φ−1 + L−)

+ 1

2
((Lk+)x1

− (Lk+)x)(φxj
φ−1 + Lj

−)
}

(142)

since L+ = ∂. If we equate x1 and x in this expression then this becomes zero. This is

obvious in the first and third line; for the second line, we note that L− = (φ∂φ−1)− =
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(∂ − φxφ−1)− = −φxφ−1. We now define

L̄(xij) = L(xij)|x→x1
(143)

and consider the 2-form

L = L̄(x1j)dx1 ∧ dxj + L̄(x1k)dx1 ∧ dxk + (L̄(xjk) − L̄(1jk))dxj ∧ dxk. (144)

By construction, dL = −P(x1jk)|x→x1
= 0. Then, by Corollary A.2, the variational

derivative of each of the Lagrangian coefficients in L is zero. Therefore,

δ

δφ
(L̄(xjk) − L̄(1jk)) = 0 (145)

so

δL̄(1jk)

δφ
= δL̄(xjk)

δφ
= {φ−1(

(Li+)xj
− (Lj

+)xi
+ [Li+, Lj

+]
)}+. (146)

Since L̄(1jk) = L̃(1jk), all equations of the KP hierarchy are consequences of δdM̃ = 0, so

M̃ is a Lagrangian multiform for the KP hierarchy. �

5 Reduction to Multiforms for the Gelfand–Dickey Hierarchy

In order to reduce KP to the nth Gelfand–Dickey hierarchy, we imposed the constraint

that Ln− = 0. Since, by (51), φxn
= −Ln−φ, we can achieve this in the Lagrangian multiform

by setting φxn
= 0. A simple way to obtain a Lagrangian multiform for the nth Gelfand–

Dickey hierarchy is to leave the KP multiform obtained in Section 4 unchanged and

impose this constraint on the Euler–Lagrange equations. A more satisfactory approach

involves setting φxn
= 0 in (129) to obtain

Dxn
L̂(1ij) + Dxi

L̂(1jn) − Dxj
L̂(1in) − Dx1

L̂(ijn)

= res
{1

2
((Li+)xj

− (Lj
+)xi

+ [Li+, Lj
+])Lk−

+1

2
(−(Ln+)xj

+ [Lj
+, Ln+])(φxi

φ−1 + Li−)

+1

2
((Ln+)xi

+ [Ln+, Li+])(φxj
φ−1 + Lj

−)
}
.

(147)
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1450 D. Sleigh et al.

If we can find Lagrangians L̂(ijk) such that (147) holds, then the constraint Ln− = 0 will

be naturally incorporated into the multiform Euler–Lagrange equations, giving us the

nth Gelfand–Dickey hierarchy. The L̂ are not uniquely defined by this expression, but a

natural choice would be

L̂(1ij) = 0, (148a)

L̂(1in) = res
{

−
∫ 1

0
p−1[(φp∂ iφ−1

p )+, (φp∂nφ−1
p )+]φ−1

p dp + ∂nφ−1φxi

}
, (148b)

L̂(1jn) = res
{

−
∫ 1

0
p−1[(φp∂ jφ−1

p )+, (φp∂nφ−1
p )+]φ−1

p dp + ∂nφ−1φxj

}
, (148c)

and

L̂(ijn) =
∫ {


̂ijn + �jn,i + �ni,j + �jn,i + �ni,j + ijn

}
dx (148d)

with the constant of integration set to zero, where


̂ijn = 1

2
res

{
[φ∂nφ−1φxi

φ−1φxj
, φ−1] − [φ∂nφ−1φxj

φ−1φxi
, φ−1]

+[φxj
, ∂nφ−1φxi

φ−1] − [φxi
, ∂nφ−1φxj

φ−1]
} (149)

is equal to 
ijn with φxn
= 0. The KP multiform (90) reduces to

M(n) =
∑

1≤i<j

L̂(ijn)dxi ∧ dxj ∧ dxn. (150)

This multiform does not contain any derivatives with respect to xn, so does not allow

any motion in the xn direction, and is equivalent (i.e., produces identical multiform

Euler–Lagrange equations) to

M̂(n) =
∑

1≤i<j

L̂(ijn)dxi ∧ dxj, (151)

a Lagrangian 2-form for the nth Gelfand–Dickey hierarchy. As was the case for the KP

Lagrangian multiform, a Lagrangian multiform with all coefficients in the form of (148d)

is also a Lagrangian multiform for the nth Gelfand–Dickey hierarchy.
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6 Conclusion

The Lagrangian multiforms we have presented constitute, in our view, the first instance

of establishing the integrability of the KP hierarchy at the Lagrangian level. In contrast

to the Lagrangian multiform for KP hierarchy (up to the x4 flow) that was presented in

[13], we now have explicit formulae for the constituent Lagrangians of the Lagrangian

multiform for the complete hierarchy, and the constituent Lagrangians are fully local.

In addition, while for the Lagrangian multiform in [13] the x1 and x2 co-ordinates held a

special status (i.e., were treated differently to the other co-ordinates), for the Lagrangian

multiform presented here, only x1 holds a special status. Aspirations for future work

include obtaining a Lagrangian multiform for KP that treats every co-ordinate (including

x) on an equal footing, and also to connect the continuous KP Lagrangian multiform

from this paper with the discrete KP Lagrangian multiform given in [8].

A Multiform Euler–Lagrange Equations in Terms of Variational Derivatives

It was first shown in [14] that δdM = 0 on critical points of a differential form

M =
∑

1≤i1<...<ik≤N

L(i1...ik) dxi1 ∧ . . . ∧ dxik . (A.1)

In [15] and [13], different proofs are given of how the equations given by δdM = 0 can be

expressed in terms of variational derivatives of the coefficients L(i1...ik). In this section,

we shall present an alternative proof of this that also gives explicitly the link between

the equations in terms of variational derivatives of the L(i1...ik) and the P(i1...ik+1) defined

by

dM =
∑

1≤i1<...<ik+1≤N

P(i1...ik+1)dxi1 ∧ . . . ∧ dxik+1
. (A.2)

In terms of the L(i1...ik),

P(i1...ik+1) =
k+1∑
α=1

(−1)α+1Dxiα
L(i1...iα−1iα+1...ik+1). (A.3)

We recall that the multiform Euler–Lagrange equations are given by δdM = 0. We

introduce the notation I to represent the N component multi-index (i1, . . . , iN) such that

uI :=
( p∏

α=1

(Dxα
)iα

)
u. (A.4)

We shall write Ikr to denote (i1, . . . , ik + r, . . . , iN), I\kr to denote (i1, . . . , ik − r, . . . , iN) and

|I| to denote the sum i1+. . .+iN . This allows us to express the multiform Euler–Lagrange
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1452 D. Sleigh et al.

equations are given by δdM = 0 in the form

∂

∂uI
P(i1...ik+1) = 0 (A.5)

for all 1 ≤ i1 < . . . < ik+1 and all multi-indices I. For a fixed choice of i1 . . . ik+1, we shall

write L(ᾱ) to denote L(i1...iα−1iα+1...ik+1). We then define

δL(ᾱ)

δuI
=

∑
J

jiα =0

(−D)J

∂L(ᾱ)

∂uIJ
, (A.6)

where the multi-index J is such that components jα = 0 whenever α �= i1, . . . , ik+1, that

is, J represents derivatives with respect to xi1 , . . . , xik+1
only. We define that

δL(ᾱ)

δuI
= 0

in the case where any component of the multi-index I is negative. Note that by this

definition, the variational derivative of the Lagrangian L(i1...iα−1iα+1...ik+1) with respect to

uI only sees derivatives of uI with respect to the variables xi1 , . . . , xiα−1
, xiα+1

, . . . , xik+1
,

even though derivatives with respect to other variables may appear in the Lagrangian.

This corresponds with only being able to perform integration by parts with respect to

variables that are integrated over in the action.

Using the identity

∂

∂uI
Dxi

= ∂

∂uI\i
+ Dxi

∂

∂uI
(A.7)

tells us that

∂

∂uI
P(i1...ik+1) =

k+1∑
α=1

(−1)α+1
(

∂L(ᾱ)

∂uI\iα

+ Dxiα

∂L(ᾱ)

∂uI

)
(A.8)

so

δ

δuI
P(i1...ik+1) =

∑
J

(−D)J
∂

∂uIJ
P(i1...ik+1)

=
∑

J

(−D)J

k+1∑
α=1

(−1)α+1
(

∂L(ᾱ)

∂uIJ\iα

+ Dxiα

∂L(ᾱ)

∂uIJ

)
.

(A.9)

Whenever jiα �= 0 in this sum, so J is of the form Kiα for some multi-index K, then

± (−D)J

∂L(ᾱ)

∂uIJ\iα

= ∓Dxiα
(−D)K

∂L(ᾱ)

∂uIK
(A.10)

will appear in this sum. When J = K, the term

± (−D)KDxiα

∂L(ᾱ)

∂uIK
(A.11)
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will appear. These two terms cancel, so (A.9) simplifies to

δ

δuI
P(i1...ik+1) =

k+1∑
α=1

∑
J

jiα =0

(−1)α+1(−D)J

∂L(ᾱ)

∂uIJ\iα

=
k+1∑
α=1

(−1)α+1 δL(ᾱ)

δuI\iα

.

(A.12)

It follows that if (A.5) holds, then

δ

δuI
P(i1...ik+1) =

k+1∑
α=1

(−1)α+1 δL(ᾱ)

δuI\iα

= 0. (A.13)

We have shown that

δdM = 0 	⇒ δ

δuI
P(i1...ik+1) =

k+1∑
α=1

(−1)α+1 δL(ᾱ)

δuI\iα

= 0 (A.14)

for all 1 ≤ i1 ≤ . . . ≤ ik+1 ≤ N and I. Since

∂P(i1...ik+1)

∂uI
=

∑
J

ji≤1

DJ

δP(i1...ik+1)

δuIJ
(A.15)

(a proof of this identity is given in [13]) it follows that the converse also holds. We

summarise this result in the following theorem:

Theorem A.1. For a differential k-form M as given in (A.1), and P(i1...ik+1) as defined in

(A.3),

δ

δuI
P(i1...ik+1) =

k+1∑
α=1

(−1)α+1 δL(ᾱ)

δuI\iα

. (A.16)

The set of equations defined by

δ

δuI
P(i1...ik+1) = 0 (A.17)

for all 1 ≤ i1 ≤ . . . ≤ ik+1 ≤ N and I is equivalent to the set of equations defined by

δdM = 0.

Corollary A.2. A corollary of Theorem A.1 is that

δ

δuxiα

P(i1...ik+1) = (−1)α+1
δL(i1...iα−1iα+1...ik+1)

δu
, (A.18)

so the usual Euler–Lagrange equations of each Lagrangian coefficient in M can be

expressed in terms of variational derivatives of the coefficients of dM.
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1454 D. Sleigh et al.

B Explicit Form of the KP Lagrangian Multiform

Here we present the first four Lagrangians of the KP Lagrangian multiform M and M̃,

expressed in terms of the ϕβ that constitute φ. In order to avoid notational confusion

over the use of subscripts, we let U = ϕ0, V = ϕ1, W = ϕ2, and X = ϕ3. The following

Lagrangians were found using Maple and PSEUDO [1]. In order to obtain L(234), a Maple

procedure based on (18) was used.

L(123) = −Uxxx3
+ Xx2

− VUxx2
− WUx2

− VVx2
− U2Ux3

+ VUx3
+ UUxx3

+ U2Uxx2
+ UVx3

+ U2Vx2
− UUxxx2

− U3Ux2
− UWx2

− 2UVxx2
− 3VxUx2

− 3UxxUx2
+ 2UxUx3

− 3UxVx2
− 3UxUxx2

− Wx3
+ Uxxxx2

− 3

2
UVxxx − 3

2
UxxxV − 3VxxV − 3

2
Ux

2U2

+ 2UxxxU2 + 2VxxU2 + 2Ux
2V − 1

2
UUxxxx − 3

2
UxUxxx − 3UxVxx − 3

2
UxxU3

+ 2Ux
3 + 3Wxx2

− 2Vxx3
+ 3Vxxx2

+ 5UUxUx2
+ 2UVUx2

+ 3UxxUxU + 2UxxVU,

(B.1)

L̃(123) = 2U2Uxxx + 3UUxUxx + 2U3
x + 1

2
Ux2

Vx − 1

2
UxVx2

− 2U2Uxx2
+ 3

2
VUxx2

+ 3

2
UUxxx2

+ 2UxUxx2
− 3

2
VUxxx − 3

2
UVxxx − 3

2
U3Uxx − 3UxVxx − 3

2
UxUxxx − 1

2
Ux2

Uxx

− 1

2
UUxxxx − UUxUx2

− UUxx3
+ 2VU2

x + 2U2Vxx − 3VVxx − 3

2
U2U2

x

+ 3

2
UVxx2

+ 2UUxxV, (B.2)

L(134) = −6UxxVxxx − 3

2
UxUxxxxx − 5UxVxxxx − 6UxWxxx − 4VxUxxxx+ Uxxxxx2

+ 40VxUxUxx

− 6WVxxx12VxVxxx − 4UxWx2
+ Yx2

+ UWx3
− 4Vx2

Vx − 6Vx2
Uxx + 8Ux2

Ux
2

− 4Ux2
Wx − 6Ux2

Vxx − 21

2
U2Uxx

2 − 6U3Vxxx − Uxxxx3
− 3U3Wxx − 6WxxW

− 6UxxWxx − 2UxxUxxxx − 3

2
UVxxxxx − 9

2
U3Uxxxx+UUxxx3

+2UVxx3
+ Vx3

V

+ Uxx3
V + WUx3

− Uxx3
U2 − Vx3

U2 − 3UWxx2
+ Ux3

U3 − UXx2
− VUxxx2

− Uxx2
W + U2Uxxx2

− 8UxVxx2
− 4Uxx2

Vx − 6Uxx2
Uxx − 4UxUxxx2

+ 3Ux3
Vx

+ 3Ux3
Uxx + 3Vx3

Ux + 3Uxx3
Ux − 3UVxxx2

− UUxxxx2
+ U2Wx2

− VWx2
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Lagrangian Multiforms 1455

− Vx2
U3 − Vx2

W + Ux2
U4 + Ux2

V2 − Ux2
X + 2U2Vxx2

−2VVxx2
−Uxx2

U3

+ 24

5
U3UxVx+24U3UxUxx − 5Ux3

UxU−2Ux3
UV − 12VxWxx + 20UxUxx

2

+ 16UxVx
2 + 34

3
Ux

2Uxxx8Ux
2Vxx − 2UWxxxx − 3Ux

4 + 2Uxx2
UV + 7Uxx2

UxU

+ 9Ux2
UUxx + 7Ux2

UVx + 2Ux2
WU + 6Ux2

UxV − 9Ux2
UxU2 − 3Ux2

U2V − Xx3

+ 16UUxWxx + 46

3
UxxxUxV + 7Vx2

UxU + 2Vx2
UV + 70

3
UUxVxxx + 8UxVVxx

+ 41

3
UUxUxxxx + 4UxxWV + 12UxUxxW − 12UVUxVx − 42UVUxUxx

− 6VWxxx − 2UxxxxW + 12Uxx
2V + 6UUxxVxx + 12UUxxxUxx − 60UUx

2Uxx

+ 8UxWVx + 16UxxVVx + 4UVxVxx + 28

3
UUxxxVx − 33UUx

2Vx + 12UVVxxx

− 1

2
UUxxxxxx + 4UVxxW + 22

3
UVUxxxx + 8UVWxx + 4UUxxxW − 6UV2Uxx

− 6UUx
2W − 27U2UxxxUx + 36

5
U3VUxx + 48

5
U2VUx

2 + 6Wxxx2
+ 4Vxxxx2

− 3Wxx3
− 3Vxxx3

+ 4Xxx2
− 9U2VxUxx − 6U2VxxV − 3U2WUxx − 15U2VxxUx

− 12U2UxxxV + 4U2Wxxx − 3Ux
3V + 4UxxxV2 − 5VVxxxx − 3

2
VUxxxxx, (B.3)

L̃(134) = −3U3
xV − 4U2

xU4 + 16UxxVxV − 5VVxxxx + 2UUxxxx3
+ 8UVWxx − 6VWxxx

− 6UxWxxx − 6U2
xUW − 9

2
U3Uxxxx − 6U3Vxxx + 2Uxx3

W + 24UxxUxU3

− 2Vx3
Uxx + 24

5
UxxxU4 + 28

3
UVxUxxx − 6UxxVxxx + 8U2

xVxx + 16UxUWxx

− 3U3Wxx − 2UxxUxxxx − 3U2WUxx − 3

2
VUxxxxx + 20UxU2

xx − 6UxxWxx

− 2UWxxxx − UxWx3
+ 2U2Uxxxxx + 24

5
UxVxU3 − 42UxxUxUV − 2UxUxx4

+ 3U3Uxx3
+ 3UVxxx3

+ 3VUxxx3
+ 4Uxxx3

Ux + 4U2Wxxx − 4U2Uxxx3

+ 2Vxx3
Ux + 2VVxx3

− 3

2
UxUxxxxx − UxxUUx3

− 2WUxxxx + 2U2Uxx4

− 12UxUVVx + 6Uxx3
Vx − 2U5Uxx + 16V2

x Ux + 2UWxx3
+ 2Uxx3

Uxx

+ 4UxxxV2 + 12U2
xxV + Ux3

Wx − 12VxWxx − 4UxxxxVx − 1

2
VxUx4
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1456 D. Sleigh et al.

+ 8UxVVxx − 27U2UxUxxx + 12VxxxUV + 14

3
U2Vxxxx + 96

5
U2U3

x + 4UWVxx

+ 46

3
UxxxUxV − Ux3

Uxxx + 12UxxUxW − 5UxVxxxx − 33UVxU2
x + 22

3
UxxxxUV

− 6WVxxx − 21

2
U2U2

xx − 60U2
xUUxx + UUxUx4

+ 3U2UxUx3
+ 8UxVxW

+ 34

3
U2

xUxxx − 3

2
UVxx4

− 3

2
UUxxx4

+ 4UxxxUW − 7

3
UUx3

Vx − 12VxxxVx

+ 4UVxVxx − 16

3
UUxx3

V − 3

2
VUxx4

+ 70

3
UxVxxxU − 4

3
VUxUx3

− 12UxxxVU2

− 3U4
x − 6U2VVxx − 15U2UxVxx + 48

5
U2

xVU2 − 35

3
UUxUxx3

− 1

3
UUxVx3

− 6UV2Uxx − 4

3
U2

xUx3
− 9UxxVxU2 − 8

3
U2Vxx3

+ 36

5
U3VUxx + 40UxUxxVx

− 6WWxx + 4VWUxx + 12UUxxxUxx + 6UxxUVxx + 41

3
UUxUxxxx

+ 12

5
U4Vxx + 1

2
UxxUx4

− 1

2
UUxxxxxx + 1

2
UxVx4

− 3

2
UVxxxxx, (B.4)

L(142) = 6U3Uxxx + 4U3Vxx − 24

5
U3Ux

2 − 16

5
U4Uxx + 2UxxUxxx − Uxxxxx2

+ 4UxxVxx

− 16VUxxUx − 20

3
UUxxVx − 16

3
VVxUx − 16UUxxxUx − 44

3
UVxxUx + 4UxWx2

+ Uxxx3
+ U2Ux3

− VUx3
− UUxx3

− UVx3
− 2UxUx3

+ Wx3
− Yx2

+ 4Vx2
Vx

+ 6Vx2
Uxx − 8Ux2

Ux
2 + 4Ux2

Wx + 6Ux2
Vxx + 4Ux2

Uxxx + 2Vxx3
+ 3VUxxxx

+ 8VVxxx + 4VWxx − 8

3
WUx

2 + 12UUx
3 − 6UUxx

2 + 4VxxW − 4U2Uxxxx

− 20

3
U2Vxxx − 8

3
U2Wxx + 2UxxxW − 8

3
V2Uxx − 8

3
UUxxW − 28

3
UUxxxV

− 8UVxxV + 8UVUx
2 + 4U2VxUx + 3UWxx2

+ UXx2
+ VUxxx2

+ Uxx2
W

− U2Uxxx2
+ 8UxVxx2

+ 4Uxx2
Vx + 6Uxx2

Uxx + 4UxUxxx2
+ 3UVxxx2

+ UUxxxx2
− U2Wx2

+ VWx2
+ Vx2

U3 + Vx2
W − Ux2

U4 − Ux2
V2 + Ux2

X

− 2U2Vxx2
+ 2VVxx2

+ Uxx2
U3 + 3UxUxxxx + 4UxWxx + 8UxVxxx + 4UxxxVx

+ 8VxxVx − 32

3
VxUx

2 − 16Ux
2Uxx − 2Uxx2

UV − 7Uxx2
UxU − 9Ux2

UUxx

− 7Ux2
UVx − 2Ux2

WU − 6Ux2
UxV + 9Ux2

UxU2 + 3Ux2
U2V − 7Vx2

UxU
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− 2Vx2
UV + UUxxxxx + 3UVxxxx − 6Wxxx2

− 4Vxxxx2
− 4Xxx2

+ 2UWxxx

+ 22U2UxxUx + 8U2VUxx, (B.5)

L̃(142) = 6U3Uxxx + 1

3
UUxVx2

+ 7

3
UUx2

Vx − 16

3
UxVxV − 20

3
UxxUVx − 2UUxxxx2

− 8

3
V2Uxx

+ 8U2VUxx − 2Uxx2
W + 2Vx2

Uxx − 16U2
xUxx + 8

3
U2Vxx2

+ 3VxxxxU + 2WxxxU

+ 4

3
VUxUx2

− 8

3
U2

xW + 4U3Vxx + 12UU3
x + UxWx2

+ 4

3
U2

xUx2
+ 4WVxx + 3VUxxxx

+ 8VVxxx + 4VWxx − 3U3Uxx2
− 3UVxxx2

− 3VUxxx2
− 4Uxxx2

Ux + 4U2Uxxx2

− 2Vxx2
Ux − 2VVxx2

+ UxxUUx2
− 6Uxx2

Vx − 2UWxx2
− 2Uxx2

Uxx + 2UxxUxxx

− Ux2
Wx + 8UxVxxx − 4U2Uxxxx + 2WUxxx + 4UxxVxx + 4UxxxVx + Ux2

Uxxx

+ 3UxUxxxx + 8VxVxx − 8UVVxx − 16UxxUxV − 3U2UxUx2
− 32

3
U2

xVx

− 8

3
UWUxx + 35

3
UUxUxx2

− 28

3
UxxxUV − 16UxxxUUx + UUxx4

+ 4UxWxx

+ 16

3
UUxx2

V − 44

3
UUxVxx − 24

5
U3U2

x + 22U2UxUxx + 4UxVxU2 − 16

5
U4Uxx

+ UUxxxxx − 8

3
U2Wxx − 6U2

xxU − 20

3
U2Vxxx + 8UU2

xV, (B.6)

L(234) = −12Ux2
UVUxx − 9U2Uxx2

Vx + 14UxVxVxx + 4UUxWxxx + UxVVxxx + 2UU2
xxV

+ 3UUxVxxxx + UUxUxxxxx + 12UxVxWx + 4UxUxxUxxx + 6UxVWxx + UUxx2
Ux3

+ Ux2
Vx3

U − Ux2
Uxx3

U − UVx2
Ux3

− Uxxxx2
Uxx + 14

3
U2Vxxxx2

− 3Uxx2
Xx

+ 8UxWxx2
U + 18

5
Ux2

U3Vx + 6VxVxx3
− 5UVxxUxxx − 8

3
UUxx3

W + 2

3
U2

xVx3

+ 2Uxxx3
Uxx − 6U2

xUxx3
− 3UVx2

U2
x + 8UU2

xUx3
+ 6U2Ux3

Uxx − 8Uxx3
UUxx

+ 4Ux3
VxU2 − 2UxxxUx3

U + 6Ux2
VxUxx + 23

3
Uxxx2

U2
x − 2Wx2

UUxx

+ 3Wx2
U2Ux − 1

2
UxxUxxxxx − VUxxUxxx − 1

2
Uxx4

Uxx + 6

5
U3Vx2

Ux

− 8

3
UxWUx3

− 1

2
Ux2

Uxx4
− 3

2
VUxxx4

+ 11Uxx2
VVx + Ux2

Uxxx3
− 2Vx3

Uxx2

+ 2Uxx3
Vx2

+ Wx2
Ux3

− Uxxx2
Ux3

− Ux2
Wx3

+ 8UVWxx2
− 7

2
UxVxxxx2
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1458 D. Sleigh et al.

− 2UUxxWxx − 6WWxx2
− 4

3
Ux3

WxU + 6UUxxUxW + UUxxxUxV + 6UVxxUxV

− 29UUxVxUxx + 16U2UxUxx3
− 12UUxUxxx3

− 8UVxx3
V + 8U2Uxx3

V

− 6UxV2Uxx + 25

3
Uxxx2

UUxx − 6UVx2
UxV − 33UUxx2

UxV − 6Ux2
VUVx

− 4Ux2
U4Ux − 3

2
Vxx4

Ux + 6U3
xW + 11Uxx2

UxW + 2Vx2
VUxx − 3

2
UVxxx4

− 6Vxx2
U2Ux + 5Vxx2

UxV + Vxx2
UVx + 13Uxx2

VUxx + Vxx2
UUxx

+ 8UUxx2
Wx − 8

3
Uxx3

V2 + 2Ux2
VWx − 9

2
U3Uxxxx2

− 3VVxx4
+ 4Vxx3

W

+ 4Wxx3
V + 8Vxxx3

V + 2U2Vxx4
+ 3Uxxxx3

V − Uxxx4
Ux + 2U2Uxxx4

+ Ux4
U2

x

− 22

3
UxUx3

Vx − 1

2
Vxx2

Uxxx − 5

2
UxxVxxx2

− 4Uxxx2
Wx − 3Ux2

U2Wx

− 8

3
U2Wxx3

− 2Vxx2
Vxx + 3Vxx2

U2
x + UUxxUxxxx − 3U3

xUx2
− 4UxUxxUx3

− 3

2
VxUxx4

− 2U5Uxx2
− 6U3Vxxx2

+ 3V2
x Uxx − 7U2

xVxxx − 2U2
xUxxxx

+ 8U3
xUxx − Vx4

UxU − 27UUxx2
U2

x + 2Ux4
VUx + Ux4

VxU + 2Uxx4
UxU

+ 2Uxx4
UV − 1

2
Uxxxx4

U + 10UUxx2
Vxx + Ux4

UxxU + 14Uxxx2
UxV

+ 8Uxxx2
UVx + 2Ux2

UWxx + 6Ux2
VVxx − 2Wx2

UxV − 2Wx2
UVx − 6Ux2

U2
xV

+ Ux2
UUxxxx + 12U2

xU2Vx − 6UUxV2
x − 2Wxxxx2

U − 6U2
xVxV + 6VUxxWx

− 18UUxU2
xx + VxVUxxx − 2UxxxU2Vx + 2

3
U2

xxUx2
+ 20

3
UxxxUUxx2

− 6U2Ux2
Vxx + 4UxxU2Vxx − 6VxVVxx + 3UVxUxxxx − 4UxWxxx2

+ 4U3
xx

− 2V3
x + 4U3Vxx3

+ 2Uxxx3
W − 3Vxx2

Wx − 28

3
Uxx3

UVx + 2

3
Vx3

UUxx

− 24

5
U3Ux3

Ux − 2WUxxxx2
+ 2U2Uxxxxx2

− 4UU2
xUxxx − 5VxxxU2Ux

− 16

5
U4Uxx3

+ 5Ux2
UxWx − 3

2
U3Uxx4

+ 6Ux2
UxVxx + 8UxUxxVxx

+ 11UxVxUxxx + 9UxUxxWx + 4Ux2
VxW − 3

2
UVxxxxx2

− 2Wxx2
Uxx

− 9

2
UxxxU2Ux2

+ 8Ux3
UUxV + 36

5
U3Uxx2

V + 3UVxxxx3
+ 2UWxxx3

− 12Uxxx2
U2V + 4U2Wxxx2

+ 24

5
Uxxx2

U4 − 1

2
Uxxxxxx2

U − 4

3
UxVVx3

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/2/1420/6396183 by U
niversity of Leeds user on 25 January 2023



Lagrangian Multiforms 1459

+ 2UVx2
Wx + 14UUxVxxx2

− 6WxxU2Ux + 5UVxVxxx + 6UVxWxx + 4UVxx2
W

+ 5Ux2
V2

x − Uxxx2
Uxxx − 3

2
Ux4

UxU2 + 29

3
UUxUxxxx2

+ 4UxVx2
W − U2

xVUxx

+ 4Uxx2
VW + 4UxxUx2

W + UUxxxxx3
− 4U2Uxxxx3

+ 31

3
Uxx2

UxUxx − 2Wx2
U2

x

− 7VxVxxx2
+ 4Uxxx2

UW − 2VUxxVxx − 6WVxxx2
− 5Uxx2

Wxx + 6U3Uxxx3

+ 5Uxxx3
Vx + 2Vx2

UxVx + 84

5
U3Uxx2

Ux + 4WxUxx3
+ 2UxUxxxx3

+ 2UxWxx3

+ 4VxxUxx3
+ Uxx3

Uxxx + 2Vxx3
Uxx + 5Vxxx3

Ux − 6UUxx2
V2 − 5

2
Uxx2

Vxxx

− 7

2
Uxxx2

Vxx + 1

3
UVx2

Uxxx − 3UxxxxU2Ux + 15Uxx2
UxVx − 6UU2

xVxx

+ 48

5
Ux2

U2UxV − 3UxWUxxx − 6UxWVxx − 15UxxUUxUx2
− 15Ux2

UUxVx

− 5VVxxxx2
− 6VWxxx2

− 8U2
xWxx − WxVxxx + 2VxxWxx + 2VxxVxxx + 3WxxUxxx

− 5

2
Uxxxx2

Vx − 16

3
Ux3

VUxx − 20

3
U2Vxxx3

− 3U3Wxx2
+ 4Uxxx2

V2 + 1

2
Ux2

Vx4

+ 12Vxxx2
UV − 2UWxUxxx − 6UUxxXx + 2UxxxUxU3 + 3UxxxU2Uxx + 12

5
U4Vxx2

− 39

2
Uxxx2

U2Ux − 6Wxx2
Vx − Uxxxxx2

Ux − 38

3
UxUxx3

V + 66

5
U2U2

xUx2

+ 36

5
UxxU3Ux2

− 6U2Vxx2
V − 2UxxWxxx + 10VxU2

xx + 6XxVxx + 3XxUxxx

− 4VxWxxx − 3VxVxxxx − VxUxxxxx − 6WxWxx − 6U2
xXx + 2VxxxUxxx − 2UU2

xxx

− 2UV2
xx + 18UxxU2

xU2 − 4U3
xU3 − 2U2

xxU3 − 3U2Uxx2
W − 6UU2

xWx

+ 4

3
UxWx3

U + 7

3
Ux2

UVxxx + 1

2
UxxxUxxxx − 28

3
Uxxx3

UV − 4Ux3
VVx

− 3

2
VUxxxxx2

− 1

2
Vx2

Ux4
− 6Ux2

UxUW − 10

3
Ux3

UVxx + 22

3
Uxxxx2

UV

− 22

3
UUxVxx3

− 3

2
UxxVxxxx − 27

2
U2Uxx2

Uxx + 5

3
Ux2

UxUxxx − 1

2
Uxx2

Uxxxx

+ 10

3
Ux2

VUxxx + 1

2
VxxUxxxx + 1

2
Uxx2

Ux4
. (B.7)

The Lagrangian L̃(234) is identical to L(234). From the Lagrangians given here for 1 < i,

j ≤ 4, we see that L̃(1ij) gives a shorter Lagrangian than L(1ij). In general, the difference

between L̃(1ij) and L(1ij) can be expressed as the sum of a total xi derivative and a total

xj derivative.
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