

This is a repository copy of Putting fine particulate matter and dementia in the wider context of noncommunicable disease : where are we now and what should we do next : a systematic review.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/178059/

Version: Supplemental Material

Article:

Peters, R., Mudway, I., Booth, A. orcid.org/0000-0003-4808-3880 et al. (2 more authors) (2021) Putting fine particulate matter and dementia in the wider context of noncommunicable disease : where are we now and what should we do next : a systematic review. Neuroepidemiology, 55 (4). pp. 253-265. ISSN 0251-5350

https://doi.org/10.1159/000515394

This is the peer-reviewed but unedited manuscript version of the following article: Peters R, Mudway I, Booth A, Peters J, Anstey K, J: Putting Fine Particulate Matter and Dementia in the Wider Context of Noncommunicable Disease: Where are We Now and What Should We Do Next: A Systematic Review. Neuroepidemiology 2021;55:253-265. doi: 10.1159/000515394. The final, published version is available at http://www.karger.com/? doi=10.1159/000515394

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Title: Putting fine particulate matter and dementia in the wider context of non-communicable disease, where are we now and what should we do next? A systematic review. – supplementary file.

Ruth Peters^{ab,} Ian Mudway^c, Andrew Booth^d, Jean Peters^d Kaarin J. Anstey^{ab}

Supplementary text 1

Search terms for the relationship between Particulate Matter 2.5 and dementia or cognition

- 1 (alzheime* or dementia or cogniti*).af.
- 2 (air pollut* or particulate matter or roadway or PM10 or Particle Size or PM* or vehicle or diesel).af.
- 3 1 and 2
- 4 limit to yr="2018 -Current" (extending a prior review from inception to 20 Sept 2018)
- 5 limit to humans

Search terms for the relationship between Particulate Matter 2.5 and non-communicable disease

- 1 air pollut* or particulate or PM10 or PM2 5 or Roadway or Vehicle or Diesel.ti.
- 2 systematic review.ti.
- 3 1 and 2

Supplementary Table 1 Reasons for exclusion after full text review, for incident non-communicable disease and PM_{2.5}

	Reviewed Systematic Review	Reasons for exclusion
1	Liu et al 2019 [1]	More recent review available
2	Balti et al 2014 [2]	More recent review available
3	Moore et al 2016 [3]	More recent review available
4	Orellano et al 2017 [4]	Data from children and adults combined
5	Park et al 2014 [5]	More recent review available
6	Li et al 2016[6]	More recent review available
7	Wang et al 2014 [7]	A review of the same date but with a greater time range.
8	Janghorbani et al 2014 [8]	More recent review available
9	Mustafic et al 2012 [9]	More recent review available
10	Eze et al 2015 [10]	More recent review available
11	Braithwaite et al 2019 [11]	More recent review available
12	Yang et al 2014[12]	More recent review available
13	He et al 2017[13]	More recent review available
14	Meo et al 2015[14]	More recent review available
15	Gowers et al 2012[15]	More recent review available
16	Li et al 2012[16]	More recent review available
17	DeVries et al 2017[17]	More recent review available
18	Chen et al 2015[18]	Not incident disease
19	Wang et al 2018[19]	Review of methodology
20	Cui et al 2014[20]	Search dates match Hamra et al [21]
21	Scheers et al 2015[22]	No separate data for PM _{2.5}
22	Song et al 2014[23]	More recent review available

Reviewed publication	Reasons for exclusion
Andersson et al 2018 [24]	No results for PM _{2.5}
Chen 2017 [25]	Same population as Chen 2017 [26] and PM _{2.5} included primarily as a co-variate.
Cerza et al 2019 [27]	Unable to determine if dementia measures only reflect incident dementia
llango et al 2019 [28]	Population appears to overlap with Chen et al 2017
Petkus et al 2020 [29]	Population appears to be from the same study as Cacciolotto et al 2017
Younan et al 2020 [30]	Population appears to be from the same study as Cacciolotto et al 2017
Shin et al 2019 [31]	Cognitive measure not dementia and cross temporal not incident decline.
Lo et al 2019 [32]	Cognitive measure not dementia and cross temporal not incident decline.
Lee et al 2019 [33]	Prevalent dementia
Li et al 2019 [34]	Prevalent dementia

Supplementary Table 2 Reasons for exclusion after full text review, for incident dementia, Alzheimer's Disease and PM_{2.5}

					Risk of Bias (RoB)			
	clear aims (lower risk of bias with clear aims reported)	appropriate methodology (lower risk of bias with use of appropriate methodology)	generalizability (lower risk of bias where samples are generalizable)	exposure measurement (lower risk of bias where standard methods used to assess exposure)	outcome measurement (lower risk of bias where standard tools/criteria used to assess outcome)	un-addressed confounds (lower risk of bias where adjustments include known confounders)	adjustments	overall RoB rating
Weuve [36] et al., 2012	Low	Low	Moderate (female nurses)	Low	Low	Low	age, education, husband's education, long term physical activity, long term alcohol consumption States that secondary analyses using further adjustment found similar pattern of results	Low- moderate
Loop [37] et al., 2013	Low	Low	Low	Low	Low	Low	length of follow up, temperature, season, incident stroke, age, race, region, education, income, behavioral factors (alcohol, smoking, exercise, body mass index), depression, dyslipidemia, diabetes, hypertension	Low
Tonne [38] et al., 2014	Low	Low	Moderate (male civil servants)	Low	Low	Low	time, age, sex, ethnicity, socioeconomic status, physical activity, consumption of alcohol, age x time and main effect of exposure	Low- moderate

Carey [39] et al., 2018	Low	Low	Low	Low	Moderate (used health care records, likely to be subject to bias)	Low	Age, sex, ethnicity, smoking, body mass index, Index of Multiple Deprivation (area socioeconomic status), ischemic heart disease, stroke, diabetes, heart failure, night time noise. Each pollutant also adjusted for exposure to others.	Low
Chen [26] et al., 2017	Low	Low	Low	Low	Moderate (used health care records, likely to be subject to bias)	Low	living in the Toronto area, age, sex, region, comorbidity, socioeconomic status, treatment for diabetes, hypertension, coronary heart disease, stroke, heart failure, arrhythmias, traumatic brain injury, income, urban residence, recent migration, education, unemployment rate	Low- moderate
Cleary [40] et al., 2018	Low	Low	Moderate (selected from an ongoing longitudinal study)	Low	Moderate (used participants from an existing dementia focused study, likely to be subject to bias)	Low	age, gender, education, race, APOE genotype, smoking, B12 deficiency and population density	Moderate
Jung [41] et al., 2015	Low	Low	Low	Low	Moderate (used health care records and Alzheimer's disease only, not mixed or vascular dementia, likely to be subject to bias)	Low	age, sex, income, diabetes, hypertension, myocardial infarction, stroke, asthma	Low- moderate

Cacciottol o [42] et al., 2017	Low	Low	Moderate (female only, from the Women's Health Initiative Memory Study)	Low	Low-moderate (cognitive function and dementia diagnosis was periodic and time to event analyses requires a date of onset whereas actual onset is insidious so potential for bias)	Low	Age, geographic region, education, income, employment status, smoking, alcohol use, physical activities, use of hormone treatment, depression, body mass index, hypercholesterolemia, hypertension, diabetes, history of cardiovascular disease	Low- moderate
Oudin [43] et al., 2018	Low	Low	Low	Low	Low-moderate (dementia assessment was periodic and cox regression requires a date of onset whereas actual onset is insidious so potential for bias)	Low	Physical activity, smoking, sex, body mass index, waist hip ratio, alcohol and age. PM _{2.5} from residential wood burning and PM _{2.5} from vehicle exhaust.	Low
Cullen [44] et al 2018	Low	Low	Low-moderate (Subgroup from a larger study)	Low	Low (touch screen cognitive testing with automated scoring)	Low	Duration between baseline and follow-up as well as baseline age, gender, ethnic group, Townsend score (socioecomonic), education, smoking status, physical activity time outdoors, major road proximity, traffic intensity, and population density category.	Low
Kulick [45] et al 2020	Low	Low	Low-moderate (Subgroup from a larger study)	Low	Low (neuropsycholgical test battery)	Low	Visit number, visit by pollutant interaction, age, sex, race- ethnicity, education, neighbourhood socioeconomic status, and an indicator for cohort wave to account for secular trends.	Low

Grande [46] et al., 2020	Low	Low	Low-moderate (a study population from a particular geographical area)	Low	Low (robust assessment of dementia)	Low (study also included evaluation of moderation and mediation for cardiovascula r risk factors)	Age, sex, education, smoking, physical inactivity, socioeconomic status, early retirement, BMI, depression, baseline MMSE and cardiovascular risk factors.	Low
Yuchi., [47]et al 2020	Low	Low- moderate (methods lack some details)	Low	Low-moderate (methods lack some details)	Moderate (used health care records, likely to be subject to bias)	Low	Age, sex, comorbidities including traumatic brain injury, diabetes, hypertension, stroke, coronary heart disease, arrhythmia plus household income, ethnicity.	Low- moderate

References for the supplementary tables.

- Liu, F., et al., Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Environ Pollut, 2019. 252(Pt B): p. 1235-1245.
- 2. Balti, E.V., et al., *Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis.* Diabetes Research and Clinical Practice, 2014. **106**(2): p. 161-172.
- Moore, E., et al., Global Associations between Air Pollutants and Chronic Obstructive Pulmonary Disease Hospitalizations. A Systematic Review. Ann Am Thorac Soc, 2016. 13(10): p. 1814-1827.
- 4. Orellano, P., et al., *Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis.* PloS one, 2017. **12**(3): p. e0174050-e0174050.
- 5. Park, S.K. and W. Wang, *Ambient Air Pollution and Type 2 Diabetes: A Systematic Review of Epidemiologic Research.* Curr Environ Health Rep, 2014. **1**(3): p. 275-286.
- 6. Li, J., et al., *Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis.* International journal of chronic obstructive pulmonary disease, 2016. **11**: p. 3079-3091.
- 7. Wang, Y., M.N. Eliot, and G.A. Wellenius, *Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis.* J Am Heart Assoc, 2014. **3**(4).
- 8. Janghorbani, M., F. Momeni, and M. Mansourian, *Systematic review and metaanalysis of air pollution exposure and risk of diabetes*. Eur J Epidemiol, 2014. **29**(4): p. 231-42.
- 9. Mustafic, H., et al., *Main air pollutants and myocardial infarction: a systematic review and meta-analysis.* Jama, 2012. **307**(7): p. 713-21.
- 10. Eze, I.C., et al., *Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis.* Environmental health perspectives, 2015. **123**(5): p. 381-389.
- 11. Braithwaite, I., et al., *Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis.* Environmental health perspectives, 2019. **127**(12): p. 126002-126002.
- 12. Yang, W.S., et al., *An evidence-based appraisal of global association between air pollution and risk of stroke.* Int J Cardiol, 2014. **175**(2): p. 307-13.
- 13. He, D., et al., *Association between particulate matter 2.5 and diabetes mellitus: A metaanalysis of cohort studies.* J Diabetes Investig, 2017. **8**(5): p. 687-696.
- 14. Meo, S.A. and F. Suraya, *Effect of environmental air pollution on cardiovascular diseases*. Eur Rev Med Pharmacol Sci, 2015. **19**(24): p. 4890-7.
- 15. Gowers, A.M., et al., *Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence; a review.* Respirology, 2012. **17**(6): p. 887-98.
- 16. Li, X.Y., et al., *Meta-analysis of association between particulate matter and stroke attack.* CNS Neurosci Ther, 2012. **18**(6): p. 501-8.
- 17. DeVries, R., D. Kriebel, and S. Sama, *Outdoor Air Pollution and COPD-Related Emergency Department Visits, Hospital Admissions, and Mortality: A Meta-Analysis.* Copd, 2017. **14**(1): p. 113-121.
- 18. Chen, G., et al., *Traffic-related air pollution and lung cancer: A meta-analysis.* Thoracic cancer, 2015. **6**(3): p. 307-318.
- 19. Wang, N., et al., *Lung cancer and particulate pollution: A critical review of spatial and temporal analysis evidence.* Environ Res, 2018. **164**: p. 585-596.

- 20. Cui, P., et al., *Ambient particulate matter and lung cancer incidence and mortality: a metaanalysis of prospective studies.* Eur J Public Health, 2015. **25**(2): p. 324-9.
- 21. Hamra, G.B., et al., *Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis.* Environmental health perspectives, 2014. **122**(9): p. 906-911.
- 22. Scheers, H., et al., *Long-Term Exposure to Particulate Matter Air Pollution Is a Risk Factor for Stroke: Meta-Analytical Evidence.* Stroke, 2015. **46**(11): p. 3058-66.
- 23. Song, Q., et al., *The global contribution of outdoor air pollution to the incidence, prevalence, mortality and hospital admission for chronic obstructive pulmonary disease: a systematic review and meta-analysis.* International journal of environmental research and public health, 2014. **11**(11): p. 11822-11832.
- 24. Andersson, J., et al., *Road traffic noise, air pollution, and risk of dementia results from the Betula project.* Environ Res, 2018. **166**: p. 334-339.
- 25. Chen, H., et al., *Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study.* The Lancet, 2017. **389**(10070): p. 718-726.
- 26. Chen, H., et al., *Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study.* Environ Int, 2017. **108**: p. 271-277.
- 27. Cerza, F., et al., Long-term exposure to air pollution and hospitalization for dementia in the Rome longitudinal study. Environmental health : a global access science source, 2019. 18(1): p. 72-72.
- 28. Ilango, S.D., et al., *The role of cardiovascular disease in the relationship between air pollution and incident dementia: a population-based cohort study.* International Journal of Epidemiology, 2019. **49**(1): p. 36-44.
- 29. Petkus, A.J., et al., *Exposure to fine particulate matter and temporal dynamics of episodic memory and depressive symptoms in older women.* Environment International, 2020. **135**: p. 105196.
- 30. Younan, D., et al., *Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer's disease.* Brain, 2019. **143**(1): p. 289-302.
- 31. Shin, J., S.-H. Han, and J. Choi, *Exposure to Ambient Air Pollution and Cognitive Impairment in Community-Dwelling Older Adults: The Korean Frailty and Aging Cohort Study*. International journal of environmental research and public health, 2019. **16**(19): p. 3767.
- 32. Lo, Y.-T.C., et al., *Air Pollution Exposure and Cognitive Function in Taiwanese Older Adults: A Repeated Measurement Study*. International journal of environmental research and public health, 2019. **16**(16): p. 2976.
- 33. Lee, M., et al., *Long-term effect of fine particulate matter on hospitalization with dementia*. Environ Pollut, 2019. **254**(Pt A): p. 112926.
- 34. Li, C.-Y., et al., Association between air pollution and risk of vascular dementia: A multipollutant analysis in Taiwan. Environment International, 2019. **133**: p. 105233.
- 35. Peters, R., et al., *Air Pollution and Dementia: A Systematic Review.* J Alzheimers Dis, 2019. **70**(s1): p. S145-s163.
- 36. Weuve, J., et al., *Exposure to Particulate Air Pollution and Cognitive Decline in Older Women*. Arch Intern Med 2012. **172**(3): p. 219-27.
- 37. Loop, M.S., et al., *Fine particulate matter and incident cognitive impairment in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort.* PLoS One, 2013. **8**(9): p. e75001.
- 38. Tonne, C., et al., *Traffic-related air pollution in relation to cognitive function in older adults.* Epidemiology, 2014. **25**(5): p. 674-81.
- 39. Carey, I.M., et al., *Are noise and air pollution related to the incidence of dementia? A cohort study in London, England.* BMJ Open, 2018. **8**(9).
- 40. Cleary, E.G., et al., *Association of Low-Level Ozone with Cognitive Decline in Older Adults.* J Alzheimers Dis, 2018. **61**(1): p. 67-78.

- Jung, C.R., Y.T. Lin, and B.F. Hwang, Ozone, particulate matter, and newly diagnosed Alzheimer's disease: a population-based cohort study in Taiwan. J Alzheimers Dis, 2015.
 44(2): p. 573-84.
- 42. Cacciottolo, M., et al., *Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models.* Transl Psychiatry, 2017. **7**(1): p. e1022.
- 43. Oudin, A., et al., Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. PLoS One, 2018. **13**(6): p. e0198283.
- 44. Cullen, B., et al., *Cross-sectional and longitudinal analyses of outdoor air pollution exposure and cognitive function in UK Biobank*. Scientific Reports, 2018. **8**(1): p. 12089.
- 45. Kulick, E.R., et al., *Long-term exposure to ambient air pollution, APOE-ε4 status, and cognitive decline in a cohort of older adults in northern Manhattan.* Environment International, 2020. **136**: p. 105440.
- 46. Grande, G., et al., Association Between Cardiovascular Disease and Long-term Exposure to Air Pollution With the Risk of Dementia. JAMA Neurology, 2020.
- 47. Yuchi, W., et al., *Road proximity, air pollution, noise, green space and neurologic disease incidence: a population-based cohort study.* Environmental Health, 2020. **19**(1): p. 8.