
This is a repository copy of IL-1/IL-1R Signaling in head and neck cancer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178057/

Version: Published Version

Article:

Niklander, S.E., Murdoch, C. orcid.org/0000-0001-9724-122X and Hunter, K.D. 
orcid.org/0000-0002-7873-0877 (2021) IL-1/IL-1R Signaling in head and neck cancer. 
Frontiers in Oral Health, 2. 722676. 

https://doi.org/10.3389/froh.2021.722676

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



REVIEW
published: 26 August 2021

doi: 10.3389/froh.2021.722676

Frontiers in Oral Health | www.frontiersin.org 1 August 2021 | Volume 2 | Article 722676

Edited by:

Carolina Cavalieri Gomes,

Federal University of Minas

Gerais, Brazil

Reviewed by:

Marcelo Lamers,

Federal University of Rio Grande do

Sul, Brazil

Tarcilia A. Silva,

Federal University of Minas

Gerais, Brazil

Daniela-Elena Costea,

University of Bergen, Norway

*Correspondence:

Keith D. Hunter

k.hunter@sheffield.ac.uk

Specialty section:

This article was submitted to

Oral Cancers,

a section of the journal

Frontiers in Oral Health

Received: 09 June 2021

Accepted: 04 August 2021

Published: 26 August 2021

Citation:

Niklander SE, Murdoch C and

Hunter KD (2021) IL-1/IL-1R Signaling

in Head and Neck Cancer.

Front. Oral. Health 2:722676.

doi: 10.3389/froh.2021.722676

IL-1/IL-1R Signaling in Head and
Neck Cancer
Sven E. Niklander 1, Craig Murdoch 2 and Keith D. Hunter 2,3*

1Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile, 2Unit of Oral

and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield,

United Kingdom, 3Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa

Decades ago, the study of cancer biology was mainly focused on the tumor itself,

paying little attention to the tumor microenvironment (TME). Currently, it is well recognized

that the TME plays a vital role in cancer development and progression, with emerging

treatment strategies focusing on different components of the TME, including tumoral

cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors,

among others. There is a well-accepted relationship between chronic inflammation and

cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly

found at tumor sites, is considered one of the most important inflammatory factors

in cancer, and has been related with carcinogenesis, tumor growth and metastasis.

Increasing evidence has linked development of head and neck squamous cell carcinoma

(HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review

focuses on the most important members of the IL-1 family, with emphasis on how their

aberrant expression can promote HNSCC development and metastasis, highlighting

possible clinical applications.
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INTRODUCTION

The association between chronic inflammation and cancer has been reported for many years.
Fifteen percent of all cancers are attributed to inflammation [1], with a well-recognized association
in lung, pancreatic, esophageal, bladder, gastric, cervical, colorectal and prostate cancers [2]. Pro-
inflammatory cytokines present in the tumor microenvironment (TME) can have dual effects; they
can stimulate inflammation to decrease tumor progression; or they can stimulate inflammation
favoring carcinogenesis, tumor growth and metastasis [3]. Cytokines are produced by host cells in
response to factors secreted by the tumor cells or by the tumor itself [4, 5]. Interleukin-1 (IL-1)
is commonly found at tumor sites and is considered one of the most important cytokines of the
TME, where it plays a key role in carcinogenesis and tumor progression [6], and its expression has
been associated with poor prognosis in cancer patients [7]. There is a growing association linking
head and neck squamous cell carcinoma (HNSCC) with chronic inflammation [8, 9], in which IL-
1/IL-1R signaling seems to be a key player [10]. Cumulating evidence suggests that the effects of
IL-1 autocrine and paracrine signaling within the TME is central to HNSCC development. This
signaling axis not only leads to increased expression of proteases and factors that dramatically
alter the extracellular matrix, aiding tumor cell invasion and metastasis [2, 3], but also increases
the production of leukocyte chemoattractants [11]. These molecules selectively recruit both innate
and adaptive immune cells to the TME that have both anti- and pro-tumorigenic properties.
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Innate immune cells, such as macrophages and neutrophils,
are recruited in large numbers to the HNSCC TME where
they secrete tumor promoting and pro-angiogenic factors that
exacerbate inflammation, and increase the supply of nutrients
and oxygen that drives tumor progression. It is no surprise that
high numbers of macrophages and neutrophils in the TME are
associated with poor prognosis in HNSCC patients [12, 13]. In
contrast, and particularly for HPV-positive HSNCC, increased
numbers of T lymphocytes have been observed and these have
been associated with improved prognosis due to direct anti-
tumor cell targeting by these cells [14].

Here, we review the most important members of the IL-
1 family, with emphasis on how their aberrant expression
can promote HNSCC development and metastasis, highlighting
possible clinical applications.

IL-1 FAMILY MEMBERS

The IL-1 family consists of several different ligands and receptors
(Table 1) [16]. The most studied ligands are IL-1α and IL-1β,
commonly known collectively as IL-1, and the interleukin-1
receptor antagonist (IL-1RA), which antagonizes the effects of IL-
1α and IL-1β [17]. These ligands bind to IL-1 receptor 1 (IL-1R1)
and IL-1 receptor 2 (IL-1R2) that are expressed by several cells.
IL-1R1 is a biologically active receptor with the ability to bind to
either form of IL-1 [18], while IL-1R2 is non-biologically active
and acts as a decoy receptor, inhibiting the effects of IL-1 [19, 20].

IL-1α
IL-1α is produced initially as a 31–33 kDa precursor protein
(preIL-1α) that is cleaved into its 17 kDa mature C-terminal
component (mIL-1 α) and a 16 kDa N-terminal propiece (ppIL-
1α) by the calcium-activated cysteine protease, calpain [5, 21–
23]. All forms of IL-1α are biologically active [24]. PreIL-1α
lacks a leader peptide and therefore cannot be secreted and
remains intracellular [17, 25]. Despite not being secreted, preIL-
1α can localize on the cell surface of macrophages, endothelial
cells, fibroblasts and dendritic cells [26] where is referred to as
membrane-bound IL-1α. Here it acts in a juxtracrine manner by
activating the IL-1R1 receptor of surrounding cells [17]. Both
preIL-1α and mIL-1α are expressed constitutively in epithelial

TABLE 1 | IL-1 family of ligands and receptors (adapted from Dinarello, [15]).

IL-1 family member Receptor Function

IL-1α IL-1R1/IL-1R2 PI/AI

IL-1β IL-1R1/IL-1R2 PI/AI

IL-1RA IL1-R1 AI

IL-18 IL-1R5 PI

IL-33 IL-1R4 PI

IL-36α, β, γ IL-1R6 PI

IL-36RA IL-1R6 AI

IL-37 IL-1R5 AI

IL-38 IL-1R6 AI

and endothelial cells and are considered to act in an autocrine
or paracrine manner [27–29]. IL-1α plays an important role
in inflammation acting in a juxtracrine manner [17] and has
been related with several other cellular functions, such as onset
of senescence [30–32], cell growth, cell differentiation [28, 33],
immune response [34] and regulation of gene expression [35–37].

To exert its biological function, mIL-1α binds to IL-1R1 to
trigger different cellular functions, but preIL-1α and ppIL-1α
can also interact directly with the DNA without binding to
IL-1R1 in a variety of cells [28, 38]. This is because ppIL-1α
contains a canonical nuclear localization sequence (NLS) that
enables it to interact directly within the nucleus in a non-IL-
1R1-dependent manner [39, 40]. PreIL-1α, via ppIL-1α, interacts
with histone acetyltransferases Gcn5, p300, PCAF and with
the adaptor component Ada3, inducing protein transcription
without activating IL-1R1 [41], and in doing so exerts different
intracellular functions, such as NF-κB and AP-1 activation [38],
modulation of endothelial proliferation [28], migration [42] and
cytokine production [43].

IL-1β
IL-1β is the classic inflammatory secreted cytokine produced
in response to inflammatory signals and other stimuli and can
act in a paracrine or systemic manner [44, 45]. IL-1β is mainly
produced by monocytes by intracellular cleavage from its 31 kDa
precursor protein (pIL-1β) into a 17.5 kDa mature form (mIL-
1β) by caspase-1 or IL-1β converting enzyme (ICE) [5, 46]. The
precursor form of IL-1β is considered to be an inactive immature
form of the protein [18]. Unlike preIL-1α, pIL-1β is not expressed
in health [47]. Many microbial products are able to stimulate IL-
1β secretion, and when produced, IL-1β, together with IL-1α, has
the ability to upregulate its own gene expression in vitro and in
vivo [48]. IL-1β expression is mainly restricted to inflammatory
cells, where it is regulated in response to external stimuli [49]. IL-
1β is 25–50-fold more abundant than IL-1α in stimulated human
peripheral mononuclear cells [50], and upon activation, around
70% of IL-1β is secreted by these cells after 24 h stimulation [51].

The main functions of IL-1β are to induce upregulation of
cytokines, chemokines, adhesion molecules, acute phase proteins
and tissue remodeling enzymes [17, 49, 52]; it may also act as
an angiogenic factor in tumors [53], inducing the production of
vascular endothelial growth factor (VEGF) via cyclooxygenase
(COX)-2 activation [54]. IL-1β has been associated with the
pathobiology of many diseases, such as familial periodic fever
syndromes [55], multiple organ failure in sepsis [56], rheumatoid
arthritis, type II diabetes [57], chronic obstructive pulmonary
disease [58] and growth, vascularization and metastasis of
malignant tumors [53].

IL-1 Receptors
IL-1R1

IL-1R1 is the main receptor through which IL-1 exerts its effects
and is found on T cells, keratinocytes, fibroblasts, synovial
cells, endothelial cells, chondrocytes, and hepatocytes [17, 51].
All active forms of IL-1 (pIL-1α, mIL-1α and mature IL-1β)
bind with similar affinity to IL-1R1, triggering biological actions
[49, 59]. IL-1R1 is an 80 kDa molecular weight protein and
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belongs to the immunoglobulin (Ig) super family. It has a
single transmembrane portion with a cytosolic region and an
extracellular segment that contains three domains homologous to
Igs, with seven N-linked glycosylation sites. To be active, the IL-
1R1/IL-1 extracellular complex requires the additional binding
of a co-receptor, the IL-1 receptor accessory protein (IL-1RAcP)
or IL-1R3, forming a trimeric complex [60, 61]. IL-1RAcP is
essential for signal transduction, as murine fibroblasts deficient
in IL-1RAcP showed no response after IL-1 stimulation [62].
After IL-1 binds to the extracellular domain, the Toll/interleukin-
1 receptor (TIR) domain of the cytoplasmic portion of IL-1R1
triggers a cascade of intracellular signaling events that result
in the phosphorylation and degradation of inhibitor nuclear
factor κB (IκB) [63]. This releases p50 and p65 NF-κB sub-
units that upon phosphorylation are transported into the nucleus
and bind to specific DNA promotor sequences, initiating gene
transcription [49, 64]. Although it is generally accepted that IL-
1R1 is localized on the cell membrane, recent reports have shown
that the receptor is also present on the nuclear membrane of
malignant oral keratinocytes [65, 66], although the relevance of
this nuclear localization is unknown.

IL-1R2

IL-1R2 is an inactive IL-1 receptor that acts as a molecular
trap, capturing IL-1 on the plasma membrane or within the
extracellular space whenmembrane IL-1R2 is cleaved and present
as a soluble receptor, without triggering agonist activity [61,
67]. Together with IL-1RA, these IL-1R2 forms act as IL-1
inhibitors [68]. IL-1R2 is also a member of the Ig super family,
consisting of three Ig-like domains in the extracellular portion
and a transmembrane segment. It is found on B and T helper
2 cells, neutrophils, monocytes, bone marrow and microglial
cells [15]. The main difference between the two IL-1R forms is
that, unlike Il-1R1, IL-1R2 has no TIR domain, and is therefore
unable to trigger intracellular signaling, rendering it biologically
inactive [69].

IL-1RA
IL-1RA blocks the binding of IL-1α and IL-1β to IL-1R1, having
no cross-reactivity with IL-1α and IL-1β [70]. When binding to
IL-1R1, IL-1RA does not recruit IL-1RAcP. Thus, IL-1RA has no
agonist action, acting as a pure antagonist molecule [71]. IL-1RA
mainly binds IL-1R1, having little effect on IL-1R2, which is in
agreement with their action as IL-1 inhibitor molecules [72]. As
IL-1RA competes with IL-1 for the same receptor, it is found in
higher concentrations than IL-1. For example, in the skin, IL-1RA
expression has been found to be ≈100-fold higher than IL-1α
[27]. Similarly, a study with recombinant IL-1RA showed that in
order to have 50% inhibition of IL-1-induced actions, IL-1RA had
to be present in 5–100-fold excess over both IL-1α and IL-1β [73].
This is because IL-1R1 is very sensitive to small amounts of IL-1.
Even 5% IL-1 receptor occupancy is able to trigger a complete
biological response [63]. So, for IL-1RA to efficiently block the
effects of IL-1, it must be in abundance [15].

Two main forms of IL-1RA are now recognized; a secreted
form (sIL-1RA) [74] and an intracellular form (icIL-1RA) [75].
Intracellular IL-1RA has the same amino acid structure as

the secreted form, but lacks a leader peptide that prevents its
secretion. The intracellular variant is transcribed by alternate
splicing of the same gene as sIL-1RA [75]. Three isoforms
of the intracellular form have been reported (icIL-1RA1 or
transcript variant 3, icIL-1RA2 or transcript variant 2 and icIL-
1RA3 or transcript variant 4) [76–78], with icIL-1RA1 being
the most studied. Both secreted and intracellular IL-1RA forms
are tissue specific. icIL-1RA is constitutively expressed in tissue
sites exposed to environmental factors, such as epithelial cells of
the skin, oral cavity, vagina, ovaries and upper respiratory tract
[65, 75, 79, 80], while sIL-1RA is found inmonocytes, neutrophils
and other cells [77].

Other IL-1 Family Members
The IL-1 family of proteins comprises of several other members
in addition to IL-1 (Table 1). IL-18, whose actions are mediated
by binding to IL-1R5, is considered an immunomodulatory
cytokine important for IFNγ production and is up-regulated by
keratinocytes in response to contact sensitizers [81, 82]. IL-33 is
a pro-inflammatory cytokine that binds to IL-1R4, but similarly
to IL-1α, can also exert its actions directly to the nucleus [83]. IL-
36 is an inflammatory protein associated with the development
of psoriasis and acts by binding to IL-1R6. Decreased levels
of its specific antagonist, IL-36RA, have also been related with
the development of pustular psoriasis [84]. Similar to IL-18,
IL-37 also binds to and activates IL-1R5. However, unlike IL-
18, IL-37 is considered an anti-inflammatory cytokine, where
low levels are thought to contribute to disease severity [61]. IL-
38 also has predominantly anti-inflammatory actions that are
mediated by binding to IL-1R6 [85] where it has been shown to
reduce clinical manifestations of systemic lupus erythematosus
and arthritis [86].

IL-1 IN KERATINOCYTE BIOLOGY

IL-1α and IL-1RA are constitutively expressed by skin and oral
keratinocytes [34, 65, 80, 87]. IL-1β can be found intracellularly
[87], but because keratinocytes lack ICE, pIL-1β cannot be
cleaved into its 18 kDa mature form and remains inactive and
is not reported to be secreted [87, 88]. However, it has been
recently reported that normal oral keratinocytes do secrete IL-
1β (although in very low levels) that significantly increases with
cell aging, although the underlying mechanism is unknown
and might be related with the culture conditions (co-culture
with irradiated fibroblasts) [65]. To counteract the action of
IL-1, keratinocytes mainly express icIL1-RA1 [79, 89], which
is localized both in the cytoplasm and inside the nucleus [65],
whereas the secreted isoform (sIL-1RA) is either absent or
found in very low levels [65, 90]. This makes biological sense
as keratinocytes mainly express IL-1α, which is considered an
intracellular cytokine, thus an intracellular antagonist is needed
to regulate its activity. Although the main actions of icIL1-
RA are attributed to its ability to block IL-1R1, icIL1-RA1 is
also able to decrease IL-6 and CXCL8 levels by inhibition of
the p38 MAPK and NF-κB signaling pathways in an IL-1R1-
independent manner [89, 91]. Thus, it is likely that the main
icIL-1RA1 functions are related to the regulation of intranuclear
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IL-1α. Keratinocytes also express IL-1R2 at higher levels than IL-
1R1 (resting and when activated). So, both IL-1R2 and icIL-1RA
have synergistic roles in regulating IL-1 action on keratinocytes,
protecting these cells from excessive autocrine activation of IL-
1α [92].

IL-1α and icIL-1RA may have an important role in
keratinocyte growth, differentiation, and aging. An in vitro
study testing the growth conditions for different epithelial
cells found that IL-1α inhibited the proliferation of stratified
squamous epithelial cells, whereas IL-1RA enhanced it.
Moreover, significant growth promotion in normal epidermal
keratinocytes was observed upon addition of exogenous IL-1RA
[93]. Changes in the ratio of icIL-1RA:IL-1α might help to
control growth and differentiation of human skin, as icIL-1RA
accumulates in more differentiated cells and IL-1RA expression
in oral keratinocytes is positively correlated with the expression
of involucrin (a marker of cell terminal differentiation that
is restricted to the granular cell layer) [94], whereas IL-1α is
uniformly expressed in all keratinocyte maturation stages [33].
icIL-1RA1 is reported to be an important factor in the regulation
of oral keratinocyte senescence and the development of the
senescence-associated secretory phenotype (SASP) [65]. Cellular
senescence corresponds to a cellular state characterized by
permanent cell growth arrest in response to different stressors
in order to avoid propagation of genetically damaged cells
[95]. When cells senesce, they remain metabolically active
a develop a SASP characterized by the presence of multiple
pro-inflammatory factors which have been related with the
development of age-related disorders, including cancer [96].
Oral keratinocytes lacking icIL-1RA1 have been shown to senesce
prematurely when compared with keratinocytes expressing icIL-
1RA1, and icIL-RA1 was found to regulate the expression of two
important SASP factors, IL-6 and CXCL8 [65], which have been
associated with the development of malignancies [96].

IL-1 SIGNALING IN HEAD AND NECK
SQUAMOUS CELL CARCINOMA

IL-1α, IL-1β, and IL-1R1 have been reported to be constitutively
expressed in HNSCC [66, 97–99] whilst decreased IL-1RA
expression has been observed early in the oral carcinogenesis
process [65]. As different members of the IL-1 signaling
pathway have reported to have important functions in
HNSCC carcinogenesis and tumor progression, we will
review them separately.

IL-1α
IL-1α expression in HNSCC contributes to cell growth and
survival and has been considered by some authors as a prognostic
factor. In the study of Leon et al. [100], patients with metastatic
HNSCC displayed higher expression of IL-1α than patients
without metastases. Constitutive IL-1α over-expression was
correlated with that of IL-1 family genes, such as IL-1β and
IL-1RA. IL-1α expression also correlated with increased cell
transmigration of tumor cells across the endothelium, which was
inhibited by addition of IL-1RA. IL-1α expression also correlated

with different genes that have been associated with metastasis,
particularly MMP-9 (a matrix metalloproteinase associated with
EMT), PGE2 (a product of COX-2 activation associated with
metastases of OSCC), VEGF (the most important angiogenic
factor in HNSCC) and CXCL8 [100]. The five-year distant
metastasis-free survival was 70% for patients with high tumor
levels of IL-1α in contrast to 95% for patients with low expression
of IL-1α. Patients with increased levels of IL-1α had a 5.3-fold
higher risk of developing metastasis and patients with distant
metastases had also a significant increase in secreted IL-1α [100].

IL-1α has also been reported to induce the overexpression of
IL-6 [97] and CXCL8 in HNSCC cell lines, the latter by inducing
NF-κB and AP-1 pathways [36]. This is of importance as IL-6 and
CXCL8 are considered important “oncogenic cytokines”, as they
are able to cause EMT [101], stimulate angiogenesis and tumor
growth [102, 103], disrupt cell-cell communication, impede
macrophage function and promote epithelial and endothelial cell
migration and invasion [104]. NF-κB is considered a key factor in
the regulation of the inflammatory infiltrate observed in the TME
[105] and has been associated with the acquisition of a malignant
phenotype of HNSCC, as is associated with tumor angiogenesis
[106], EMT [107], invasion [108, 109] and metastasis [110].
In addition, inactivation of NF-κB in HNSCC suppressed cell
survival and expression of IL-1α, IL-6, CXCL8 and GM-CSF in
a murine model of head and neck cancer [111] and its aberrant
expression is associated with poor prognosis in solid cancers
[112]. AP-1 expression increases with HNSCC progression and
induces bcl-2 expression that is associated with suppression
of apoptosis and resistance to chemoradiation therapy [113]
(Figure 3).

IL-1β
The mechanism by which IL-1β is constitutively overexpressed
in HNSCC is not clear, but a single nucleotide polymorphism
of the IL-1β gene could explain this. In fact, IL-1β-511
polymorphism has been reported to be a significant risk factor
for the development of OSCC [114]. IL-1β is identified as
a key node gene in the tumor microenvironment (TME) of
OSCC in vivo [115]. Keratinocytes lack ICE and therefore
should not be able to produce the mature active form of IL-
1β. However, other proteases are able to cleave IL-1β precursor
form, suggesting that pIL-1β can be processed after secretion
by other proteases that are present in the TME [116]. In
agreement with this, IL-1β produced by oral keratinocytes and
HNSCC cells is biologically active. Interaction of IL-1β with the
TME leads to monocyte recruitment that then differentiate into
tumor-associated macrophages (TAMs) whose increased levels
in HNSCC are associated with poor prognosis [12, 117]. Also,
stimulates the production of numerous cytokines by different cell
types, such [116] as cancer-associated fibroblasts (CAFs), normal
fibroblast, endothelial cells, neutrophils as well as oral dysplastic
and cancer cells, among others [10, 11, 98, 118], through an
IL-1-dependent innate immune response.

The IL-1β found in the TME is also produced by other cells
in addition to HNSCC cells. A recent report demonstrated that
IL-1β produced by CAFs induces CCL22 mRNA overexpression
in oral cancer cells. CCL22 is implicated in the recruitment of
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FIGURE 1 | (A) IL-1α and (B) IL-1β forms. (C) IL-1R1 agonist receptor. To be active, IL-1R1 needs the binding of IL-1RAcP. Both IL-1R1 and IL-1RAcP have a TIR

domain, which after a series of phosphorylation following IL-1 binding, activate NF-kB. (D) IL-1R2 decoy receptor binds to IL-1 without triggering any agonist action as

lacks of a TIR domain. (E) IL-1RA variants bind to IL-1R1, blocking the binding of IL-1 without recruiting IL-1RAcP, thus triggers no agonist action. This image was

created with Biorender.

T regulatory cells, and its expression in oral cancer patients
has been associated with a reduced disease-free survival [119].
Tumor-associated macrophages (TAMs) also secrete IL-1β,
which, together with the actions of TNF-α stimulate tumor
angiogenesis by inducing the release of VEGF and CXCL8
by HNSCC cells [120]. This creates an inflammatory TME
that can predispose to tumor progression [121] (Figure 1).
For example, in HNSCC IL-1 signaling drives neutrophil and
monocyte recruitment [10], and accumulation of these tumor-
associated leukocytes has been associated with poor prognosis
[13, 122]. The IL-1/IL-1R axis mediates chemokine release from
normal tonsillar fibroblasts (NTF) induced by HPV-negative
oropharyngeal carcinoma (OPC) cells, which can be reverted
with IL-1 inhibition [11]. This is of significance, as for example,
CXCL1 andMMP-1 produced by CAFs in response to IL-1β from
OSCC cells, increased the invasion and migration capabilities
of OSCC cells [123]. Also, IL-1 released from HNSCC cells
has been shown to stimulate COX-2 production by CAFs [124]
that correlated with lymphangiogenesis [125] and E-cadherin
regulation, important factors for epithelial-to-mesenchymal
transition (EMT) development [126], and increased risk of
distantmetastases [127]. InOSCC, IL-1β produced by tumor cells
can act in a paracrine manner, inducing the expression of fascine

that is associated with ECM degradation and tumor cell invasion
[128] (Figure 2).

The oncogenic properties of IL-1β have also been
demonstrated using in vivo models. In a mouse oral cancer
model in which carcinogenesis was induced by mimicking
tobacco and areca nut carcinogens, an increase in pIL-1β mRNA
positively correlated with the presence of malignant change
(from normal, to mild, through severe dysplasia to OSCC). In
agreement with these findings, OSCC and dysplastic cell lines
from smokers and/or betel quid chewers had higher IL-1β levels
than controls, with inflammasome components constitutively
expressed in OSCC cells that allows the cleavage of pIL-1β into
mIL-1β. IL-1β might have an important role in the induction of
EMT in OSCC, as in the same study, OSCC cells treated with
IL-1β showed upregulation of Snail and Slug (two repressors
of E-cadherin expression), increased vimentin expression, and
downregulation of E-cadherin. This was also correlated with a
change in cell morphology, from a squamous cell-like shape,
in cells not exposed to IL-1β, to a spindle-like shape in OSCC
cells exposed to IL-1β. The migration capacity of OSCC treated
with IL-1β increased significantly after 48 hours, compared
to untreated OSCC. These findings strongly suggest a role of
IL-1β in EMT in OSCC [98], which has also been reported by
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FIGURE 2 | Comparison of IL-1α expression and regulation in normal head and neck keratinocytes (A) and in cancerous head and neck keratinocytes (B). (A) Normal

keratinocytes express low levels of IL-1α, which is not normally secreted, and is regulated by icIL1RA, which is expressed in abundancy to efficiently counteract IL-1α

actions. This balance secure low NF-kB activity with low production of other inflammatory molecules, such as IL-6 and CXCL-8. (B) In cancerous head and neck

keratinocytes, icIL-1RA expression is downregulated, whereas IL-1R1 and IL-1α are constitutively upregulated, generating an imbalance in IL-1 regulation. IL-1α can

localize intracellularly and interact directly to the nucleus, can be attached to the cellular membrane (membrane IL-1α) or can be released to the extracellular space.

Membrane and secreted IL-1α can both bind to IL-1R1 receptors and activate NF- κB and AP-1 transduction pathways, resulting in the release of IL-6 and CXCL8,

which are considered oncogenic cytokines as are associated with tumor growth and metastasis. Also, intranuclear IL-1α can interact directly with the nucleus inducing

NF-κB activation in a non-IL-1R1 dependent manner. This also results in the release of IL-6 and CXCL8, which are both overexpressed in HNSCC. This image was

created with Biorender.

others [126, 129, 130]. This is also supported by the fact that
IL-1β silencing reduces OSCC tumor size in vivo [115] and that
elevated IL-1β expression has been related with lymph node
metastasis of OSCC [131].

IL-1RA
Several gene expression profiles of HNSCC have shown that
IL-1RN is downregulated in HNSCC when compared to
matched normal oral mucosa [132–139]. In addition, IL-
1RN was reported to be a reliable marker when predicting
the presence or absence of HNSCC in tissue samples in
a cohort of 46 patients with HNSCC, with sensitivity
and specificity of 93.5 and 95.7%, respectively [138].
Despite this, very little is known about the role of IL-1RA
in HNSCC.

Von Biberstein et al. [99] reported an imbalance in the IL-
1:IL-1RA ratio in HNSCC when compared to healthy patients,
that was attributed mainly to an increase in the levels of IL-
1α and IL-β, but also to a decrease in the levels of IL-1RA.
These authors also reported higher expression of IL-1RA in
the more differentiated epithelial cells within the tumors. IL-
1RA protein expression decreases progressively during oral

carcinogenesis and in HNSCC [65], which is in agreement with
a previous report [80] and IL-1R2, the other IL-1 inhibitor,
is not able to compensate for IL-1RA lack of expression [65].
Also, IL-1RA levels decrease significantly in immortal normal
and dysplastic oral keratinocytes when compared to their mortal
counterparts. This suggest that IL-1RA downregulation during
the carcinogenic process might be an important step for the
acquisition of a malignant phenotype, primarily because the
binding of IL-1 to IL-1R1 is not inhibited, allowing dysregulated
activation of the IL-1/IL-1R1 axis that can predispose to the
carcinogesis process in different ways (Figures 1, 2). Moreover,
In oral keratinocytes, icIL-1RA1 regulates IL-6 and CXCL8
secretion, most likely by interfering with NF-κB activation [65].
Both IL-6 and CXCL-8 secretion is canonically regulated by
NF-κB, and icIL-1RA1 is able to regulate NF-κB activation
wheter by inhibiting IL-1 binding to IL-1R1, or by directly
interfering with the NF-kB signaling pathway (see below). Thus,
a downregulation of IL-1RA would allow overexpression of these
cytokines (Figure 3).

There has been much debate about the specific functions

of icIL-1RA. icIL-1RA is able to bind to IL-1R1, but as

a stricktly intracellular molecule, it is more likely that the
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FIGURE 3 | Different examples of how IL-1βcan promote cancer progression. IL-1β can be produced by tumor cells (A) or by other cells of the TME (B). (i) IL-1β

produced by tumor cells stimulates CXCL8 release from normal oral fibroblasts, which increases tumor growth. (ii) IL-1β stimulates CXCL1 and CXCL8 production by

CAFs and tumor cells which attracts neutrophils to the TME, and neutrophil accumulation has been related with poor outcome in HNSCC. (iii) IL-1β released by tumor

cells induces CXCL-1 and MMP-1 secretion by CAFs. This induces invasion and migration of cancer cells. Also, secreted IL-1β can act in a paracrine way inducing

fascine release, which helps in the degradation of the extracellular matrix and invasion. (iv) TAMs produce IL-1β to stimulate cancerous cells to produce VEGF and

CXCL8, inducing angiogenesis. (v) IL-1β produced by CAFs induces the release of CCL22 by tumor cells, which recruits T regulatory cells, who have been associated

with worse prognosis. This image was created with Biorender.

main functions of icIL-1RA are not related to IL-1R1 binding.
IL-1R1 is located on the membrane surface, thus, icIL-1RA
would require secretion into the extracellular space for it to
block IL-1R1, although IL-1R1 intranuclear localization in oral
dysplastic and cancer cells has been recently described [65]. It
has been proposed that the main function of icIL-1RA is to
counteract the intranuclear action of IL-1α. icIL-1RA may act
intracellularly by binding to other cytoplasmic proteins in order
to interfere with the downstream cascade. In fact, icIL-1RA
has been reported to interact with the third component of the
COP9 signalosome (CSN3) inhibiting CSN-associated kinases
[91]. The signalosome (CSN) is found in the cytoplasm and
nucleus of all mammalian cells, and among other functions, it has
kinase activity that induce phosphorylation of proteins involved
in signal transduction. When interacting with CSN3, icIL-1RA1
inhibits phosphorylation of p53, c-Jun and IκB thereby inhibiting
IL-1α-mediated IL-6 and CXCL8 transcription. These inhibitory

actions may also affect the p38 MAPK signal transduction
pathway, as transfected keratinocytes with icIL-1RA1 showed no
detectable phosphorylated p38 MAPK when stimulated with IL-
1α [91]. Similar icIL-1RA1 inhibitory mechanisms have also been
reported in intestinal epithelial cells [89]. Böcker et al. [140]
also reported inhibition of IL-1-induced CXCL8 expression by
icIL-1RA1, but did not specify the mechanism underlying this
inhibition. It has been proposed that the role of CSN3 is to bring
icIL-1RA1 close to a kinase in order to inhibit its action. So,
icIL-1RA1 would block an upstream kinase in the p38 MAPK
or NF-κB pathways, indirectly inhibiting p38 MAPK or NF-
κB phosphorylation and consequently, its downstream products,
such as IL-6 and CXCL8 [91].

It can be hypothesized then, that downregulation of icIL-
1RA in HNSCC could lead to de-regulated expression of
pro-inflammatory cytokines related to cancer development
by allowing the un-controlled activation of IL-1α and
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NF-κB (Figure 3). This speculation is based on the finding
that OSCC constitutively express higher levels of IL-1α and NF-
κB than healthy controls [8, 100, 118, 141] and that levels of IL-6
and CXCL8 are elevated in OSCC [142, 143]. In addition, IL-1α
can interact directly with nuclear DNA an induce malignant
transformation [40]. Thus, if endogenous levels of IL-1α are
constitutively overexpressed, and its mains inhibitor (icIL-1RA)
is downregulated, there could be more chances for icIL-1α
to induce malignant transformation. In agreement with this
hypothesis, a recent study comparing nuclear and cytoplasmic
IL-1α expression in OSCC showed that the high expression
of nuclear IL-1α in combination with EGFR, was associated
with perineural invasion and high risk of recurrence and worse
progression-free survival, compared to OSCC expressing none
or moderate nuclear IL-1α in combination with EGFR [144].
These studies suggests that uncontrolled nuclear IL-1α activity
might be of clinical importance.

There is some controversy about the role of IL-1RA in
HNSCC. Shiiba et al. [80] reported an increase of IL-1RA
(T3/T4) compared to early OSCC cases (T1/T2), suggesting that
IL-1RA expression could increase tumor progression. Similar
observations have been reported by other authors in gastric
[145] and cervical carcinomas [146], reporting a more aggressive
behavior from IL-1RA expressing tumors. A possible explanation
to this could be that over time, endogenous IL-1 antagonism
(which is likely to be beneficial in antagonizing disease
progression) changes the tumor phenotype to one that is less
susceptible to IL-1 inhibition. Thus, the disease progresses, and
IL-1RA levels remain high [71]. Also, most of the aforementioned
studies measured sIL-1RA, so the increase in sIL-1RAmay be due
to a decrease in icIL-1RA levels. Nevertheless, these contradictory
functions of IL-1RA in different cancers only highlights the
multiple functions that IL-1RA displays in relation to the specific
tissue, cell type or the microenvironment in which it is present.

IL-1R1
A number of different polymorphisms of the IL1R1 gene have
been related with a reduced (rs956730) or increased (rs3917225)
risk for developing HNSCC [147]. IL-1R1 is overexpressed
by oral dysplastic and OSCC cells compared to normal
oral keratinocytes [65], which seems to provide phenotypic
advantages. IL-1R1 promotes oral cancer growth and metastasis
by upregulating CXCR4 (a chemokine receptor involved in
tumor progression, angiogenesis and metastasis) after IL-1β
stimulation, and IL-1R1 inhibition with recombinant IL-1RA has
shown to reverse these effects [66]. IL-1R1 is also constitutively
expressed by normal oral fibroblasts [11]. This is of importance
as HNSCC cells are able to secrete IL-1β which stimulates other
cells of the TME (such as fibroblasts) to generate chemokines and
other inflammatory molecules creating an inflammatory TME
with cancer promoting properties [11].

TRANSLATIONAL POTENTIAL

Utility as a Saliva Biomarker
The discovery that saliva contains molecules that are able to
translate the presence or activity of local or systemic diseases
has opened a new diagnostic field known as salivary diagnostics

[148]. The use of saliva as a diagnostic method is very practical,
as saliva can be collected in an easy, non-invasive way. As there
is evidence suggesting that IL-1α, IL-1β, and IL-1RA are involved
in the pathogenesis of HNSCC and can be detected in the saliva
of cancer patients [149–151], different studies have explored
their possible use as diagnostic or prognostic biomarkers for
this cancer.

IL-1β is overexpressed in the saliva of oral cancer patients
compared to oral leukoplakia and control patients [152, 153]
and IL-1β salivary levels have been shown to discriminate
between OSCC subjects and controls [154–156], but not between
oral potentially malignant disorder (OPMD) patients and
healthy subjects [155]. The reported AUC of salivary IL-1β
to differentiate between OSCC and control individuals varies
between 0.729 and 0.7724 [154, 155] but increases to 0.901 when
considering only late stage OSCC [155]. Also, the discriminatory
power of salivary IL-1β increases when used with other markers,
such as CXCL8, SAT1 and DUSP1 [156]. In the study by
Singh et al. salivary IL-1β failed to distinguish between post-
treatment OSCC individuals and healthy subjects, suggesting
a normalization of IL-1β salivary levels after tumor removal
[155]. In agreement, a study in which the authors analyzed
the expression of 50 cytokines (including IL-1β, IL-1 α, and
IL-1RA) in the saliva of 16 OSCC patients before and after
surgical intervention, showed a significant decrease in salivary
IL-1β levels after tumor resection. No significant changes in
other cytokine levels were reported [150]. Similar results were
also reported elsewhere [157]. IL-1α expression is also reported
to be increased in the saliva of tongue SCC (TSCC) patients
compared to controls and has also been associated with tumor
growth pattern [9, 158]. Patients presenting with endophytic
TSCC exhibited significantly higher IL-1α levels compared to
exophytic TSCC, which correlated with a decreased survival rate
in the group of endophytic tumors [158].

IL-1RA can also be detected in the saliva and its expression
is reported to be significantly decreased in the saliva of OPMD
andOSCC patients compared to healthy controls [151]. Opposite
to salivary IL-1RA, plasma circulating IL-1RA levels have been
shown to be increased and OSCC patients and correlated
with tumor size, but were not related with different outcome
measures [159]. By itself, salivary IL-1RA displayed a poor
performance in diagnosing OSCC, but in combination with
other proteins (SLC3A2 and S100A2), it was able to distinguish
between individuals with OSCC from healthy controls and
OPMD patients, with AUC of 0.89 and 0.87 respectively [151].

The use of salivary IL-1α, IL-1β, and IL-1RA as HNSCC
biomarkers is promising, but as there are many local and
systemic diseases that can give rise to elevated salivary IL-1 or
decreased IL-1RA levels (e.g., periodontal disease, oral lichen
planus, Sögren’s syndrome) [94, 160, 161], which increases the
likelihood of false positives, more clinical studies are needed
before translating this into clinical practice.

Therapeutics
Many beneficial functions of IL-1 inhibition have been described
in different cancers, thus, targeting IL-1 has been proposed as a
possible therapy for IL-1 expressing tumors, such as melanoma,
gastric and breast cancers, among others [162]. In gastric
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cancer, recombinant IL-1RA inhibited tubule formation [163]
and reduced proliferation and migration of endothelial cells in
vitro in a dose-dependentmanner [164]. Similar results have been
reported in breast cancer. A murine experimental breast cancer
model showed that treatment with anakinra (a recombinant form
of IL-1RA with FDA approval for the treatment of rheumatoid
arthritis and cryopyrin-associated periodic syndromes) reduced
the size and number of bone metastases as well as tumor
angiogenesis [165]. Taken together, these data suggest that rIL-
1RA could be a beneficial alternative for the inhibition of tumor-
dependent angiogenesis, probably by reducing the production of
VEGF, CXCL8, endothelin-1, IL-1β and hepatocyte growth factor
(HGF) [164–166].

Anakinra has been used in clinical trials for the treatment
of some cancers. The first study to use anakinra as a cancer
treatment was a phase II clinical trial of pre-multiple myeloma.
Anakinra in combination with dexamethasone was found to
increase the progression-free survival as well as overall survival
in patients at high risk of progressing to multiple myeloma, by
targeting the IL-1/IL-6 pathway [167]. In refractory metastatic
colorectal cancer, anakinra in combination with fluorouracil
(an anti-metabolite) and bevacizumab (anti-EGF monoclonal
antibody) showed good efficacy with low toxicity. Currently,
there are several clinical trials where recombinant IL-1RA is
being tested either as a monotherapy or in combination for the
treatment of different cancers, including multiple myeloma,
prostate, breast, pancreatic, and colorectal cancers (https://
clinicaltrials.gov/ct2/results?cond=Cancer&term=termIL1RA+
OR+Anakinra&cntry=&state=&city=&dist=). Nevertheless, care
must be taken when considering IL-1RA therapy for HNSCC
treatment, as recombinant IL-1RA is likely reduce the innate
immunity response in already ill patients, which in theory, could
worsens the disease. Thus, IL-1RA replacement therapy may be
only appropriate for IL-1 producing tumors [162].

Exogenous IL-1RA (i.e., anakinra) corresponds to the
secreted isoform of IL-1RA, which is present in very low
levels in oral keratinocytes, as oral keratinocytes constitutively
express icIL-1RA1. It is not entirely clear how exogenous
IL-1RA works. It is thought that exogenous IL-1RA acts in
a similar manner to sIL-1RA, by blocking IL-1R1 on the
cell membrane. Nevertheless, exogenous IL-1RA has been
shown to be incorporated into the cytoplasm of cardiac
myocytes during ischemia, mimicking the intracellular form
of IL-1RA, at least in terms of intracellular distribution [168].
Whether exogenous IL-1RA can replace icIL-1RA (which
expression is lost during the malignant transformation
process of oral keratinocytes and OSCC) functions is
not known.

Despite the data supporting an oncogenic role of the IL-
1/IL-1R1 axis in HNSCC, there is a lack of studies that have

explored the use of IL-1 inhibition for HNSCC treatment. A
recent study [115] showed that exogenous IL-1RA can inhibit
the growth of Cal27 cells (a tongue squamous adenocarcinoma
cell line) in vitro, but more importantly, can potentially interrupt
the oral carcinogenesis process in vivo. Submucosal injections
of IL-1RA into the tongue of mice during 4NQO-induced
oral carcinogenesis interrupted the malignant transformation

process. This was done presumably by downregulating genes
that were upregulated during the 4NQO-induced carcinogenesis
process, such as the oncogeneMyc and COX-2 [115]. In addition,
anakinra has been shown to overcome erlotinib (an EGFR
inhibitor) resistance in a HNSCCmouse xenograft cancer model,
suggesting its use as a possible strategy to overcome EGFR
inhibitor resistance for HNSCC treatment [169]. Although these
initial data are promising, there are no clinical trials that have
assessed anakinra for HNSCC treatment and more research in
this area is warranted.

CONCLUSION

There is compelling evidence that the IL-1 signaling pathway
is deregulated in HNSCC, with overexpression of agonistic
molecules and downregulation of inhibitory factors. This
results in a dysregulated signaling pathway that mediates
the development of a pro-inflammatory microenvironment
prone to tumor development, progression and metastasis. Oral
carcinogenesis is a multistep process which includes three
phases: initiation, promotion, and progression. The available
evidence suggests IL-1 signaling to influence the promotion and
progression phases of the malignant transformation process.
The increased presence of IL-1 in HNSCC support the idea
that salivary IL-1 could be of use as a screening tool for the
early detection of cancer, probably as part of a biomarker
panel rather than as a single marker. Early data shows
promise, although more rigorous studies are needed before
this can be translated into clinical practice. IL-1 inhibition
is already being tested as a possible treatment alternative
for different cancers, such as myeloma, breast, pancreatic
and colorectal cancers, and there are in vivo animal studies
showing promising results for HNSCC treatment. However,
there is still a long way to go before this can be applied in a
clinical setting.
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