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Abstract—This paper proposes a traffic speed prediction
framework combining a Convolutional Neural Network (CNN)
with a Gaussian Process (GP) and is an extension of ConvNet-
GP [1]. The main focus is on spatio-temporal large scale traffic
networks and on uncertainty quantification. The emphasis is on
the impact on the measurement noises on the predicted traffic
speeds. The Gaussian Process regression provides a variance
which characterises the accuracy of the prediction. The traffic
speed data is converted into a three dimensional format like
images and these are inputs of the CNN-GP framework for traffic
networks. The CNN-GP framework provides 18.23% average
improvement of the speed root mean square error compared
with the generic CNN and gives a quantitative characterisation
of the noise effects.

Index Terms—Traffic Prediction, Gaussian Process, Deep Neu-
ral Network, Large Scale, Scalability

I. INTRODUCTION

Traffic congestion has become a problematic issue for most

metropolitan areas and has drawn extensive attention in the

light of traffic prediction and control systems. Model-based

and data-driven methods [2] are the most popular ones. While

model-based methods focus efforts on building representative

and scalable physical models with different levels of detail

about traffic networks [2], [3], data-driven methods mostly

require only historical data. For instance, convolutional neu-

ral networks (CNNs) have been successfully implemented

to understand spatio-temperal features of traffic data [4],[5].

Ma et al. [6] propose a novel approach which converts the

traffic speed into images, where pixel intensities represent the

speed, and the horizontal and vertical coordination represent

road segments and timestamps, respectively. However, the

adjacency in the image is not equivalent to the adjacency in

the traffic network. In the case of applying CNNs to traffic

systems, some spatial information will be neglected during

the pooling operation [7]. Therefore, the capsule network

(CapsNet) [8], [9] is utilised in traffic prediction to replace the

pooling operation with dynamic routing. Other deep learning

methods are under investigating as well, such as recurrent

neural networks (RNNs) proposed to infer the interaction

between adjacent road segments and time dynamics [10].

Figure 1. Road network of central Santander city. Red lines denote road
segments where the speed sensors are located. On the rgiht, it is the image
presentation of the traffic speed data, where x-axis represents locations and
y-axis represents time. The pixel values represent the traffic speed.

Nevertheless, deep learning methods still face the challenges

like time consuming and computational complexity. In addi-

tion, traditional deep learning models provide results without

quantifying the impact of different uncertainties on the solu-

tions. The knowledge of the impact of uncertainty on the re-

sults is particularly crucial in high-risk applications [11], [12].

Bayesian inference methods have successfully demonstrated

learning capabilities in the presence of uncertainty in the

data, in the models, prior information and other factors [13].

Gaussian Process (GP) methods are Bayesian representatives

and have proven their power and their potential to equip CNNs

with the ability of uncertainty analysis. Successful applications

of GP methods to traffic prediction can be found in [14], [15].

In [16], a Gaussian process classifier is applied on the last-

layer features of a CNN and achieves a performance similar to

the performance of a CNN applied on the MNIST dataset [17].

Garriga et al. [1] propose a combination of a deep CNN

and a shallow Gaussian process which has not only achieved

surprisingly improved accuracy on the MNIST dataset but

also enabled the CNN to be capable of uncertainty analysis.

Inspired by this work, we have extended the idea of [1] on

traffic speed forecasting, and we have shown its effectiveness

by comparing it with typical CNNs and CNN with a GP



Figure 2. The typical CNN architecture. [6]

regression. As far as we know, this is the first application of a

convolutional GP to a time series traffic prediction problem.

The main contributions of this paper are the following:

• A CNN-GP framework for traffic speed prediction in

traffic networks is proposed. The CNN provides feature

maps to the GP regression which predicts speeds and

provides the variance that is used to quantify the impact

of uncertainties;

• A deep CNN converted to a shallow GP [1], termed Con-

vNet GP, is implemented for the traffic speed prediction;

• A generic CNN is also implemented as a baseline.

The CNN-GP and ConvNet GP are compared with the

baseline CNN;

• A detailed performance validation and evaluation of these

three approaches is conducted on real traffic data.

The remaining part of the paper is organised as follows.

Section II. describes how the time series data from magnetic

loop sensors are converted into an image format. Section II.B

presents the structure of a generic CNN and of a CNN fol-

lowed by a GP for prediction. Section II.C describes ConvNet

GP. Section III provides performance evaluation. Section IV

presents conclusions and summarises the results.

II. TRAFFIC SPEED PREDICTION

A. Traffic Speed Data as an Image

Speed detection sensors are installed on road segments in

the traffic network. Figure 1 shows the sensor location in

red. The sensor speed data are averaged in a certain time

interval. For reserving the spatio-temporal feature of speed

data, they are converted into images with two axes representing

timestamp and location. Here XMN represents the traffic

speed value at the H-th time step on the D-th road segment.

X =



X11 ... X1D

... ... ...

XH1 ... XHD


 (1)

B. CNN and CNN with GP Regression

This CNN has been proved to be significantly powerful not

only in image processing but also in time series forecasting.

Therefore, we take the CNN architecture proposed by [6] as

one of the baselines. This architecture contains three convolu-

tional layers, and a pooling layer follows each convolutional

layer. A flattening and fully connected layer follow three

pairs of convolutional layer and pooling layer. The detailed

architecture is presented in [6]. The parameters are listed in

Table I.

Proposed in [16], a Gaussian process can be used in

conjunction with a CNN to analysis uncertainty without de-

creasing performance. Adding a GP regression in the last-layer

features of the CNN will provide a tool to quantify the impact

of the uncertainties on the classification process. In particular,

the GP variance will be used as a measure of quantifying the

results.

A Gaussian process is defined as a collection of random

variables, with any finite number of which have a joint

Gaussian distribution [18]. A Gaussian process, f(x) ∼
GP(m(x), k(x,x′)), is defined by mean function, m(x), and

covariance function, k(x,x′), where x and x′ are the last-

layer features obtained from the typical CNN. The regression

problem can be solved by Bayesian inference with a GP prior.

Let f be the observed function values for the training set, and

let ft be the set of function values corresponding to the testing

set xt. Therefore, the joint distribution is defined as,

[
f

ft

]
∼ N

([
µ

µt

]
,

[
K Kxtx

KT
xtx Kxtxt

])
, (2)

where µt is the test mean, Kxtx is the train-test covariance,

and Kxtxt is the test-test covariance. Therefore, corresponding

to the conditioning the joint Gaussian prior distribution on the

observations is given by

ft|Xt,X, f ∼ N (KxtxK
−1f ,Kxtxt −KxtxK

−1KT
xtx). (3)

Assuming additive independent identically distributed Gaus-

sian noise with variance σ2
n, the prior of the noisy obervation



becomes cov(y) = K + σ2
nI, where y is the ground truth

observations. Following equation (4), the joint distribution of

the observed values and the function values for test set can be

written as,
[
y

ft

]
∼ N

([
0

0

]
,

[
K+ σ2

nI Kxtx

KT
xtx Kxtxt

])
. (4)

The conditional distribution is, therefore, ft|X,y,Xt ∼
N (Kxtx[K+σ2

nI]
−1f ,Kxtxt−Kxtx[K+σ2

nI]
−1KT

xtx). The

predictive mean and covriance functions are typically param-

eterised in therms of hyperparameters θ. During trainging, the

value of the hyperparameters are defined by optimising the

marginal log-likelihood:

L=log p(y|x, θ)= −
1

2
|K|−

1

2
(y−µ)TK−1(y−µ)−

n

2
log(2π).

(5)

C. Deep CNN as a Shallow Gaussian Process

A deep neural network can be considered conceptually as a

Gaussian process regression [19]. Hence, here we are adopting

this vision and a deep CNN which can be considered as a

shallow GP [1]. As pointed out in [20] combining the non-

parametric nature of GP regression and learning ability of

neural networks can improve the generalisation capabilities

of the GPs. Details about the main ideas behind the ConvNet

GP are given below.

1) Concepts and Definitions: As mentioned previously,

CNNs’ inaccurate uncertainty estimation is becoming increas-

ingly problematic. For a standard CNN, with L hidden layers,

the transformation from layer l to layer l + 1 is given as

following.

a
(l+1)
j (V) = bl

j +
Cl∑

i=1

Wl
j,iφ(a

l
i(V)) (6)

where

V =




v1

v2

.

.

.

vC0




(7)

is the input image with height H0 and width D0. Each

input image has C0 channels, and hence, the input image is

considered as a C0 × (H0D0) matrix, with vi a row vector

of size 1 × (H0D0). The i-th output from the l-th layer is

represented by al+1
i (V). The bias is bl

j and the weight matrix

that derives from the filter Ul
j,i at the l-th layer is Wl

j,i. The

activation for the output of the previous layer is represented

as φ(ali(V)). For the first layer, φ(·) just maps the input vi to

itself. In equation (6), Wl
j,iφ(a

l
i(V)) indicates the dot product

of Wl
j,i and φ(ali(V)).

In the traditional CNN paradigm, the elements of a convolu-

tion filter Ul
j,i are determined. One filter is usually responsible

for a specific feature. It is hard to say if the filter can still

manage to capture the features when the data is polluted by

random noise. To tackle the problem, one intuitive idea is

to make the filter itself random rather than determined. In

this way, for one specific convolution filter Ul
j,i, when the

elements change randomly, the number of potential filters

could approach infinity. Therefore, all the filters together

should be able to average out the noise and extract the features

from the polluted data as described in [1]. A convolution

filter Ul
j,i is substantially a matrix as shown in Fig. 3. As in

[1], each element ul
j,i,x,y of Ul

j,i is governed by a Gaussian

distribution as in equation (8), and the bias bl
j is governed by

another Gaussian distribution as in equation (9).

ul
j,i,x,y ∼ N (0,

σ2
w

Cl
) (8)

where i and j are the channel index in layer l − 1 and l, x

and y are the horizontal and vertical location of the element

in the filter.

blj ∼ N (0, σ2
b ) (9)

As each single element ul
j,i,x,y of Ul

j,i subjects to a

Gaussian distribution, we can therefore derive as many filters

as possible by sampling from the corresponding distribution.

redEach filter can be further flattened into a weight matrix

Wl
j,i with the dimension of N l × (H lDl). According to

equation (6), if N l → ∞, then Cl → ∞. With the Central

Limit Theorem (CLT), equation (8) and (9), we know that

al+1
j (V) subjects to a Gaussian distribution as Cl → ∞.

2) Mean and Covariance: In [1], the authors show that

with certain constraints, a deep convolutional neural network

is equivalent to a shallow Gaussian process. When it comes

to a Gaussian process, we need to investigate how to obtain

the mean and covariance from a deep convolutional neural

network.

According to equation (6), we have one input image V. To

derive the covariance, we need at least another input image

denoted as V
′

. Indexed by V and V
′

, we can now get two

feature maps alj(V) and alj(V
′

) that can be concatenated as

alj(V,V
′

) = (alj(V),alj(V
′

))T , (10)

which can be further extended as equation (11) to show the

transformation from layer l to layer l + 1,

al+1
j (V,V

′

) = bl
jI+

Cl∑

i=1

[
Wl

j,i 0

0 Wl
j,i

]
φ(ali(V,V

′

)),

(11)

which is proven to be multivariate Gaussian in [1] when

Cl → ∞. In equation (11), I is the identity matrix. The

attribute holds for any given feature map determined by j and

l, which are further constrained by the structure of the deep

convolutional neural network. For more detail, refer to [1].

To derive the mean and convariance, the element-wise

feature map is first given as



Al+1
j,g (V) = blj +

Cl∑

i=1

HlDl∑

h=1

Wl
j,i,g,hφ(A

l
i,h(V)), (12)

where l and l + 1 are indexes of the hidden layers, i and

j are indexes of the input and output channels, and h and

g denote the location of the element within the input and

output channels. When the input image is V
′

, the element-

wise feature map becomes Al+1
j,g (V

′

).
With equation (12), now we formulate the mean and covari-

ance as in equation (13) and (14), respectively.

E[Al+1
j,g (V)] = E[bl

j ] +
Cl∑

i=1

HlDl∑

h=1

E[Wl
j,i,g,hφ(A

l
i,h(V))] = 0

(13)

cov
[
Wl

j,i,g,hφ(A
l
i,h(V)),Wl

j,i
′
,g,h

′φ(Al
i
′
,h

′ (V
′

))
]

= σ2
b + σ2

w

∑

h∈gth patch

E
[
φ(Al

i,h(V))φ(Al
i,h(V

′

))
]
,

(14)

where E[.] represents the mathematical expectation and cov[.]
represents the elemental-wise covariance function. The Gaus-

sian distribution on the weights and feature maps is assumed

to be with a zero mean. The convariance includes a term

depending on φ(·). According to [1], a closed form of the

covariace can be obtained if φ(·) is Gaussian and ReLU etc.

Please refer to [1] for a solution with ReLU activation.

With equation and (14), we can now consider a deep

convolutional neural network as a Gaussian Process. A Deep

convolutional neural network is well known for spatial fea-

ture extraction, while Gaussian Process is mostly famous for

temporal data regression. By regarding a deep convolutional

neural network as a Gaussian Process, we can say that in this

way, the advantages of the two are combined. Therefore, we

apply the method in traffic speed prediction, which essentially

needs to take both the spatial and temporal information into

consideration in order to achieve high accuracy results. In

the next section, we apply two different tasks to evaluate the

performances and uncertainties of the approaches introduced

in Section III.

III. VALIDATION WITH REAL DATA

A. Data Pre-processes and Preparation

The traffic speed data we use is collected on road segments

in the city centre of Santander with 15-minute timesteps for

the year 2016. The traffic dataset is provided thanks to the

SETA EU project. The traffic speed data structued in equation

1 are devided as below to prepare the training, validating and

testing set. Assume that each sample composes of S rows, and

10 samples constitute one loop of data partition.

• Training Set: The first 7 samples (1-7)

• Validating Set: The next 2 samples (8-9)

• Testing Set: The next 2 samples (10)

In this way, unique features of traffic data, such as those during

Christmas vacation can be captured.

The CNN, CNN with GP Regression and ConvNet are

described in Section II. Subsection B and C are performed

to accomplish the following four tasks:

• Task 1: 1-step ahead prediction, with 10-step traffic speed

history on 50 road segments.

• Task 2: Based on Task 1, different level of simulated

sensor noises are added into the data, and therefore

the noisy data becomes Xnoisy = X + ǫ, where ǫ ∼
N (µnoise,σ

2
noise).

The models are implemented on Python by using Tensorflow,

Keras and GPflow. The training and performance evaluation is

running on a PC with 8-core i7-10700K CPU, 48 GB memory

and an RTX-2080 GPU. The CNN took 11± 0.6 seconds for

training and evaluating once, the CNN with GP Regression

took 50± 9 seconds for training and evaluating once, and the

ConvNet took 1.3 ± 0.2 for seconds training and evaluating

once.

B. Evaluation and Analyses

In the application of the CNN to traffic prediction problems,

we employs the mean squared error (MSE) as the loss func-

tion. The Adam optimiser [21] with the exponentially decaying

learning rate is utilised to minimise the total MSE. In the appli-

cation of the CNN with GP Regression, the GP model employs

a squared exponential kernel function. For implementation of

CNN as shallow GP, the ConvNet GP is the kernel equivalent

to a 6-layer CNN that have three convolutional layers, and

three max pooling layers. The parameter and layer settings

are the same as the typical CNN whose architecture and layer

parameters are listed in Table I.
Table I

LAYER PARAMETERS OF CNN

Layer Parameter Activation

Convolution1 (256,3,3) ReLu

Polling1 (2,2) -

Convolution2 (128,3,3) ReLu

Polling2 (2,2) -

Convolution3 (64,3,3) Relu

Polling3 (2,2) -

Flatterning - -

Fulling-connected - -

We employ root mean squared error (RMSE) as the mea-

surement for accuracy of the traffic speed prediction perfor-

mance. The RMSE is defended as:

RMSE =

√∑N

i=1(yi − ŷi)2

N
, (15)

where yi is the ground truth speed value and ŷi represents the

traffic speed prediction on i-th road segment. N denotes the

number of the number of the traffic speed data in evaluation

set.
Table II

RESULTS VALIDATION (UNIT: KM/H)

CNN CNN with GP Regression ConvNet GP
RMSE RMSE RMSE

Task 1 10.04 9.55 8.21

The performances of the networks operating Task 1 is listed

in Table II. As shown in Table II, CNN, CNN with GP



Figure 3. Convolutional Neural Network as Shallow Gaussian Process[1]

Figure 4. Validation on noisy data. Blue represents the RMSE value obtained
from the ConvNet GP; Red represents the RMSE obtained from the CNN-GP
framework; and green represents the RMSE obtained from the CNN.

Regression and ConvNet GP are the results trained with our

data division algorithm. The GP involved methods, CNN with

GP Regression, ConvNet GP, provides smaller RMSE values in

Task 1. ConvNet GP provides the most significant difference,

18.23% smaller. Fig. 4 shows the overall performances of the

networks operating with different noise levels where the noise

variance is from 0 to 45. Generally, CNN with GP Regression

and ConvNet GP provides smaller RMSE values than the CNN

provides. For ConvNet GP, the RMSE values increase when

the noise variance increases. Fig. 5 shows the performances on

each sensor with different noise levels are consistent with the

overall performance. ConvNet GP provides the smallest RMSE

values over all sensors, and the RMSE values increase as the

noise variance increases. The performances of the networks

keep the same tendency as the sensor ID varies. For example,

The largest RMSE values are located on the sensor 26 for all

Figure 5. Validation on noisy data. Blue represents the RMSE value obtained
from the ConvNet GP; Red represents the RMSE obtained from the CNN-GP
framework; and green represents the RMSE obtained from the CNN.

the networks, and the smallest RMSE values are located on

the sensor 18 for all the networks.

C. Discussion

Fig. 6 shows the confidence interval of CNN with GP

regression with 1σ in red and the confidence interval of GP

and Convnet GP with 3σ in purple. The blue dots represent the

ground truth. Therefore, the ConvNet GP provides a very nar-

row confidence interval, and the CNN with GP Regression on

the contrary provides a wide confidence interval. To conclude,

the ConvNet GP provides the best accuracy with respect to the

lowest RMSE but provides the narrowest confidence interval.

IV. CONCLUSIONS AND FUTURE WORK

This work shows that the properties of Gaussian process

regression can be beneficial in assessing the impact of sen-

sor data uncertainties in traffic speed prediction. The paper



Figure 6. Prediction uncertainty obtained by ConvNet GP. The 1σ confidence
interval is applied on CNN with GP regression, 1σ confidence interval is
applied on GP and 3σ confidence interval is applied for ConvNet GP.

presents two GP based frameworks, a CNN-GP framework and

ConvNet GP. The CNN-GP framework is a CNN with a GP

added to quantify the uncertainty of the classification process.

The ConvNet GP reformulates a CNN as a Gaussian process.

The CNN-GP and ConvNet GP are compared with a baseline

generic CNN. The real traffic speed data collected in Santander

city, Spain, is used to validate and evaluate the performance

of the proposed GP frameworks. The results imply that the

ConvNet GP has better capabilities on learning in the presence

of uncertainties in the test data and gives 18.23% improvement

in the speed RMSE with respect to the generic CNN. With

the help of variances provided from the GP, the calculated

confidence intervals characterise the credibility of the speed

predictions. In this work, we evaluate the performance with

different levels of noise in data. In particular, we plan to test

more difficult problems, such as traffic speed prediction with

the different number of absent sensors. On the other hand,

we plan to calculate more proper information bounds for this

work, for example, Cramér-Rao bound.
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