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Abstract Bacteria inhibit and kill one another with a diverse array of compounds, including

bacteriocins and antibiotics. These attacks are highly regulated, but we lack a clear understanding

of the evolutionary logic underlying this regulation. Here, we combine a detailed dynamic model of

bacterial competition with evolutionary game theory to study the rules of bacterial warfare. We

model a large range of possible combat strategies based upon the molecular biology of bacterial

regulatory networks. Our model predicts that regulated strategies, which use quorum sensing or

stress responses to regulate toxin production, will readily evolve as they outcompete constitutive

toxin production. Amongst regulated strategies, we show that a particularly successful strategy is

to upregulate toxin production in response to an incoming competitor’s toxin, which can be

achieved via stress responses that detect cell damage (competition sensing). Mirroring classical

game theory, our work suggests a fundamental advantage to reciprocation. However, in contrast

to classical results, we argue that reciprocation in bacteria serves not to promote peaceful

outcomes but to enable efficient and effective attacks.

Introduction
Bacteria commonly live in dense and diverse communities where competition for space and nutrients

can be intense (Kim et al., 2014; Hibbing et al., 2010). As a response to such ecology, bacteria

have evolved a wide range of competitive traits (Granato et al., 2019), including contact-dependent

inhibition (Ghequire and De Mot, 2014; Hayes et al., 2010; Aoki et al., 2010), the type VI secre-

tion system (Miyata et al., 2013; Russell et al., 2014; Ho et al., 2014; Hood et al., 2010), narrow-

spectrum bacteriocins, and broad-spectrum antibiotics (Bérdy, 2005; Riley and Wertz, 2002;

Chao and Levin, 1981), which can kill or inhibit other strains. These mechanisms are extremely wide-

spread. Bacteriocidal toxins are found in almost all major bacterial lineages (Riley and Wertz, 2002;

Granato et al., 2019) and single species commonly make use of multiple toxins and diverse means

of attack (Granato et al., 2019; Be’er et al., 2010; Zhang et al., 2012; Steele et al., 2017;
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Jamet and Nassif, 2015). This toxin-based warfare is also important for bacterial ecology and evolu-

tion, with evidence that toxin production can prevent competing strains from invading a niche (Sas-

sone-Corsi et al., 2016; Nakatsuji et al., 2017; Zipperer et al., 2016; O’Sullivan et al., 2019), kill

off coexisting strains (Granato et al., 2019; Majeed et al., 2011; Speare et al., 2018; Ma et al.,

2014), or help strains to invade new niches (Kommineni et al., 2015; Wiener, 1996; Sana et al.,

2016).

The production and regulation of bacterial toxins have been studied for decades because of their

potential as clinical antibiotics (Lewis, 2013; Slattery et al., 2001). This work has revealed that toxin

production is often tightly regulated (Miyata et al., 2013; Anderson et al., 2012; Ghazaryan et al.,

2014; Bernard et al., 2010). Indeed, it is thought that there are many new antibiotics that remain

undetected because they are only activated under certain conditions (Maldonado et al., 2003;

Abrudan et al., 2015; Traxler et al., 2013). A major form of regulation in bacteria is quorum sens-

ing (Fuqua et al., 1994; Navarro et al., 2008; Eickhoff and Bassler, 2018) whereby cells secrete a

small molecule and respond to it dependent upon its concentration. Some antibiotics and bacterio-

cins are regulated by quorum sensing, which is thought to ensure that toxin production occurs at the

right cell density (Hibbing et al., 2010; Chandler et al., 2012). Other factors also regulate bacterial

toxin production, including particular nutrient conditions and diverse stress responses (Storz and

Hengge, 2011). This led to the argument that, in addition to quorum sensing, bacteria engage in

‘competition sensing’ whereby they use nutrient stress and cell damage to detect ecological compe-

tition (Cornforth and Foster, 2013; Lories et al., 2020).

Bacteria, therefore, have the potential for a wide range of responses during combat. Evolutionary

theory has so far focused on the evolution of unregulated toxin production. This work has

highlighted that factors such as strain frequency, nutrient level, the level of strain mixing (related-

ness), and the cost of toxin production are all important for whether bacteria employ toxins at all

(Bucci et al., 2011; Gardner et al., 2004; Brown et al., 2006; Gordon and Riley, 1999;

Frank, 1994; Levin, 1988). Other models have highlighted how natural selection for warfare can

have consequences for the evolution of diversity (Frank, 1994; Biernaskie et al., 2013; Kelsic et al.,

2015; McNally et al., 2017), including via rock-paper-scissor dynamics between different genotypes

(Czárán et al., 2002; Kerr et al., 2002). However, to understand the strategic potential of warring

bacteria, we must consider the regulation of their toxins and other weapons (Granato et al., 2019;

Cornforth and Foster, 2013).

Here, we study the evolution of strategy during bacterial warfare by combining a detailed differ-

ential equation model of toxin-based competition with game theory to identify the most evolution-

arily successful strategies. Informed by the large empirical literature on factors that regulate

bacteriocins and antibiotics, we compare four major classes of potential strategies: constitutive

(unregulated) toxin production, and regulation via nutrient level, quorum sensing, or by damage

from a competitor’s toxin. We study the behaviours and competitive success of each strategy when

in competition with other strains across a range of scenarios. We find that all three types of regu-

lated strategies carry benefits relative to non-regulated production and, for short-lived resources,

the three types of regulation offer largely equivalent alternatives for controlling attacks. However,

for long-lived environments, responding to incoming attacks is often the best performing strategy. A

key benefit to such reciprocation in such environments is the ability to downregulate a toxin once a

competitor is defeated, thereby saving the energy that would be lost in needless aggression.

Results and discussion

Overview
We are interested in how competition between strains and species of bacteria shapes the evolution

of toxin regulation. The core of our approach is a set of detailed ordinary differential equations

(ODEs) that capture ecological competition between bacteria (Figure 1a), which are built upon an

earlier model of bacterial siderophore production (Niehus et al., 2017). After exploring the case of

constitutive toxin production only, we extend our model to incorporate different strategies of regu-

lated production (Figure 1b). We use these differential equations to model ecological interactions of

bacterial strains and determine the outcome of competition for a given strategy against another

strategy when they meet locally.
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Figure 1. The two-layer modelling framework. (a) At the ecological timescale, we use differential equations to model the pairwise interactions of strains

with competing strains represented here by two single cells in blue and orange. Both strains consume nutrients from a shared pool, and each strain can

produce a toxin that inhibits the other strain (represented as coloured ‘T’s). We show an example of the temporal dynamics of a competition between

two strains, where strain A wins by investing more into toxin production (fA = 0.3) than strain B (fB = 0.1). All other parameters take the standard values

Figure 1 continued on next page
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These local-level competitions are embedded into a larger metapopulation framework that deter-

mines long-term evolutionary outcomes (Maynard Smith, 1982; Figure 1c and d). This metapopula-

tion modelling includes invasion analysis, in the tradition of the branch of evolutionary game theory

developed by Maynard Smith and Price, 1973 and the field of adaptive dynamics (Materials and

methods). We also later use a more explicit genetic algorithm that employs the same logic. This

algorithm pits diverse strategies against each other across a large number of combinations in order

to find the most successful strategies (Materials and methods). In these metapopulation models,

bacterial strains are assumed to compete locally in a large number of patches, but also globally

through dispersal to seed new, empty patches based on a standard life history of bacteria used in

previous models (Oliveira et al., 2014; Gardner et al., 2007; Chuang et al., 2009; Cremer et al.,

2012; Nadell et al., 2010; Figure 1c). Also, as discussed previously (Nadell et al., 2010), we refer

to the global population as a metapopulation to distinguish it from the local bacterial cell population

in each patch. This approach accounts for the possibility that a strategy can do well in local competi-

tion, but do poorly globally, and vice versa (Figure 1d). We show in later analysis that all competitive

outcomes shown in Figure 1d occur in our simulations, with the first two cases being the most

common.

We explore a number of different evolutionary scenarios using different calculations. We start by

using invasion analysis (depicted in Figure 1d) to study the evolution of toxin producers that lack

regulation and to study the evolution of toxin regulation from constitutive producers. This allows us

to understand first when, and how much, a strain should invest into attacking other, and then,

whether regulated production can evolutionarily replace constitutive production. We next compare

different regulated strategies to one another by studying their performance when facing a diverse

range of constitutively producing species. Finally, we study the case where regulated strategies com-

pete with each other and coevolve in massive tournaments to identify the most globally successful

strategies (see Materials and methods).

Our model needs to be relatively complex in order to capture the evolution of bacterial competi-

tion and regulatory networks. As a result, the form of our mathematical model is of a class that is not

amenable to analytical work (Boys et al., 2008; Gutiérrez and Rosales, 1998; Liu and Chen, 2003).

To confirm this, we investigated the behaviours of the dynamic model at steady state. This showed a

good basic correspondence between our numerics and analytics but confirmed that the model is not

amenable to further analytical work (see Appendix 1 Supplementary analytics). Nevertheless, by

combining a number of different competition scenarios with wide parameter sweeps, we are able to

show that our key conclusions are robust across many conditions.

Figure 1 continued

given in Table 1. (b) The differential equation model is used to model four major classes of toxin production strategies. From left to right: Constitutive

production without sensing of the environment, sensing clone-mate density (quorum sensing), sensing damage by the competitor’s toxin, and nutrient

sensing. Lower panel: At the metapopulation level, we model the long-term evolutionary dynamics of different warfare strategies. (c) Bacterial life cycle

assumed for modelling: empty patches are seeded with a small number of cells that then compete, where the outcome is determined according to the

local-level model (above). Cells of the two different strategies are shown in blue and orange as circles, where the area represents the number of cells

each produces. After competing in the patch for a certain amount of time (24 hours by default), the cells disperse, where the number of cells produced

by each strategy determines its frequency in the dispersal phase and new patches. That is, all dispersing cells have the same probability of finding and

seeding a new patch, and environmental conditions are identical across patches. Then another competition phase begins and so on (here orange is

winning and invading the population). While we show only two different strategies here, we model a metapopulation with more than two strategies

when we study the coevolution of attack strategies. (d) Four key outcomes used to predict evolutionary invasion. First case: a rare mutant outcompetes

the resident strategy in its patch (orange area is bigger than blue area in the patch). Importantly, the mutant also wins globally, that is, it makes more

cells than the average resident in the population, which we take from the number of cells that the resident strategy makes when it meets the same

strategy (the size of a semicircle in the all-blue patches). This measure captures resident fitness well because with the mutant being rare and a large

number of patches, the resident will nearly always be meeting itself. Second case: mutant loses and, in doing so, makes fewer cells than the average

resident. Third case: mutant wins locally, but ends up making very few cells, for example, it redirects a lot of energy into toxins rather than growth. As a

result, it does not produce more cells than the average resident strain (i.e. orange area in focal patch is smaller than blue area in all-blue patches).

Fourth case: mutant loses locally but produces more cells than the average resident, for example, the mutant is more passive and avoids the strong

mutual inhibition of two toxin producers. Thus the mutant wins globally.
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Evolution of warfare via unregulated toxin production
We first ask, what favours the evolution of constitutive toxin production. While many toxins are regu-

lated, constitutive production does occur (Mavridou et al., 2018), and we use the simple case of

constitutive toxin production to first identify general principles underlying the evolution of bacterial

warfare. In addition, constitutive production forms a baseline from which to compare the evolution

of regulated strategies. In order to study the behaviours that result from each strategy, we use a

detailed model of competition between strains based upon a system of differential equations (Mate-

rials and methods). This approach allows us to capture the temporal dynamics of strain interactions

and, later, toxin regulation.

In the model, we follow nutrient concentration and cell biomass over time as the strains engage

with each other (Figure 1a). We focus on competitions between two strains that each possess a

toxin that does not harm the producer strain but does harm the other strain. In reality, strains may

carry multiple toxins and resistances (Cordero et al., 2012; Gordon et al., 1998) and our framework

can be extended to include such complexity. However, for simplicity, we focus here on a single toxin

produced by each strain. We consider interactions that are pairwise at the strain level, but we later

account for a multitude of competitors by letting strains have many encounters, each with a different

strategy. To enable us to study a large number of strategies, our differential equations are based

upon simplified well-mixed conditions.

Our goal is to understand the evolutionary fate of different strategies of toxin-mediated competi-

tion. In order to do this, we need to recognise that the outcome of competition at a local scale may

not be predictive of evolutionary trajectories. Consider, for example, a competition between two

strains of bacteria on a particle of detritus in a pond. If one focuses solely on local competition on

the particle, then any strategy that results in a focal strain making more cells than its competitor will

be favoured, even if this leads to relative ruin for the winning strain with only a few cells surviving

the process. However, given these competitions can happen on many such particles, it is unlikely

that such extreme strategies would be favoured, because few cells will be produced to colonise new

particles. Instead, the best strategies will be those that make the most cells to disperse, which may

mean a strain also wins locally, but it may not (see Figure 1d).

To capture this effect, we embed the local-level competitions within a broader framework in

order to make evolutionary predictions (Maynard Smith, 1982; Weibull, 1997; Mitri et al., 2011)

(see Figure 1c and d). This framework allows us to ask whether a particular, initially rare, strategy

can successfully invade a metapopulation of another strategy (Materials and methods). Specifically, a

rare mutant’s fitness in the metapopulation is defined by the number of cells it produces in direct

competition with the resident, while the resident’s fitness is defined by its productivity when it meets

another resident in a patch, as will occur in the vast majority of patches if the mutant is rare

(Figure 1d, Materials and methods). For mutants that can invade, we also confirm that they then

cannot be reinvaded by the previous resident (Materials and methods), which is indeed always the

case here. We refer to such invasions that lead to a full replacement of the resident by the mutant –

where the resident is unable to reinvade from rare - as a stable invasion. By studying large numbers

of competitions, we can categorise strains by their ability to stably invade others, and thereby iden-

tify the evolutionarily stable investment into toxin production (f*). We then seek the optimal level of

toxin production, which cannot be invaded by any mutant strategy, but can invade all others.

What determines the optimal level of toxin investment? Intuitively, we find that cells evolve to

invest more in attacking their competitors when toxins are efficient at killing the competitor and/or

Table 1. Model parameters and their effect on optimal toxin investment.

Model parameter Parameter description Standard value [unit] (notes) Effect on optimal toxin investment f*

C(t=0) Initial cell biomass of each strain 0.1 [gC] p

N(t=0) Initial pool of nutrients 1 [gN] Intermediate optimum (Appendix 1—figure 3)

KN Saturation constant for nutrient uptake 5 [gN] p

mmax Maximum growth rate 10 [1/hr] q

k Killing efficiency of the toxin 20 [1/gT*1/hr] p

lT Toxin loss rate 0.1 [1/hr] q
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the toxins persist stably in the environment (Table 1). Toxin efficiency in our model is equivalent to

the relative cost of toxin production, that is, we see a high benefit-to-cost ratio favours toxin use.

This result is in line with previous theory, which has shown that the impact of toxin production on

growth rate is critical for the evolutionary outcome (Bucci et al., 2011; Levin, 1988). For highly

effective toxins, we find that strains will engage in an arms race that escalates to the point where

populations can go extinct (Appendix 1—figure 4). Such ‘evolutionary suicide’ is known from a wide

range of conflict scenarios in biology (Rankin and López-Sepulcre, 2005).

While earlier models have studied the effects of nutrients on toxin production, these studies

either did not model nutrients explicitly (Frank, 1994), or the level of nutrient competition was cou-

pled to the presence of and mixing with other strains (Bucci et al., 2011; Gardner et al., 2004). In

our model we can isolate the effect of nutrients on the evolution of toxin use. When nutrients are

scarce, there is not enough energy to produce effective amounts of toxins (Appendix 1—figure 3),

which agrees with previous theory (Bucci et al., 2011; Gardner et al., 2004; Frank, 1994), and has

also been shown experimentally in yeast (Wloch-Salamon et al., 2008). However, we also find that

toxin benefit peaks at intermediate nutrient availability and decreases for higher nutrient levels

(Appendix 1—figure 3). This can be understood in terms of a shift in the relative benefits of inves-

ting in cell division versus attack: When bacteria enter a competition at low density and resources

are abundant, there is a great potential for population expansion. Under these conditions, cells

evolve to invest relatively little in toxin production; energy is instead better invested in rapid growth

to win a competition by outgrowing other strains. In contrast, when growth potential is limited, cells

benefit from investing in warfare, unless, as mentioned above, nutrients are too scarce to produce

an effective toxin concentration.

The evolution of regulated attack strategies
We next investigate what happens when cells are able to regulate their level of toxin production in

response to environmental cues. The production of antibiotics and bacteriocins is commonly tightly

regulated by a variety of signals and cues. As discussed above, these can be broadly divided into

three major classes based upon known bacterial regulatory networks. The first is detection of cell

density by canonical quorum sensing or related means (Fuqua et al., 1994; Eickhoff and Bassler,

2018), which has been demonstrated by previous modelling work to be beneficial for the regulation

of cooperative traits (Cornforth et al., 2012). In addition, bacteria are highly responsive to both

nutrient stress and cell damage associated stress (Storz and Hengge, 2011), which both can detect

the level of ecological competition in the environment (‘competition sensing’; Cornforth and Foster,

2013; Lories et al., 2020).

We first compare the evolution of regulation by quorum, nutrient level, and the level of the com-

petitor’s toxin when each is in competition with constitutive strains. This allows us to ask whether

regulated strategies can evolutionarily replace constitutive strategies (see Materials and methods). In

brief, we model regulation of toxin production using a simple step function, which is defined by

toxin production in activated state (finduced), production in inactivated state (finitial), and a threshold

of the signal for activation. All three parameters are continuous; toxin production (finitial and finduced)

is constrained between 0 and 1, and the threshold is constrained to a region consistent with the

observed range of each signal (quorum, nutrient, toxin level).

In a vast tournament consisting of millions of individual competitions, we pit all possible strategies

of each mode of regulation against all possible versions of the fixed strategy. We then use invasion

analysis, as before, to look for the evolution of regulated strategies that can invade all unregulated

strategies. As before, we consider both global and local competition (see Figure 1d) to determine

invading strategies that cannot be reinvaded by the previous resident strategy and that therefore

cause stable invasion. We find that all possible outcomes of the metapopulation competitions

(Figure 1d) do occur, with the typical case being that the outcome of local and global competition

are the same (see Appendix 1—figure 6). In a small minority of cases (2.3%), we find that successful

invading strategies can be reinvaded by the previous resident to give a mixed evolutionary outcome,

and these cases are not considered further. Our analysis identifies versions of each mode of regula-

tion that can stably invade all possible constitutive strategies (Figure 2a–c). This result is expected

and confirms the basic intuition that – unless maintaining a regulatory circuit is very costly – a well-

regulated trait will outcompete an unregulated one (Cornforth and Foster, 2013). This is true

whether strains compete for a short or long duration, although shorter duration does select for a
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higher initial investment in toxin production in order to ensure that enough toxin is made in the time

that a strain has to compete (Appendix 1—figure 5).

How do the different regulatory strategies achieve their success? For the great majority of cases,

successful strains evolve to upregulate their attack after a delay, either based on the detection of

low nutrients, high quorum, or high levels of the competitor’s toxin (Figure 2d–f). In some cases,

there is no toxin production before this upregulation, as in the canonical model of quorum sensing

that turns a trait from off to on. In other cases, the strategy that evolves is to begin with a baseline

of constitutive production before upregulating this further upon activation (Figure 2a–c, with exam-

ple shown in Figure 2f), something also seen in real systems (Mavridou et al., 2018). A difference

between nutrient and quorum sensing versus toxin-based regulation is that examples of the latter
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Figure 2. Regulated toxin production outcompetes and evolutionarily replaces constitutive toxin production. Using a deterministic grid search, we find

nutrient-sensing, toxin-sensing, and quorum-sensing strategies that can stably invade the entire range of non-regulated producer strategies (a-c, red

areas). In these plots, the effects of two parameters on competitive outcome are shown: finitial, the toxin investment of a sensing strain at the initial

state, and finduced, the toxin investment after the signal passes a certain threshold. Red areas indicate combinations of finitial and finduced where at least

one threshold value allows stable invasion. Illustrative competitive dynamics are shown for the optimal non-sensing strategy against (d) nutrient-sensing,

(e) toxin-sensing, and (f) quorum-sensing (upregulates toxins at high quorum) and (g) quorum-sensing (downregulates toxins at high quorum). Grey

insets show investment in toxin production as a function of time. Regulation allows tactics that use toxins more efficiently and effectively than

constitutive producers. All parameters take standard values as given in Table 1.
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not only upregulate toxin production after a delay, they also downregulate the toxin if the competi-

tor is killed off (Figure 2e).

We also discovered winning strategies that function by downregulating toxin production after a

delay. For nutrient-based regulation, there is a narrow parameter range (the small vertical strip in

the lower part of Figure 2a) where strategies begin aggressively with the expression of toxin and

then downregulate it when nutrients are limited (dynamics not shown). For quorum-sensing strate-

gies, some also start with high toxin investment, but these strategies are more complex. These

downregulate toxins and invest in growth once they reach a high density, but will reactivate it again

if their cell numbers drop due to toxin attack (Figure 2g).

In each case, regulated strategies win by only making high levels of toxin at certain times, thereby

saving energy relative to constitutive producers. A corollary is that, if toxin production is cost free,

regulation will no longer be benefitical relative to constitutive production. But, assuming that there

is some costs to toxin production, regulation is expected to be favoured by natural selection.

In sum, there are regulated strategies of each of the three types under study that can evolution-

arily replace all non-regulated strategies. However, this analysis is based on regulated strains invad-

ing metapopulations consisting of a single constitutive strategy. In some contexts, a focal strain may

face a variety of competitors. Consider, for example, a situation where migration brings in a range

of competiting species, each optimised to a different environment. To consider this scenario, we

next ask how the different sensing strategies fare in competition with a standing diversity of constitu-

tive strategies. We introduce diversity by letting the different sensory strategies (i.e. nutrient sens-

ing, toxin sensing, and quorum sensing) face an increasingly diverse mix of constitutive toxin-

producing opponents. We assume that the standing diversity of constitutive producers is not itself

affected by the evolution of the regulated startegies, that is, there is no coevolution (we consider

coevolution in the next section, however). For each set of opponents, therefore, we can identify the

best performing regulated strategies simply as those that obtain the highest average biomass across

the competitions with the set of opponents (Materials and methods). Based on the simulated data,

we also fitted a linear regression model with sensing type as a categorical predictor and number of

competitors a numerical predictor (see Materials and methods).

When opponents have a single strategy (lowest diversity), the toxin sensing strategy is most effi-

cient in terms of its final biomass produced (Figure 3a, left panel). Moreover, the toxin sensing strat-

egy deals most effectively with diverse competitors (Figure 3a) with the regression analysis showing

a 2.5 times higher fitness for toxin sensing relative to the other strategies (p-value < 0.001). The suc-

cess of the toxin sensing strategy is associated with the reliable activation of toxin production when

sensing another toxin. Quorum sensing also activates toxin production during the competition but,

in some cases, is defeated without being able to attack back. This gives rise to the observed bimodal

outcome of the quorum-sensing strategy (Figure 3a). The nutrient-sensing strategy, by contrast,

attacks first and then deactivates later when nutrients decrease.

This superiority of toxin sensing is robust across a range of parameters, including different toxin

efficiencies, toxin loss rates, and nutrient concentrations (Appendix 1—figure 7). There is a clear

post hoc intuition to this result. A strain that only engages in conflict when attacked will be best able

to deal with a range of strategies that differ in their propensity and ability to attack. More specifi-

cally, as seen in the last section, these strains inactivate toxin production after a weak opponent is

eliminated, thus employing the toxin efficiently. We can directly demonstrate the importance of this

tactic of toxin inactivation by shortening the duration of the strain competitions such that toxin-sens-

ing strains do not have the opportunity to downregulate toxin production. For short competition

times, while regulated strategies still outperform unregulated ones (Appendix 1—figure 5), the

toxin sensing strategy fails to evolve a superior performance over the other modes of regulation

(Figure 3b).

The coevolution of regulated attack strategies
We have considered how regulated attack strategies perform in the face of constitutive strategies

that vary in their level of aggression, and in the face of varying levels of diversity in these opponents.

This revealed that regulation is generally beneficial and indicated that the sensing of an opponent’s

toxin is often the best performing strategy. However, this analysis is artificial in the sense that bacte-

ria with regulated strategies are also likely to compete against one another. Therefore, we next ask,

which sensing strategy is most successful when coevolving with other sensing strategies? We first
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consider strains that interact with others that have a similar attack strategy, regulated by the same

environmental cue. For each of the three types of regulation, we then search for the optimal strategy

using a genetic algorithm (see Materials and methods) (Figure 4a). Following the logic of the earlier

models, the optimal strategy is defined as one that will, on average, obtain the highest biomass

across competitions with all other possible strategies.

When competing with the same strategy, all strategies initially evolve to increase toxin production

during the competition (finitial < finduced) (Figure 4b). More specifically, strains responding to nutrient

depletion initially produce near zero toxins (finitial = 0.05) until they activate toxin investment, at a

level higher than the optimal fixed investment (evolved finduced = 0.50, while f* = 0.35). In compari-

son, strains responding to quorum sensing invest in more toxin initially (finitial = 0.11) and also more

when activated (finduced = 0.60). The quorum-sensing strategy is expected to be able to afford to

invest more in toxin production because, unlike nutrient sensing, strains can reduce toxin investment

again if biomass drops too low, thereby saving energy. The toxin-sensing strategy is different again.

It invests near zero toxin at the start of the competition (finitial = 0.01) and responds very strongly if a

competitor attacks (finduced = 0.73). Interestingly, the corollary is that, at evolutionary equilbirum

(when it will meet an identical toxin strategy), both remain passive and achieve a high biomass

(Figure 4b center). This outcome has similarities to the success of ‘tit-for-tat’, a reciprocal cooperat-

ing strategy in the classic evolutionary game theory tournament of Axelrod and Hamilton, 1981.

There, tit-for-tat succeeds by benefiting from mutual cooperation whenever others cooperate, while

maintaining the ability to shut off cooperation whenever it meets a non-cooperative strategy. When

this success leads to all individuals playing tit-for-tat, the result can be that all interactions end up as

cooperative, akin to the emergence of a peaceful productive strategy in our model.

The evolution of a peaceful outcome is specific to the ability to reciprocate; we do not observe it

for nutrient or quorum sensing. Nevertheless, we have identified a route by which bacteria might

evolve the peaceful resolutions seen in animal and human conflicts (Axelrod and Hamilton, 1981;

Kokko, 2013; Freedman, 1989). However, the model assumes that strains will only interact with

other genotypes that are adopting similar strategies for warfare. This is far from guaranteed in
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Figure 3. Toxin sensing is the most versatile strategy against a range of different competitor strategies. (a) We optimised (using a grid search) each of

the sensing strategies first against a single constitutive producer (left-hand side panel) and then against an increasing diversity of producers (other

panels). As an example, the nine competitors (right-hand side panel) have toxin investment f=0.1,0. 2,. . .,0.9 and we optimise each of the three sensing

strategies in terms of the sum of their final biomasses across all nine competitions. We show the final biomasses of individual competitions as points

and the average biomass as bars. The toxin-sensing strain (red coloured bars) performs best, both against the single strategy and against mixtures of

strategies. Among the other two sensory strategies, quorum sensing (yellow) has a higher variation of biomass than nutrient sensing (blue) across

individual fights. The benefit of sensing toxin is robust for diverse environmental conditions (Appendix 1—figure 7). (b) Shortening the competition

time (tend = 6 hr) removes the benefit of toxin sensing. When not mentioned, parameters take the standard values as given in Table 1.
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Figure 4. Coevolution of sensing strategies. Panels a and b follow the evolution of regulation when they compete solely against strains with the same

type of regulation, for example, quorum sensing versus quorum sensing; Panels c–f follow evolution when all three types of regulation compete

together. (a) Representative example of evolutionary convergence of the sensing parameters for the case of nutrient-sensing strategies competing

solely against other nutrient-sensing strains. Displayed is the mean parameter value of the 5% fittest strains at each generation for 10 independent runs

Figure 4 continued on next page
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bacteria as there exists considerable variability in weapons and their regulation, even within a single

species (Mavridou et al., 2018). Moreover, microbial communities typically contain many strains and

species, suggesting again that a given strain has the potential to meet a diversity of competitors and

strategies.

We therefore sought to capture this complexity with a final model in which all possible regulated

strategies are able to compete against each other, again using a genetic algorithm to identify opti-

mal strategies (see Materials and methods). Despite a great number of potential combinations (over

two million different competitions), and with different sets of hyperparameters of the genetic algo-

rithm, we again see a clear winner in toxin-based regulation, both for our normal parameters

(Table 1, Figure 4c) and for sweeps that consider broad ranges of these parameters (Appendix 1—

figure 8) and a wide range of initial frequencies of the two strains (Appendix 1—figure 9). More-

over, as for competition against unregulated strategies (Figure 3), the success of toxin-based regula-

tion in contests with other strategies does not come from an ability to avoid conflict and create

peaceful outcomes. Instead, the winning strategies are typically aggressive when they meet another

strain and they only downregulate their toxins once an opponent is on its way to being eliminated

(Figure 4d–f). And, as for competition against unregulated strategies, this ability to become passive

is key to their success. For short competitions, there is no benefit in turning off an attack and the

competitive benefit of reciprocity over other regulated strategies is lost (Appendix 1—figure 10).

Conclusions
Bacteria use a wide variety of weaponry to harm other strains and species, which is typically under

tight regulation (Ghequire and De Mot, 2014; Granato et al., 2019; Stein, 2005; Michel-

Briand and Baysse, 2002; Cascales et al., 2007). How bacteria employ these mechanisms of attack

is central to understanding why a particular species or pathogen can invade and persist in communi-

ties, while others cannot (Granato et al., 2019; Kommineni et al., 2015). Here, we have explored

the evolutionary logic underlying strategies of bacterial attack. We find that toxin production is fav-

oured under many conditions, particularly when toxins are effective and long-lasting and when the

potential for population expansion is limited (Table 1). The prevalence of aggressive strategies in

our model is consistent with the widespread use of toxins by bacteria (Granato et al., 2019), and

the associated intensity of competition observed in experiments (Chao and Levin, 1981;

Mavridou et al., 2018; Oliveira et al., 2015). We also find that well-regulated attacks can consis-

tently outcompete strategies that lack regulation (Figure 2). This is because the benefit of employ-

ing a toxin not only changes with different competitors but also within a single competition over

time. Regulation allows a strain to better tune its behaviour and follow the optimal investment at any

given situation. However, the three major classes of bacterial regulatory network are not always

equivalent ways to control attacks. Across a diverse range of potential competitors, responding

directly to incoming attacks is the most robustly successful strategy (Figures 3,4).

Our modelling implicitly captures spatial structure at the metapopulation level with discrete

patches of bacteria that compete with each other. Within patches, our ODE model best reflects envi-

ronments with limited spatial structure where cells of different genotypes are mixed together. How-

ever, bacteria do also display fine scale spatiogenetic structuring within their communities

Figure 4 continued

of the algorithm. (b) The biomass dynamics of the three evolutionarily stable sensing strategies at equilibrium (when in competition with a strain with an

identical strategy). Areas where the dynamics are shown in a pale tone indicate time intervals where toxin was downregulated. For toxin sensing, toxin

production remains deactivated thoughout. (c) Evolution in tournaments where all strategies compete against one another, showing the dominance of

the toxin sensing strategy. For five independent runs of the tournament the upper panel shows population fraction of the different strategies, the lower

panel shows individual fitness averaged per sensing type. The thick lines give the average across runs. The tournament starts with 20 generations (left of

the vertical line) without selection, after that, strategies are selected based on their competitive fitness. (d) Winning strategies: shown is the range of

dynamics of the optimised toxin sensing strategies against quorum sensing and nutrient-sensing strategies that evolved in one realisation of the

tournament. Red and turquoise indicate activated and inactivated toxin production, respectively. (e) Example of a competition between one of the

winning toxin-sensing strains meeting a nutrient-sensing strain evolved in the tournament. Red and turquoise, respectively, indicate upregulated and

downregulated toxin production for the toxin-sensing strain, other strain is shown in light blue. (f) Example of a competition between one of the

winning toxin-sensing strains and a quorum-sensing strain evolved in the tournament. Red and turquoise, respectively, indicate upregulated and

downregulated toxin production for the toxin-sensing strain, other strain is shown in yellow. All parameters take standard values as given in Table 1.
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(Nadell et al., 2016; Stacy et al., 2016; Krishna Kumar et al., 2021). Here, our model has the

potential to capture the outcome of competition at the interface of two strains, which is expected to

be critical for success and persistence in such communities (Granato et al., 2019). However, there is

clear potential for other effects of local spatial structure on sensing strategies that we do not cap-

ture. For example, in contrast to the detection of competitor’s toxins, responses to quorum sensing

and nutrient depletion may occur first in the middle of a patch of cells, where toxin production has

the least benefit as toxin receivers are mainly clone-mates (Inglis et al., 2009; Wechsler et al.,

2019).

Our work predicts that sensing incoming attacks through direct or indirect means should be a

widespread way of regulating toxins and other modes of attack. This hypothesis lends itself to

empirical testing via the study of bacterial behaviour during toxin-mediated competition with other

strains and species. Some examples of reciprocation already exist. Many bacteria upregulate attack

mechanisms via stress responses that detect cell damage (Cornforth and Foster, 2013). This

includes recent evidence of reciprocation between warring Escherichia coli strains where DNase pro-

tein toxins activate toxin production in competing strains via the SOS response to DNA damage

(Mavridou et al., 2018; Krishna Kumar et al., 2021; Gonzalez et al., 2018; Granato et al., 2019).

Because many antimicrobials target the DNA of cells (Janion, 2008; Gillor et al., 2008), sensing

DNA damage is likely to be a relatively robust way to achieve reciprocity. But there are other mecha-

nisms; Pseudomonas aeruginosa senses incoming attacks via the type six secretion system (T6SS) of

competitors, which delivers toxin via the molecular equivalent of a speargun (Basler and Mekalanos,

2012; Basler et al., 2013). Upon detecting an incoming attack, a cell will activate its own T6SS in

response (Basler et al., 2013). Consistent with our findings, recent work suggests that a key benefit

to reciprocation via the T6SS is the ability to save energy and only attack when necessary, alongside

a benefit that comes from improved aiming which is specific to this mode of attack (Smith et al.,

2020). Finally, there is evidence that bacteria may also detect and respond to incoming attacks via

proxies such as the detection of lysate produced when surrounding cells are killed (LeRoux et al.,

2015a), or molecules that are made by an attacker alongside a toxin (Cornforth and Foster, 2013;

LeRoux et al., 2015b).

There is also evidence that bacterial toxins can be regulated via nutrient depletion and quorum

sensing (Ghequire and De Mot, 2014; Cascales et al., 2007). Our models of regulation by quorum

or nutrients typically predict that attacks will evolve to be activated at high quorum or limited

nutrients, which recapitulates the typical directionality of the regulation observed in nature

(Chandler et al., 2012; Fontaine et al., 2007; Inaoka et al., 2003). However, if detecting damage is

the best basis for attack, why do some bacteria use these other forms of regulation? For short com-

petition times, our model predicts that the three regulatory strategies are largely equivalent (Fig-

ure 3 and Appendix 1—figure 10). A short duration of competition between strains removes the

benefit of decreasing toxin production once an attacker has been overcome. Under these condi-

tions, the evolutionary path to one form of regulation may largely be determined by differences in

costs for regulatory networks and which pre-existing regulatory systems are available for co-option

(Cotter and DiRita, 2000; Hockett et al., 2015). We predict, therefore, that mechanisms to recipro-

cate attacks are particularly valuable in environments where warfare commonly leaves a victor

unchallenged for a long time afterwards. Consistent with this, one of the clearest examples of recip-

rocation occurs in E. coli (Mavridou et al., 2018; Krishna Kumar et al., 2021; Granato et al.,

2019), which uses colicin toxins to displace other strains and persists for long periods within the

mammalian microbiome (Gillor et al., 2009).

Another possible explanation for why some bacteria do not use cell damage to regulate their tox-

ins comes from the notion of ‘silent’ toxins. These are toxins that are not easily detected by the cell’s

stress responses, which may limit the potential for a toxin-mediated response. For example, some

toxins depolarise membranes (Yang and Konisky, 1984) and may be favoured by natural selection

specifically because they do not provoke dangerous reciprocation in competitors (Gonzalez et al.,

2018). In other cases, bacteria appear to use multiple forms of regulation in order to integrate infor-

mation from multiple sources (Cornforth and Foster, 2013). For example, Streptomyces coelicolor

regulates antibiotic production via both nutrient limitation (Hesketh et al., 2007) and mechanisms

that detect incoming antibiotics (envelope stress [Hesketh et al., 2011]). A potential future use of

our modelling framework would be to study how these combined regulatory strategies evolve.
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Bacteria use diverse regulatory networks to attack and overcome competitors, and there is much

still to understand about their evolution. Here, we have identified general principles for the function

of these networks in bacterial warfare. We find there are great benefits using regulation to time an

attack; both to minimise its cost and maximise its effect on an opponent. We also find that regula-

tion that enables reciprocation can be particularly beneficial. If cells only attack when attacked, they

invest their energy where and when it is most needed: against aggressive opponents. Our findings

are mirrored in the classical predictions from the game theory of animal combat, which suggested

that adopting a reciprocal and retaliatory strategy can be effective (Maynard Smith and Price,

1973; Kokko, 2013; Freedman, 1989; Enquist and Leimar, 1990). However, the predicted out-

come was typically one of peace and the avoidance of conflict, which is indeed what is observed in

many animal contests (Briffa M, 2013). In contrast to such lessons, experimental work suggests that

bacteria often engage in deadly conflict (Abrudan et al., 2015; Mavridou et al., 2018;

Oliveira et al., 2015; Gonzalez et al., 2018; Be’er et al., 2009; Vetsigian et al., 2011). Our models

offer an evolutionary rational for this observation. The regulation of combat in bacteria is not usually

about avoiding conflict; it is about timing an attack and downregulating it once a competitor is no

longer a threat.

Materials and methods

Overview
In this study we use a modelling framework that captures two scales of competition (Figure 1). At

the local level, we model bacterial strain competitions using systems of ODEs. These equations are

well suited to model temporal dynamics on the relatively short ecological timescales at which bacte-

rial strains interact with nutrients and competitors. At the global level, we model the evolution of dif-

ferent strategies within a metapopulation. This metapopulation level allows us to follow the

evolution of different strategies across much longer evolutionary timescales, and to capture the

important interplay of local and global fitness (Figure 1d). We use this game theory framework to

identify strategies that are evolutionarily successful against a diversity of possible competitors. All

questions addressed in this work require both layers of modelling. The system of ODEs that models

constitutive toxin production is described in the next section and forms the basis for all of the mod-

els. Evolution at the metapopulation level is implemented using a common logic (Figure 1c,d), using

variations that capture a range of questions and evolutionary scenarios as detailed below.

A differential equation model of bacterial warfare
Our model captures pairwise competitions between bacterial strains, which have the potential to

produce toxins (Figure 1a). This first model allows a strain to have a fixed investment into its toxin –

below we describe the extension of this model that allows toxin regulation in response to external

cues. We employ ODEs, which are well suited to capture the temporal dynamics of strain interac-

tions happening at ecological timescales. A number of different models have been used to study the

evolution of bacterial public good regulation (Niehus et al., 2017; Heilmann et al., 2015;

Kümmerli and Brown, 2010). Here, we follow Bucci et al., 2011, because they model both nutrients

and toxins explicitly, which are both important cues for the regulation of toxin production. We study

a competition between two strains that each possess a toxin that does not harm the cells of the pro-

ducer strain, but does harm the other strain. In reality, strains may carry multiple toxins and resistan-

ces (Cordero et al., 2012; Gordon et al., 1998) and the evolution of multiple mechanisms of attack

and defence is an interesting question in its own right. However, we focus here on a single toxin pro-

duced by each strain. We also describe the dynamics of the nutrients and cell densities in a well-

mixed environment. The interactions of cells, nutrients, and toxins can be described by the system

of ODEs:
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dCA tð Þ

dt
¼ 1� fAð Þ�max

NðtÞ

NðtÞþKN

CA tð Þ� kTB tð ÞCA tð Þ;

dCB tð Þ

dt
¼ 1� fBð Þ�max

NðtÞ

NðtÞþKN

CB tð Þ� kTA tð ÞCB tð Þ;

dTA tð Þ

dt
¼ fA

NðtÞ

NðtÞþKN

CA tð Þ� lTTA tð Þ;

dTB tð Þ

dt
¼ fB

NðtÞ

NðtÞþKN

CB tð Þ� lTTB tð Þ;

dN tð Þ

dt
¼�

NðtÞ

NðtÞþKN

CA tð ÞþCB tð Þð Þ;

(1)

where CA(t) and CB(t) denote the biomasses of cell strains A and B, respectively, TA(t) and TB(t)

denote the biomass of each strain’s toxin, and N(t) denotes the concentration of a growth-limiting

nutrient for which both strains compete. We consider a pool of nutrient that is depleted by the cells.

Similarly to Nadell et al., 2008, we describe the energy that is available to the cells by the Monod

equation, in which KN is the nutrient saturation constant. The maximum growth rate is given by mmax.

Toxins kill with efficiency k and are lost with rate lT. We assume that all toxins have identical loss and

killing rates in order to remove biochemical differences between strains and focus our analysis on

the effects of different production strategies.

For constitutive toxin production, the strategy of a strain is given simply by a fixed f (f 2 [0,1]),

which captures the investment into toxin production relative to cell biomass. The production of anti-

biotics and bacteriocins can have significant metabolic costs and can even require a cell to lyse, as

occurs with colicins and pyocins (Cascales et al., 2007; Nakayama et al., 2000). We model the cost

of toxin production on cellular growth as a linear allocative trade-off function in the growth term

(Bucci et al., 2011). For example, a strain that invests f = 0.1 into its toxin will only reach 90% of its

maximal growth rate.

The dynamics of cells, nutrients, and toxins are modelled as continuous for their typical range.

But when a cell strain reaches a very low concentration (C(t)=10�6), we assume that stochastic extinc-

tion occurs such that cell concentration drops to 0. Further, our model assumes a limited lifetime of

the local patches by stopping the dynamics when 24 hr (or less for the analysis of shortened compe-

tition times, Appendix 1—figure 5) have passed.

We solve the system of ODEs numerically using an implicit Euler method. This numerical scheme

is implemented in MATLAB (version 9.5.0.944444) (MATLAB, 2018). Our implementation solves the

equations (Equation (1)) until the defined end time. We avoid numerical issues due to negative state

variables by setting any state variables reaching a value below 10�8 to 0.

A model of regulated toxin attack
To extend the above model to include sensing, toxin production of bacterial strain A is either a func-

tion of nutrient depletion, toxin of strain B, or of quorum sensing (given as cell biomass of strain A).

Each signal triggers toxin production via a simple on-and-off switch (Cornforth and Foster, 2013)

so that the toxin production of strain A is given through one of the equations:

fA ¼ finitial þ finduced � finitialð ÞH N t¼ 0ð Þ�N tð Þð Þ�UN½ �; (2)

fA ¼ finitial þ finduced � finitialð ÞH TB tð Þ�UTBð Þ; (3)

fA ¼ finitial þ finduced � finitialð ÞH CA tð Þ�UQSð Þ; (4)

where H is the Heaviside step function given as

H xð Þ ¼
0;x<0

1;x� 0

�

(5)

and where

finitial 2 0; 1½ � and finduced 2 0; 1½ �.
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These equations of regulated toxin production each comprise the initial investment into toxins

(finitial) when the trigger term is deactivated and the trigger term itself. The trigger term contains a

Heaviside step function and becomes active when the signal increases over the sensing threshold

(UN/UTB/UQS). When activated, the trigger term changes the initial toxin investment (finitial) to

become the induced toxin investment (finduced). We allow the induced toxin investment to be smaller

(when the signal is a repressor) or larger than the initial toxin investment (when the signal is an

activator).

Invasion analysis
We use our first models to predict the optimal constitutive toxin production strategy across different

ecological conditions. Here, the assumed scenario is a monomorphic metapopulation (all strains

have identical warfare strategy), where a rare mutant strategy appears that may or may not invade

this metapopulation. As time progresses toward infinity, the metapopulation will finally be domi-

nated by a strategy that can invade the metapopulation of any other strategy and that can itself not

be invaded. We implement this scenario using classic pairwise invasion analysis. More specifically,

we employ game theory and, in particular, invasion analysis to find the best strategies (Nowak and

Sigmund, 2004; McElreath and Boyd, 2013), where the best strategy is one that, if adopted by the

whole population, cannot be invaded by any other strategy. These strategies are also called evolu-

tionarily stable strategies (Maynard Smith, 1982).

We follow previous work (Oliveira et al., 2014; Cremer et al., 2012) by assuming a microbial life

cycle that consists of a seeding step where local patches are seeded with two competing strains, a

competition step where strains grow and interact according to the differential equations explained

above, and a mixing step where cells from all patches disperse and mix, leading to a new seeding

episode (Figure 1c). The proportion of the different strains (or strategies) that are seeded is deter-

mined by the strain frequencies after the competition step. Without explicitly modelling this life

cycle, invasion analysis (McElreath and Boyd, 2013) asks whether a particular strain with strategy

finv when rare can invade a population dominated by another strategy fres (the resident Wei-

bull, 1997; Figure 1d). To answer this, we calculate the fitness of the resident strategy (wres) and the

fitness of the invading strategy (winv). The fitness of the resident is its final biomass when in competi-

tion with an identical strategy so that wres = w(fres|fres) and the fitness of the rare invader is deter-

mined by its final biomass in the competition between invader and resident strategy, winv = w(finv|

fres). We then calculate the invasion index for an invading strategy according to Mitri et al., 2011 as

Iinv ¼
winv

wres

¼
w finvjfresð Þ

w fresjfresð Þ
: (6)

When the invasion index Iinv is larger than 1, the rare strategy can invade the resident strategy;

when the index is smaller than 1, the rare strategy cannot invade, and it disappears. Finally, we also

test for back-invasion and compute Iinv for when the resident is rare and the mutant is the resident.

We implement strain competitions by solving the system of ODEs described above. We define evo-

luationarily stable strategies as those strategies that have an Iinv larger than 1 against all studied

competitors (and both as rare and resident strategy). By calculating the invasion index for a large

number of invading strategy-resident strategy pairs, we obtain a pairwise invasibility plot

(Brännström et al., 2013) (insets in Appendix 1—figure 4). Using this plot, we find a single evolu-

tionarily stable strategy f* that can invade all strategies and that cannot be invaded by any other

strategy. We determine this globally optimal strategy using the algorithm outlined in the Appendix

1—code 1. We can then ask how the parameters of the model affect the evolution of toxin invest-

ment (Table 1).

Invasion analysis of sensing strategies
We next ask whether regulated strategies will evolutionarily replace constitutive production. Here,

the ecological scenario is the same as above: monomorphic populations of constitutive toxin produc-

tion strategies are threatened to be invaded by rare strategies that can sense (Figure 1d). We per-

form a parameter grid search that tests a large number of sensing strategies (stepping: Dfinitial/D

finduced = 0.02 and DU = 0.002, constraints: finitial 2 0; 1½ �, finduced� 0; 1½ �, UN 2 0; 1½ �, UTB 2 0; 20½ �,

UQS 2 0; 20½ �) against the range of constitutive strategies. For the constitutive strategies, we select
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from a fine grid spacing that also includes the optimal constitutive strategy (ffixed = [0.00, 0.01, 0.02,

. . ., 1.00]). For each pair of sensing and non-sensing strategies, we compute the invasion index once

for the sensing strategy as the resident and again for the non-sensing strategy being the resident.

We then search for those sensing strategies that can invade all non-sensing strategies and that them-

selves cannot be invaded by any other non-sensing strategy. We show where those strategies lie in

the parameter space of finitial and finduced (Figure 2a-c).

Sensing strategies against standing diversity
We also study the evolutionary success of the three different types of sensing when being in con-

stant competition with a diverse set of competitors. Here, the ecological scenario is a polymorphic

metapopulation – a mix of different constitutive production strategies – with a given diversity. We

assume that this diverse set of strategies is not influenced by evolution in the focal sensing strategy

due to, for example, immigration that continually resupplies the diversity of competitors. We then

ask what happens when a rare sensing strain enters this metapopulation, where its success depends

on its success across pairwise competitions with the different resident strategies.

We implement this by competing focal sensing strategies against a set of different constitutive

strategies and computing their fitness from the average biomass produced across those competi-

tions. Specifically, for each of the three different sensing types, we perform a parameter grid search,

creating a large number of predefined strategies across the parameter range of finitial (2[0,1], at

increments of 0.05), finduced (2[0,1], 0.05) and respective thresholds UN (2[0,1], 0.02), UTB (2[0.001,4],

0.0005), and UQS (2[0.01,1.2], 0.01). Each of those sensing strategies is competed against a fixed set

of constitutive strategies, one at a time, by solving the above system of equations. We then compute

for each sensing strategy the average fitness across its competitions. Within each of the three sens-

ing types we find the single strategy with the highest average fitness. For those winners we show

the average fitness as bars in Figure 3 together with the fitnesses obtained against each individual

constitutive strategy. We repeat this entire procedure for five different levels of diversity among the

constitutive strategies. Starting with the lowest diversity set, which contains only a single constitutive

strategy (f = 0.5), we then add increasingly extreme strategies, yielding three competitors (f =

0.4,0.5,0.6), five competitors (f = 0.3,0.4,0.5,0.6,0.7), seven competitors (f =

0.2,0.3,0.4,0.5,0.6,0.7,0.8), and finally nine competitors (f = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9).

Using the simulated results, we fit linear regression model with the sensing type as a categorical

predictor variable and the number of competitors as a numerical predictor variable. The regression

takes the form

Fi ~N aS i½ � þbD i½ �;s
� �

where Fi is the fitness of the ith competition, which we assume to be normally distributed around a

mean given by a linear equation and with standard deviation s. The fixed intercept is given through

aS[i], where S[i] is the ith element of integer vector S that contains only two possible values indicating

whether the toxin sensor or a different sensor is in the competition i. D[i] is the ith element of integer

vector D, which gives the number of competitors in the ith competition. Finally, b gives the change

of fitness when adding one competitor. We fit the regression model using R (version 3.6.1)

(R Development Core Team, 2011).

Genetic algorithm
Finally, we study which sensing strategies are most successful in competition with other sensing

strategies. We study this both within each type of sensing and across all three different types. Here,

the scenario is a polymorphic metapopulation of coevolving sensing strategies. Mutation and migra-

tion create new strategies inside this population. A strategy’s achieved biomass in pairwise competi-

tions with other strains determines its ability to stay and amplify in the metapopulation. The model

initially studies a wide variety of strategies competing with one another. However, as time passes,

the metapopulation converges and consists of increasingly optimal strategies. As this happens, the

analysis then approximates the invasion analyses described above, where most strains are largely

identical and rare mutants are pitted against this majority in the metapopulation (Figure 1d).

Specifically, we use a genetic algorithm to search for the evolutionarily stable strategy in the large

space of possible strategies of a single type of regulation (and also in the space of all possible
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regulating strategies). This algorithm adapts the typical structure of a genetic algorithm (Mela-

nie, 1996) where in each round a population of individuals is first tested to evaluate fitness and it is

then replaced by a new daughter generation. Individuals of this new generation are created by a mix

of cloning and mutating individuals from the previous parent generation selected based on their fit-

ness and by addition of novel random strategies. As is typical in non-adaptive algorithms , the con-

trol parameters of the algorithm (e.g. number of generations, number of strategies in the

population, rate of mutation, etc.) are chosen to achieve short simulation times and good conver-

gence behaviour as determined by visually inspecting the distribution of population parameters over

time (Melanie, 1996). Our population of competing strategies has a constant size of n=60. Initially a

set of random strategies is created, whereby the three parameters that define an individual sensing

strategy are drawn from a uniform distribution with given parameter constraints (finitial 2 0; 1½ �,

finduced 2 0; 1½ �, UN 2 0; 1½ �, UTB 2 0; 4½ �, UQS 2 0; 1:2½ �). The constraints for the sensing thresholds take

the range of the respective signals as they are observed across the large number of competitions

performed in the invasion analysis of sensing strains described above. (For the initial population in

the case where all three sensing types compete, the sensing type is chosen at random with equal

probability for all three types and, to avoid long run times and artefactual superiority due to parame-

ter constraints, initial parameter values start at the optimum from the within strategy competition.)

In every round then, each strategy competes against all n strategies, including its own type. The

final biomass of every strategy is summed across its competitions to give its competitive fitness.

Then, a new daughter generation is generated. The four most competitive parent strategies are cho-

sen to move into the next generation without parameter mutation, 36 strategies are drawn from the

parent generation with probability proportional to their fitness and one of their parameters is

mutated by adding a value drawn from a normal distribution with mean of 0 and standard deviation

of 0.001. If, after mutation, a daughter strategy violates the parameter constraints, the random draw

gets repeated until the constraints are met. Finally, 10 immigrant strategies are generated by choos-

ing their sensing parameters as random draws from a uniform distribution within the constraints. (In

the case of all three strategies competing, the sensing type is first drawn at random with equal prob-

ability, and then the sensing parameters are drawn at random.) For the competition between types

of a single sensing strategies, the algorithm is run for 100 generation. (For the tournament with all

three strategies, we ran the first 20 generations without selection, where we replace the population

each generation with migrants, to allow comparison with the case where selection occurs,

Figure 4c). The evolving parameter values for the top four strategies are averaged for each genera-

tion and saved (Figure 4a). The averaged values in the last timestep give the evolutionary stable

strategy for each tournament (Figure 4b). In our sensitivity analysis, we also examine the results of

the genetic algorithm with alternative sets of control parameters, including a smaller and a larger

size of the mutation standard deviation (0.01 and 0.0005), a smaller and larger proportion of ‘migrat-

ing’ strategies in each generation (5 of 60, and 20 of 60), and five different sizes of the population of

strategies (50, 70, 80, 90, 100). This yields a total of 20 alternative parameter combinations.

Code availability
The MATLAB code for the regulated toxin model, the invasion analysis, and the evolutionary tourna-

ment is available on GitHub (https://github.com/reneniehus/bact_warfare, copy archived at swh:1:

rev:923e104aa634230547ba464c6bc8fee07f662ffa, Niehus, 2021).
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Brännström Å, Johansson J, von Festenberg N. 2013. The hitchhiker’s Guide to Adaptive Dynamics. Games 4:
304–328. DOI: https://doi.org/10.3390/g4030304

Briffa M. 2013. Animal Contests. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139051248
Brown SP, Le Chat L, De Paepe M, Taddei F. 2006. Ecology of microbial invasions: amplification allows virus
carriers to invade more rapidly when rare. Current Biology 16:2048–2052. DOI: https://doi.org/10.1016/j.cub.
2006.08.089, PMID: 17055985

Bucci V, Nadell CD, Xavier JB. 2011. The evolution of bacteriocin production in bacterial biofilms. The American
Naturalist 178:E162–E173. DOI: https://doi.org/10.1086/662668, PMID: 22089878
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Appendix 1

Appendix 1—code 1: Pseudo code to find the evolutionarily stable strategy of fixed toxin produc-

tion.

Initialization: Find the initial resident fresini (for example, start with the highest average resident biomass)

forward = 1 indicates if the next migrant will have a higher or lower toxin investment than the resident. Can be 1 or -1.

previousforward = 1 record the direction of strategy change from the previous iteration

previousfres = 0 record the resident from the previous iteration

step = 0.1 initial step for the strategy change (initially coarse to localize the ESS)

minstep = 0.0001 the precision we want for the strategy value

singular = 0 boolean saying if a singular strategy is localised

nbflip = 0 record the number of consecutive flips in direction

fres = fresini

newres = 0 boolean saying if there is a new resident

while (!singular) {do this while no singular strategy is localised

if (newres) {

res vs N res competition. Compute the resident against the resident. Record the resident average strategy: wresav.

}

fmut = fres + forward*step pick an invader that differs from resident according to direction

mut vs N res competition. Compute mutant vs resident competition. Record the mutant biomass (wmut) at the end of the competition.

previousforward = forward update the previous direction

previousfres = fres update the previous resident before the competition

if (wmut < wresav) {resident stays the resident.

forward = - forward change the direction, to test a migrant with lower f value at the next step

}

if (wmut > wresav) {the mutant invades and replaces the resident

fres = fmut the new resident will take the migrant value

newres = 1 we have a new resident, we'll have to compute its resident fitness at the next iteration

}

if (forward != previousforward) {compare the direction with previous direction

nbflip = nbflip + 1

}

if (forward == previousforward) {compare the direction with previous direction

nbflip = 0

}

this will allow to localise an ESS. We want fres to stay identical for 2 consecutive time steps, but we want to make sure that the

higher and lower strategies have been checked. Indeed if the mutant that we just tested goes extinct, the resident will stay resident

but that is not enough to say it is an ESS. We also want the number of flips in direction to be > 1.

if (previousfres == fres & nbflip > 1) {singular strategy localised

if (step <= minstep) {precision is high enough

singular = 1 we have found the optimal strategy

}
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if (step > minstep) {will redo the whole procedure with tinier step

step = step/10 increase precision 10 times

nbflip = 0 reset the number of consecutive flips

}

}

}

Record the final fres (ESS).

Finally, we test whether this fres (ESS) is a GLOBAL optimum by competing it against the range of strategies given through f = [0,

0.01, 0.02, . . ..1].

Supplementary analytics
For the system of ODEs presented in Equation (1), the system state could be rewritten in the vector-

ised form X ¼ CA tð Þ;CB tð Þ; TA tð Þ; TB tð Þ;N tð Þð ÞT with the system dynamics denoted as

dX

dt
¼ F X; fA; fB;k; lrð Þ: (S1)

We denote a specific equilibrium state by X
�. In order to analyse the associated linearly asymptot-

ical stability of the above system at X�, we should first find solutions safisfying F X
�; f �A ; f

�
B ;k; lT

� �

¼ 0:

We note, that in Equation (1), the dynamics of N is defined by a negative derivative, and from this

derivative we can see that a stable state regarding N can only be reached when there are no cells or

no nutrients. However, no cells is a trivial and extreme state (i.e. no cells are left for further seeding),

and no nutrients cannot be reached within finite durations. We will therefore abandon the dyanmics

of N from the system, basically assuming chemostat environment where different levels of N can be

acchieved through balancing consumption and influx of N. This changes of course how cell strains

interact, but it will help to show in a simpler way how analytical methods fail even for this simplified

system of equations.

Now, setting F X
�; f �A ; f

�
B ; k; lT

� �

¼ 0 further gives

1� fAð Þumax
N

Nþ kN
CA� kTBCA ¼ 0 (S2)

1� fBð Þumax
N

Nþ kN
CB� kTACB ¼ 0 (S3)

fA
N

Nþ kN
CA � lTTA ¼ 0 (S4)

fB
N

Nþ kN
CB � lTTB ¼ 0 (S5)

From Equation (S2), we have

TB ¼ 1� fAð Þumax
N

k Nþ kNð Þ
: (S6)

From Equation (S3), we have

TA ¼ 1� fBð Þumax
N

k Nþ kNð Þ
: (S7)

From Equation (S5), we have

TB ¼ fB
N

Nþ kNð ÞlT
CB: (S8)

From Equation (S4), we have
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TA ¼ fA
N

Nþ kNð ÞlT
CA: (S9)

Thus, we know from Equations (S8) and (S9) that

TA

TB
¼
fACA

fBCB

: (S10)

Similarly from Equations (S6) and (S7), we get

TA

TB
¼
1� fB

1� fA
: (S11)

Therefore, from Equations (S10) and (S11), we have

fACA 1� fAð Þ ¼ fBCB 1� fBð Þ: (S12)

From Equations (S6) and (S8), we know that

fB ¼ 1� fAð Þumax
lT

kCB

: (S13)

From Equations (S12) and (S13), we know

f �A ¼
lT�maxkCB ��2

maxl
2

T

k2CACB ��2
maxl

2

T

; (S14)

and note that here when f �A ¼ 1, we obtain f �B ¼ 0, which is not applicable.

Substituting Equation (S14) into Equation (S9), we then know

T�
A ¼

�maxkCB��2

maxl
2

T

k2CACB��2
maxl

2

T

N

Nþ kN
CA: (S15)

Similarly, we further have

f �B ¼
lT�maxkCA ��2

maxl
2

T

k2CACB ��2
maxl

2

T

; (S16)

and

T�
B ¼

�maxkCA��2

maxl
2

T

k2CACB��2
maxl

2

T

N

Nþ kN
CB: (S17)

And the Jacobian matrix of the system state X
� is

A ¼ qF

qX

�

�X* ¼

ð1� fAÞ�max

N

Nþ kN
� kTB 0 0 �kCA

kN

NþKNð Þ2
1� fAð Þ�maxCA

0 ð1� fBÞ�max

N

Nþ kN
� kTA �kCB 0

kN

NþKNð Þ2
1� fBð Þ�maxCB

fA
N

NþKN

0 �lT 0
kN

NþKNð Þ2
fACA

0 fA
N

NþKN

0 �lT
kN

NþKNð Þ2
fBCB

�
N

NþKN

�
N

NþKN

0 0 �
N

NþKN

CAþCBð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(S18)

By computing the maximum real part of all the eigenvalues of A (denoted by Re lð Þ), we know that

X
� is linearly asymptotical stable when Re lð Þ<0. This canonical measure of stability indicates whether

and how fast the system would return to X
� after a small perturbation (Hofbauer and Sigmund,

1998; Mougi and Kondoh, 2012; Coyte et al., 2015; Allesina and Tang, 2012).
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Next, we calculate the derivative of the system for different values of fA and fB, choosing values

for k and lT to be as given in Table 1, and setting C�
A tð Þ and C�

B tð Þ to be 0.1, and T�
A tð Þ and T�

B tð Þ to be

1. We compare the analytical derivatives of the biomasses to the results of our numerical calculations

(Figure 1a–d). We find that all computed values are identical.

Finally, we calculate the stability (which is quantified by �Re lð Þ) of X
� ¼

C�
A tð Þ;C�

B tð Þ; T�
A tð Þ; T�

B tð Þ; 1
� �T

for different values of C�
A tð Þ and C�

B tð Þ ranging from 0.1 to 1. We choose

values for k and lT to be as given in Table 1, and f �A , f �B , T�
A; and T

�
B take values defined in

Equations S13–S16.

We could see that all of possible values of CA and CB indicate that the system is unstable, sug-

gesting that an analytical analysis to exactly capture the temporal unstable state of the system is not

applicable.

a

b

c

d

e

(analytical)

(analytical) (numerical)

Derivative of A’s biomass Derivative of A’s biomass (numerical)

Derivative of B’s biomass Derivative of B’s biomass

Appendix 1—figure 1. Analytical derivative of strain biomass compared to numerical change in

strain biomass. For different combinations of fA and fB values, analytical derivative of strain A’s

biomass (a) and of strain B’s (b). This is shown side-by-side with numerical change in biomass of

strain A (c) and strain B (d).
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Appendix 1—figure 2. Stability analysis of the system. Plot shows for a range of values for CA and

CB the negative of the maximum real part of all the eigenvalues of A(�Re lð Þ, see details above).

Negative values indicate that the system’s state is stable. We choose values for k and lT to be as

given in Table 1.
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Appendix 1—figure 3. The effect of nutrient availability on optimal toxin investment. We plot the

evolutionary stable investment into toxin over a range of different initial levels of nutrient (N(t=0)).

The optimal investment is highest for an intermediate amount of nutrients. Other parameters of the

model take the standard values given in Table 1.
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Appendix 1—figure 4. At high toxin efficiency an evolutionary arms race can drive populations

towards extinction. We plot the optimal toxin investment f* (red line) and the investment threshold

for mutual destruction fkill (orange line) over different toxin efficiencies (k). Insets show the pairwise

invasibility plot for low, medium, and high toxin efficiency. In these plots the x and y axis give the

toxin investment (with range 0–1) of the resident and the invading strategy, respectively. Green

areas indicate where the invader strategy can successfully replace the resident strategy, red areas

indicate where invasion fails. Where the two green and two red triangles have their meeting point at

the diagonal line, lies the evolutionarily stable strategy. Black areas indicate where the resident

strategy dies off in competition with itself. We see that above a certain toxin efficiency (k = 179),

coevolution causes toxin strategies to produce amounts of toxins that are deadly to both

competitors. The toxin arms race causes an evolutionary suicide of the population, analogous to

mutually assured destruction. All other model parameters take standard value as given in Table 1.
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Appendix 1—figure 5. Short competitions favour the evolution of pre-emptive attack. We

investigate the effect of shortening the duration of competitions and ask how this affects the best

performing strategies. In nature, the duration of competition will vary depending on the rates of

dispersal to new patches. (a) Shortening competition time has little effect on the evolution of

constitutive toxin production. (b) Initial investment in regulated toxins increases strongly, favouring

pre-emptive attacks. Short competition times select for an increased baseline of aggression in

sensing strategies, because it becomes important to overcome a competitor as quickly as possible.

(c) At short competition times (6 hr), regulation still remains beneficial and strategies of all three

sensing types exist that can invade and evolutionarily replace all constitutive producers (red areas).

All parameters take standard values as given in Table 1.
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2 257 648 
(53.8%)

1 918 872 
(45.7%)

12 624 
(0.3%)

8 237 
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Analysis from 
Figure 2:

Different outcomes of metapopulation competition:

Number of outcomes (fractions)

127 640 
(47.8%)

135 275 
(50.7%)

3 151 
(1.2%)
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4 197 381 
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(53.8%)
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(44.4%)
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(1.6%)
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(0.2%)

282 518 
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Appendix 1—figure 6. All four competitive dyanmics occur in our simulations. We enumerate the

occurrence of the four different outcomes from the global and local competitions as shown in

Figure 1d. Here, the numbers (shown in green) of these outcomes are shown for the simulations

used for the three different analyses in Figure 2. We also show in the column to the right the total

number of simulations run for each of these analyses, and we give in brackets the proportion of

occurrences relative to this total number.
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Appendix 1—figure 7. The benefit of toxin sensing is robust across varying environmental condi-

tions. Figure 3 shows that toxin sensing is the best performing strategy when competing with

diverse toxin strategies. Here, we compete the different sensing strategies again against a range of

nine constitutive producers (f=0.1, 0.2, . . ., 0.9) (as in Figure 3b) but under different conditions,

which are (a) high killing efficiency of the toxin (k=30), (b) high loss rate of the toxin (l=0.4), and (c)

high initial nutrients (N(t=0)=5). All other parameters take standard values as in Table 1.
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Appendix 1—figure 8. Toxin sensing emerges as the overall winner across wide parameter ranges.

As in Figure 4c, we pit all three sensory strategies against each other in a coevolutionary

tournament (genetic algorithm) and we record the proportion of each of the three different types of

strategies at the end of the evolution. We show these proportions as coloured dots, and the

average proportion across 10 repeat runs of the algorithm as coloured crosses. Finally, we repeat

this while varying one model parameter at a time over approximately one order of magnitude,

keeping the other parameters as given in Table 1. Toxin-based regulation only fails to show

dominance under parameter regimes where selection for the different strategies is relatively weak

and noisy in its outcome, that is, low k (toxin has weak effect), high initial cell numbers/low nutrients/

slow cell division (few cell divisions per competition cycle and so weaker natural selection).
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Appendix 1—figure 9. The evolution of reciprocation (toxin responders) in models of deterministic

and stochastic initial strain frequency. (a) Outcome of the large tournament model with initial strain

proportion at 50:50 (as in Figure 4). Shown is the metapopulation proportions of the three different

strategy types (toxin sensing in red, quorum sensing in orange, nutrient sensing in blue) over time.

(b) and (c) show the same tournament but with competing genotypes arriving stochastically into

each competition to create a wide range of initial proportions of each strain ranging from 0 to 1.

Density plots on the right show the distribution of initial proportion of strains. The arrival order of

the two competing strains is chosen uniformly at random, then the waiting time until the next strain

arrives follows an exponential distribution with mean of 20 min (b) and 1 hr (c). We see that, both for

the 50:50 mix (a), and under variable initial frequency (b and c) the toxin responders evolve (red

line), rather than quorum- (yellow) or nutrient-sensing (blue) strains.
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Appendix 1—figure 10. The benefit of toxin sensing over other sensing strategies is lost when com-

petition time is short. As in Figure 4c, we pit all three sensory strategies against each other in a

Appendix 1—figure 10 continued on next page
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Appendix 1—figure 10 continued

coevolutionary tournament, but with shortened competition time of 6 hr, which is before the toxin

sensor typically recovers (Figure 4d). Lines show the population proportions of the three strategies

for 10 runs of the tournament. In the left-hand side, panel quorum sensing is most successful, but

which strategy wins changes based upon chance variation in the initial parameter values such that

nutrient sensing (right-hand side panel) and toxin sensing (not shown) can also win depending on

the parameter ranges set for each sensing type. This indicates that with short competition time, who

wins is determined by lucky initial parameter draws that allow one type to dominate the population

with a pool of optimised individuals, but the competitive optimum can be reached equally by any of

the three sensing types.
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