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Drop-tube processing was used to solidify rapidly a congruently melting, single phase intermetallic Ni5Ge3. 

This process results in the production of powders with diameters that are between 850 – 53 m. After 

etching that occurs at low cooling rates (850 – 150 m diameter particles, 700 – 7800 K s-1), an isolated 
plate and lath microstructure in what is an otherwise featureless matrix constitutes the dominant 

solidification morphology. By contrast, when the cooling rates are higher (150 – 53 m diameter particles, 
7800 – 42000 K s-1), it is isolated hexagonal crystallites within a featureless matrix, which constitute the 

dominant solidification morphology. The TEM analysis of selected area diffraction shows that plate and 

lath microstructures are variants of -Ni5Ge3, which are partially ordered. By contrast, the isolated 
hexagonal crystallites are revealed to be disordered. However, the featureless matrix of both 

microstructures are the fully ordered variant of the same compound. The plate & lath has a very different 

EBSD and GOS signatures to the hexagonal crystallites structure. Histogram of the correlated grain 

orientation angle distribution across grain orientation in plate & lath microstructure sample from the 300 – 

212 μm fraction showing predominance of low angle grain boundaries. However, grain orientation in 
isolated hexagonal crystallites from 150 – 106 μm revealing the distribution typical of random grain 

orientation. 

Keywords: rapid solidification, intermetallic compound, plate & lath microstructure, isolated hexagonal 
crystallites. 

 

INTRODUCTION 

Intermetallic compounds such as Ti3Al have 
received considerable attention since the 70’s due to 
their potential as structural material for high 

temperature applications. Ti3Al is characterised by a 

high elastic modulus, low density and good 
mechanical properties at elevated temperature, 

together with good oxidation resistance. Furthermore, 

these intermetallic alloys display good dimensional 
stability [1] and, in contrast to ceramics, can display 

good ductility at room temperature with appropriate 

processing. Additionally, they exhibit good thermal 
conductivity. For these reasons, Ti3Al has been the 

object of much attention as a high temperature 

structural material for aerospace application [2, 3] 

such as in compressor rotors and afterburner nozzles 
[3]. Ti3Al is also used commercially in the automotive 

industry, where applications include turbo-fan rotors 

and exhaust valves [4]. The purpose of this study is to 
examine, using drop-tube processing, the 

solidification morphologies, which are connected to 

high growth rate disorder trapping. Despite its 

commercial importance, there have been few 
systematic studies to date of order-disorder reactions 

in Ti3Al. [5-7]. The high chemical reactivity of Ti3Al 

melt favours easy heterogeneous nucleation thereby 

suppressing undercooling during normal material 

processing. However, recently [8] have succeeded in 

obtaining high undercooling in Ti3Al melts using 
electromagnetic levitation techniques.  

An alternative approach is the use of an 

analogue system, crystallographically similar to Ti3Al 
but which is easier to process. One such is the 

congruently melting intermetallic compound Ni5Ge3 

which shares the P63/mmc crystal structure with 

Ti3Al. Moreover, congruently melting compounds are 
particularly well suited to studying the effects of 

disorder trapping in intermetallics in that, with the 

melt at the stoichiometric composition, solidification 
occurs without partitioning of solute, even during 

equilibrium solidification. Consequently, it is possible 

to study disorder trapping without having to consider 

simultaneous solute trapping, which would otherwise 
complicate the interpretation of results.   

In this study, rapidly solidified Ni-37.2 at%. 

Ge, are examined and presented, which is close to the 
stoichiometry of the Ni5Ge3. The drop tube process, in 

which cooling rate is first set-on through powder size, 

impacts on rapid solidification. The key objective of 
this work is established on the examination of EBSD 

consequences of the rapidly solidified Ni5Ge3 

compound. In this study two dissimilar 

microstructures were found namely, plate & lath 
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structure and isolated faceted hexagonal crystallites. 

Where, at low cooling rates such as 700 – 7800 K s-1 

within the sample size 850 – 150 m, produced plate 
& lath structure. However, at higher cooling rates 

such as 7800 – 42000 K s-1 within the sample size 150 

– 53 m, isolated faceted hexagonal crystallites were 
observed.  

EXPERIMENTAL METHODS 

The congruently melting ε-Ni5Ge3 compound 
occurs over the homogeneity range of 33.6 to 42.2 at. 

% Ge. ε-Ni5Ge3 and has the ordered hexagonal 

P63/mmc crystal structure [9]. ε-Ni5Ge3 was made 
via arc-melting Nickel and Germanium composed in a 

protective argon (Ar) atmosphere. XRD analysis using 

a PANalytical Xpert Pro X-Ray diffractometer to 
verify the phase composition of the subsequent ingot.  

In this research work, a 6.5 m drop-tube was 

used for rapid solidification process. The arc melted 

sample of ε-Ni5Ge3, 9.4 g mass was loaded into an 
alumina crucible. At the bottom of this crucible has 

three 300 µm laser drilled holes. The arc-melted 

sample heated/melted by induction melting system. 
The pressuring of the crucible with 400 kPa of N2 gas 

led to the melt being ejected at a crucible temperature 

of 1533 K/1260 C (75 K superheat). From this a fine 
spray of droplets are produced, which become solid 

in-flight. These droplets are at the base of the tube. 
The drop-tube method is explained in detail in [10]. 

Ten different size of samples ranges between  850 

μm (< 700 K s-1) to  38 μm (> 54500 K s-1) were 
obtained subsequent evacuation from the drop tube. 

The methodology for calculation of cooling rate for 

the each size fraction are described in [11].  

In this paper we present our results for the 850 
- 53 μm drop-tube samples. XRD analysis was 

performed on the drop-tube powders in order to check 

that the material stayed single phase subsequent 

processing. Following this drop-tube the powders 

were mounted and polished to a 1 m surface finish 
for microstructural analysis. A 0.1 µm colloidal silica 

suspension was used to obtain the high quality surface 

finish required for EBSD analysis. A Carl Zeiss EVO 
MA15 scanning electron microscope (SEM) was used 

for metallographic analysis. A combination of 

equivalent portions HF, HCl and HNO3 was used to 
perform the etching of samples. In order to identify 

the chemical homogeneity of samples, an Oxford 

Instrument X-Max Energy-Dispersive X-Ray (EDX) 

detector was utilised. A FEI Quanta 650 FEGSEM 
with Oxford/HKL Nordlys EBSD system was used to 

perform Electron Back-Scatter Diffraction (EBSD) on 

unetched samples. 

RESULTS AND DISCUSSION  

Samples of the intermetallic compound ε-
Ni5Ge3 were rapidly solidified from their parent melt 

using a drop-tube technique. XRD analysis confirmed 

that starting material/arc-melted sample for the drop-

tube experiments is ε-Ni5Ge3, single-phase. In Figure 
1, it is shown that XRD peaks may be indexed to ε-

Ni5Ge3 by the ICCD reference 04-004-7264. The 

XRD results in the Figure 1 also show that it is also 
true with rapid cooling by drop tube (diameter 850 µm 

to 53 µm).  

 

Figure 1: X-ray diffraction analysis of as cast 

sample preceding to drop tube experiment (black) and 

rapidly solidified sample (drop tube processed) powder in 

the 850 – 53 μm size fraction. Vertical black lines indicate 
peak position for the Ni5Ge3 reference pattern. 

 

For the study of microstructure of rapidly solidified 

Ni5Ge3 samples, SEM was used in this work. SEM 

images of HF etched samples from sieve fractions 850 
– 500 μm, 500 – 300 and μm, 300 – 212 μm are 
shown in the Figures 2 (a-c) respectively, in which 

many structure like plate & lath can be seen. Note that 

grain boundaries are also evident and that many of the 

plate & lath morphologies appear to cross the grain 

boundaries unaltered. Such structures are the 

dominant solidification morphology in the drop-tube 
samples in sieve size fractions ranging from 850 μm 
to 150 μm. However for particle size smaller than 150 
m, these plate and lath structures are exchanged via 
numerous isolated faceted hexagonal crystallites with 
uniformly featureless matrix as can be seen in the 

Figure 2 (d-f) which show SEM micrographs for the 

three smallest samples, 150 – 106 μm, 106 – 75 μm, 
and 75 – 53 μm respectively. In Figure 2f, it also 
appears that a grain boundary cuts straight through 

one of the isolated hexagonal crystallites.  
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Figure 2: SEM micrograph of HF etched Ni5Ge3 drop tube 

from (a) 850 – 500 μm, (b) 500 –300 μm, and (c) 300 – 212 

μm showing numerous plate & lath structures. While, (d) 

150 – 106 μm, (e) 106 –75 μm and (f) 75 – 53 μm showing 

numerous Isolated hexagonal crystallites structrues. 

Structures of the plate & lath kind type quite 

familiar in intermetallic compounds [12-14],  and may 

also be found in some iron alloys [15]. Plate & lath 

structures found in γ-TiAl [12]. Hyman et al. [12] 
reported that this resulted from α dendrites 
transforming in the solid-state during cooling. This 

transformation led to a mixture of α2 + γ laths 
enclosed through γ-segregates. McCullough et al. 

observed that plate and lath morphologies were also 

found in α2-Ti3Al. Like -Ni5Ge3, α2-Ti3Al shares the 

P63/mmc space group [13]. Moreover, Popov et al. 

[16] also reported the formation of an ordered Ti3Al 

phase (α2 phase) in Ti–Al alloys. They proposed 

that the nucleation and growth mechanism 

involve during formation of particles and the 

precipitation occurs at temperatures above the 

ordering temperature. Yet, in materials, such as 

Ti3Al, which have the same plate and lath structure, it 
is the contrast between different phases that gives rise 

to a different morphology. In contrast, the material 

being discussed here is single phase (as shown in 

Figure 1). Moreover, in the case of a congruently 
melting compound the contrast would not be expected 

to arise from compositional differences in the as-

solidified material. The absence of solute partitioning 

is established elsewhere [17, 18], where it is shown by 

EDX line scan across an isolated plate & lath feature 

[18], that material is chemically homogeneous to 
within the experimental error related with the 

technique. This is also the case for the isolated 

hexagonal crystallites morphology [18], which is 

similarly shown to be chemically homogeneous across 

features. As a consequence difference that is the 

etching process shows seems not to have a relation to 

either difference in the phases present nor to chemical 
composition. 

In fact, the contrast appears to be due to the 

extent of chemical ordering displayed by the material. 
SAD analysis in the TEM shows the isolated 

hexagonal crystallites, are a disordered variant, while 

plate and lath microstructure are the partially ordered 

variant of -Ni5Ge3. However, the featureless matrix 
of both microstructures is the fully ordered variant of 
the same compound [18]. Such contrast arising due to 

the preferential etching of the disordered material 

while the ordered material remains resistant to the 
etch has been reported in other intermetallic 

compounds [19, 20]. We show elsewhere that at 

highest cooling rate (> 42000 K s-1) all material 

transformed into the disordered variant, often with 
only a single crystal per droplet [18]. However, at 

cooling rates  42000 K s-1 the material has a mixed 
ordered-disordered structure.  

EBSD Euler mapping was used to study the 

plate & lath and isolated faceted hexagonal crystallite 
structures within the rapidly solidified droplets. For 

this, samples were utilised, which were polished 

without etching and by using 0.1 μm colloidal silica. 
The EBSD Euler map shows very clearly the grain 

structures characteristic of the two morphologies are 

very clearly revealed in the EBSD Euler map, with 
one example from each morphology (300 – 212 μm, 
plate and lath) and (150 – 106 μm, isolated hexagonal 
crystallites) being shown in the Figures 3 a&c 

respectively. The EBSD Euler map shows no evidence 
of either the plate and lath nor hexagonal 

morphologies visible in the EBSD images. This 

contrasts with the SEM secondary electron images in 
which a minimum of one plate and lath structure is 

contained in each grain. In this regard we note that the 

size of these features, certainly the plate and lath 

structures should be resolvable by EBSD. We can 
infer from the non-detection of these microstructural 

features that were so evident in the etched samples, 

that their crystallography must be contiguous with the 
grains in which they are embedded.  This is consistent 

with TEM diffraction analysis, in which sharp 

diffraction spots are apparent as found previously [17, 

18]. The appearance of these spots is consistent with 

the beam being focused on an area that has a single 
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crystallographic orientation. As such the results are 

consistent with the co-existence of disordered and 

ordered regions within a single grain.  

 

Figure 3 : (a&c) shows EBSD results of Euler texture map 

of unetched Ni5Ge3 drop-tube particles from the 300 – 212 

μm size (plate & lath structure) and 150 – 106 μm size 
(hexagonal crystallites structure) respectively and (b&d) 

shows the histogram of the correlated misorientation angle 

distribution across grain boundaries for the images shown 

in (a&c). 

The plate & lath structure has a very different 
EBSD signature to that of the hexagonal crystallites. 

The histogram of grain orientations, 300 – 212 μm 
sieve fraction (plate & lath microstructure) is pictured 
in Figure 3b. Figure 3b shows that the majority of 

grain boundary misorientations are < 10. This is not 
the distribution that would be expected due to 

randomly nucleated grains [21]. The predominance of 

low angle grain boundaries in the distribution for the 
300 – 212 μm particles is suggestive of a structure that 
has undergone a post solidification modification 

process. This was not the case for the 150 – 106 μm 
particles. In fact, in the smaller sieve, the grain 
orientation distribution of the sample (shown in 

Figure 3d) is similar to what would be expected from 

a random population of grains [21].  

This also seems to be consistent with the grain 

orientation spread (GOS) maps for the two samples 

(see Figure 4 a-b). For the 300 – 212 μm droplets the 
GOS map shows that most of the grains have a very 

small GOS, but a small number have a much larger 

spread (up to 2). Such GOS distributions are 
commonly seen in samples having undergone 

recrystallization and recovery, again suggesting that 

the sample has undergone some form of post 

solidification modification. In contrast, the GOS map 

for the smaller size particles shows a much more 

uniform spread, but with a larger median value, which 

would be consistent with this sample having not 
undergone such modification. Whether this directly 

accounts for the transition from plate & lath to 

hexagonal is uncertain as neither structure shows up in 

EBSD. Nonetheless, it would not be an unreasonable 

assumption to think that there may be some 

correlation between the EBSD results which are 

indicative of some post solidification modification of 
the structure and the occurrence of the plate & lath 

morphology.  

  

Figure 4: (a&b) shows EBSD results of GOS map of 

unetched Ni5Ge3 drop tube samples from the 300 – 212 μm 
size (plate & lath structure) and 150 – 106 μm size 
(hexagonal crystallites structure) correspondingly.  

 

CONCLUSION  

Drop-tube processing has been used to rapidly 

solidify single phase Ni5Ge3 powders in the size 
range 850 – 53 μm. The resultant cooling rates is 

700 – 42000 K s-1. After etching, two dominant 

solidification morphologies, plate & lath (850 – 150 

m diameter particles, 700 – 7800 K s-1) and isolated 

hexagonal crystallites (150 – 53 m diameter 
particles, 7800 – 42000 K s-1) are revealed, both of 

which are embedded within a featureless matrix. The 
plate & lath structure appears to be the result of a 

post-solidification modification process. The nature of 

this process is somewhat unusual as it involves some 
degree of recrystallization (shown in EBSD) 

combined with some degree of chemical ordering, 

which gives the plate and lath morphology. It is 
presumed that the excess free energy associated with 

chemical disorder drives the recrystallization process 

which also results in chemical ordering. In contrast, in 

the smaller particles, we can postulate that the higher 
cooling rates suppress the recrystallization part of the 

transformation, but does not fully suppress the 

ordering reaction, giving rise to the hexagonal 
microstructures. 
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