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Realistic fitness landscapes generally display a redundancy-fitness trade-off: highly fit trait
configurations are inevitably rare, while less fit trait configurations are expected to be more redundant.
The resulting sub-optimal patterns in the fitness distribution are typically described by means of effective
formulations, where redundancy provided by the presence of neutral contributions is modelled implic-
itly, e.g. with a bias of the mutation process. However, the extent to which effective formulations are
compatible with explicitly redundant landscapes is yet to be understood, as well as the consequences
of a potential miss-match. Here we investigate the effects of such trade-off on the evolution of
phenotype-structured populations, characterised by continuous quantitative traits. We consider a typical
replication-mutation dynamics, and we model redundancy by means of two dimensional landscapes dis-
playing both selective and neutral traits. We show that asymmetries of the landscapes will generate neu-
tral contributions to the marginalised fitness-level description, that cannot be described by effective
formulations, nor disentangled by the full trait distribution. Rather, they appear as effective sources,
whose magnitude depends on the geometry of the landscape. Our results highlight new important
aspects on the nature of sub-optimality. We discuss practical implications for rapidly mutant populations
such as pathogens and cancer cells, where the qualitative knowledge of their trait and fitness distribu-
tions can drive disease management and intervention policies.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Understanding the interplay between neutrality and selection is
considered one of the major challenges in the contemporary theory
of biological evolution (Wagner, 1999; Ciliberti et al., 2007;
Wagner, 2008; Barghi et al., 2020; Manrubia et al., 2020), aiming
to bridge the gap between two historically antipodal theories
(Nei et al., 2013). When neutrality is considered concomitantly
with selection, sub-optimal behaviours, that cannot be captured
by purely neutralist or selectionist approaches, are expected to
emerge due to their interplay (Huynen et al., 1996; Krakauer
et al., 2002; Aguirre et al., 2009; Beardmore et al., 2011; Schaper,
2014). Less fit phenotypes are able to outperform the fittest ones,
if they are endowed with higher ‘mutational robustness’ due to
some degree of neutrality. This effect is sometimes referred to as
the ‘survival-of-the-flattest’ effect, in iconic opposition to the stan-
dard ‘survival-of-the-fittest’ paradigm (Wilke et al., 2001;
Sardanyés et al., 2008). Although the occurrence of such
behaviours is ubiquitous in biology, its characterisation depends
crucially both on the genetic architecture and on the mutational
topology of the evolving system under investigation (Huynen,
1996; Van Nimwegen et al., 1999; Draghi et al., 2010; Aguirre
et al., 2011).

These features have been well documented in the field of
molecular phenotype evolution, where the interplay between neu-
trality and selection is typically described by the redundancy of
Genotype-Phenotype maps. This schematic representation is
widely used in molecular evolution to model gene regulation,
metabolism and protein folding, and is at the foundation of the
concept of mutational robustness (Shackleton et al., 2000;
Codoner et al., 2006; Wagner, 2011): under the effect of mutations,
the evolving system is perpetually exploring the adaptive space,
with the potential of discovering novel, innovative phenotypes
(Wagner, 2005). Besides providing fitness advantage, the success-
ful phenotype must also display some degree of robustness with
respect to mutations, which continuously attempt to disrupt its
underlying genotype. The rate at which mutations occur delineates
a major distinction between two possible scenarios, and
consequently the kind of mathematical tool suitable for their
description. When the mutation rate is low, also known as the
‘weak-mutation’ or monomorphic regime, a complete theory
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accounting also for neutral effects due to redundancy has been
developed in (Khatri and Goldstein, 2015). Drawing a connection
with statistical physics, a monomorphic evolving system max-
imises a potential (known as ‘free-fitness’ Sella and Hirsh, 2005)
akin to the free energy of thermal systems: rather than just fitness,
phenotypes shall maximise a combination of fitness, playing the
role of an energy, and redundancy, playing the role of an entropy
quantifying mutational robustness.

The complementary, polymorphic, case is generally studied in a
deterministic framework. Polymorphic populations are charac-
terised by genetic heterogeneity due to the high mutation rate,
so that most of the types are continuously populated (and not
the fittest one only). In the polymorphic regime, it is possible to
map the low-level genotype dynamics onto the high-level pheno-
type dynamics only if mutations satisfy a specific condition (Sato
and Kaneko, 2007), that is when their rates depend only on the
resulting (mutant) phenotype, regardless of the starting (parent)
genotype. Although this demanding condition holds for many
models of molecular phenotypes, the implications of its violation
are much less clear (Khatri, 2018). Alternatively, one needs to rely
on a phenomenological description of mutational robustness. For
instance, in Draghi et al. (2010) and Rigato and Fusco (2020), muta-
tional robustness is described by a phenomenological probability
of a mutation to preserve the phenotype (i.e. to be neutral). The
aim of this work is to extend our knowledge of polymorphic evolu-
tion, without the addition of phenomenological terms. Rather, we
shall consider explicitly redundant fitness landscapes, and study
the mutation-selection dynamics of a particular class of polymor-
phic systems, that are phenotype-structured populations.

In phenotype-structured populations, individuals are charac-
terised by (typically) one quantitative trait which is related to
reproductive success (fitness) (Chisholm et al., 2016). A common
way to model phenotype-structured populations is to describe
the quantitative trait of interest by a continuous variable (although
discrete versions are possible). Then, mutations are often described
by diffusion operators acting on the space of phenotypes. Such
properties allow the deterministic mutation-selection dynamics
of the population to be described by means of integro-differential
equations. However, diffusion-like mutations do not generally sat-
isfy the special condition (Sato and Kaneko, 2007); hence, in the
presence of a degenerate mapping, the two levels of description
(phenotypes and fitness) cannot be disentangled and are likely to
be different, thus conveying potentially different information
about the evolutionary state of the system. In this work, we will
study the interplay between neutrality and selection in such
rapidly mutating systems.

Phenotypes will be composed of both selective traits (on which
fitness depends) and neutral traits (on which it does not), so that
the dynamics will be captured by simple fitness landscapes featur-
ing redundancy. Redundancy will be minimally modelled by con-
sidering two-dimensional landscapes, where a selective and a
neutral trait interact by virtue of a universal redundancy-
selection trade-off. Nonetheless, the nature of such trade-offs will
be mechanistically different: in the symmetric case, neutrality
stems from the property that fitness is given by a combination of
the traits composing the phenotype, such combination being
degenerate; instead, in the asymmetric case neutrality stems from
explicitly considering a completely neutral trait concomitantly
with a completely selective trait. Then, redundancy is due to the
inherent geometry of the resulting phenotype space, rather than
to the degeneracy of the fitness function. For these reasons, we
consider the two cases to be suited to qualitatively distinct biolog-
ical contexts: for instance, the symmetric landscape dates back to
the Fisher Geometric Model and has been widely employed in the
field of molecular evolution, where the existence of a target opti-
mal configuration of traits is assumed, and any mutation away
2

from it is deleterious (Tsimring et al., 1996; Orr, 2006; Gerland
and Hwa, 2002).

In this work, we will compare phenotype and fitness distribu-
tions of populations evolving on both symmetric and asymmetric
landscapes. We will derive exact equations governing the resulting
fitness dynamics, and compare them to effective formulations. We
will show that, despite the fitness distribution on asymmetric
landscapes resembling that on symmetric ones, the nature of the
two marginal dynamics is crucially different. Particularly, we will
demonstrate that in presence of asymmetries between selective
and neutral traits, the landscape’s geometry generates contribu-
tions that cannot be captured by effective formulations. Finally,
we will discuss some biological contexts, where a proper charac-
terisation of neutral contributions to marginal dynamics may be
of crucial importance.
2. Models and methods

2.1. Redundant fitness landscapes

In molecular evolution, redundancy of genotype-phenotype
maps stems from the basic fact that the number of possible geno-
types is much larger than that of observed phenotypes, so that such
maps must be degenerate. These mappings are also generally
strongly biased: some phenotypes are encoded by very few geno-
types, whereas most genotypes are organised in networks (that is
sets of genotypes connected by a single mutation) that are neutral
(i.e. uniformly equally fit), as they map onto the same few pheno-
types (Smith, 1970; Wagner, 2012). It has been argued that this
bias should be regarded as a universal feature of any kind of fitness
landscapes (Khatri and Goldstein, 2019): ultimately, highly fit indi-
viduals are so because they have a phenotype better suited than
others to their environment, but such higher functionality will
stem from a ‘specific’ (possibly rare) genomic configuration. Hence,
a trade-off holds between redundancy and fitness, so that very fit
phenotypes would typically not be also highly redundant.

Indeed, in their iconic two-dimensional representation intro-
duced by Wright (1932), smooth fitness landscapes exhibit a hill-
shaped topography: every phenotype is assigned a height propor-
tional to its fitness, hence the optimum is represented by the top of
the hill (see panel a of Fig. 1, adapted from Poelwijk et al., 2007).
Neutrally related phenotypes, i.e. those sharing the same fitness
value, are located at the same height, so that a height contour rep-
resents a neutral subset. Since the length of a contour (i.e. the size
of the neutral subset) grows with distance from the summit, very
fit phenotypes are rare, whereas less fit ones tend to be more abun-
dant. Hence a redundancy-fitness trade-off occurs, akin to that of
genotype-phenotype maps.

In order to account for the redundancy-fitness trade-off, we
shall consider two-dimensional landscapes, but generalisations to
higher dimensions are possible. Let P2 be the phenotype space,
and its elements p ¼ x; yð Þ 2 P2 be the possible phenotypes; the
components x; y represent respectively the value of the two quan-
titative traits defining the phenotype. Each phenotype p maps into

its corresponding fitness value f ¼ F p
� �

according to the smooth

fitness function F p
� �

; the particular choice of F p
� �

determines

the fitness landscape of the system. Two phenotypes p and q are
defined to be neutrally related if they share the same fitness, that

is if F p
� �

¼ F q
� �

. Then, a neutral subset with fitness value f is

the collection of all neutrally related phenotypes p with fitness

F p
� �

¼ f . For the sake of simplicity we will consider only single-

peak landscapes, which have been employed in a variety of



Fig. 1. Minimal redundant fitness landscapes. Panel a, typical two-dimensional representation of fitness landscapes, exhibiting the redundancy-fitness trade-off: regardless
of the topographic details, the size of the neutral subsets decreases as one moves towards the top (adapted from Poelwijk et al., 2007). Panels b - c: respectively, symmetric
and asymmetric redundant fitness landscapes, and projections of the correspondent phenotype spaces, in the trait coordinates x; yð Þ. For the symmetric case, fitness depends
on the radial distance r from the optimum, regardless of the angular position h. For the asymmetric case, fitness is proportional to the trait x determining the direction, while
the trait y is neutral. Dashed black lines represents examples of neutral subsets. Red dots identify the optimum of the respective landscapes. In both cases, the size of the
neutral subsets decreases in the selective direction, by virtue of the redundancy-fi.tness trade-off.
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biological contexts (Gil et al., 2019), the study of more complex
topographies going beyond the scope of this work.

Redundancy of the landscape is ultimately due to the degener-
acy of the fitness function F. Here, we shall compare two possible
versions of such degeneracy, symmetric (panel b Fig. 1) and asym-
metric (panel c Fig. 1). In panel b of Fig. 1, phenotypes are identi-
fied by the trait coordinates p ¼ x; yð Þ. However, their fitness

F p
� �

depends only on the distance r x; yð Þ from the centre. Pheno-

types lying on the circle of radius r will share the same fitness
value regardless of their angular position h, thus forming neutral
subsets. Hence, from the pair of trait variables x and y, we can con-
struct a pair of (respectively) selective and neutral variables r; hð Þ,
with which both the phenotype and the fitness dynamics can be
described. The phenotype distribution of a population evolving
on the symmetric landscape is described by the function n x; yð Þ
in the original traits coordinates, or equivalently by n r; hð Þ in the
corresponding polar coordinates. Given the circular symmetry,
the marginal fitness distribution N s rð Þ is obtained by integrating
the phenotype distribution over the angular coordinate h,

N s rð Þ ¼
Z 2p

0
n r; hð Þr dh; ð1Þ

that is the radial distribution. We remark that the landscape exhi-
bits the aforementioned redundancy-fitness trade-off, as the size
of neutral subsets varies (linearly in our minimal model) in opposi-
tion to fitness.

In the asymmetric case, we assume that the traits x and y
directly express, respectively, selective and neutral effects. So the
x axis will represent the selective direction, and the y axis the neu-
tral direction (panel c of Fig. 1), with the fitness function F depend-
ing on x only. The trait space is then closed by the boundary curve
B xð Þ. Neutral subsets are given by vertical lines, that are the collec-
tions of points with equal value of the selective trait x. From the
3

phenotype distribution n x; yð Þ in the original trait coordinates,
the marginal fitness distribution N a xð Þ in the asymmetric land-
scape is given by integration over the neutral variable y,

N a xð Þ ¼
Z B xð Þ

0
n x; yð Þdy: ð2Þ

The size of neutral subsets depends on the choice of B xð Þ: taking
a monotonically decreasing function of x leads to the desired
redundancy-fitness trade-off, equivalent to the symmetric
landscape.
2.2. Replicator-Mutator Equation (RME)

The deterministic integro-differential formulation of the
mutation-selection dynamics dates back to the ‘continuum-of-allel
es’ model introduced by Crow and Kimura (1964) and Kimura
(1965), and can be derived from stochastic mechanistic models via
appropriate continuum limits (Chisholm et al., 2016; Champagnat
et al., 2006). Throughout the work, with the generic term ‘individu-
als’ we refer to the replicating units displaying phenotypic hetero-
geneity, upon which natural selection and mutations act, be they
RNA sequences, bacteria or more complex forms of life.

We consider an infinite asexual population. Finite size effects,
leading to genetic drift, are thus neglected. The state of the popula-

tion at time t is determined by the phenotype distribution n p; t
� �

.

Individuals change their phenotype due to mutation and selection:
changes due to mutations are modelled by the Laplacian operator
r2, that is the local diffusion operator acting on the phenotype space
P2, with mutation coefficient l; concomitantly, changes due to
selection occur at rate c, and are modelled by the usual replicator
term popular in Evolutionary Game Theory (Schuster and
Sigmund, 1983). The deterministic temporal evolution of the
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phenotype distribution n p; t
� �

for a large population is given by the

Replicator-Mutator Equation (RME henceforth):

dn p; t
� �
dt

¼ lr2n p; t
� �

þ cn p; t
� �

F p
� �

� F n p; t
� �h i� �

; ð3Þ

subject to the conditions,

R
P2

n p; t
� �

dp ¼ 1

n̂ � rn p; t
� �

jp2@P2
¼ 0

9>=>; 8 t; ð4Þ

and with F n p; t
� �h i

denoting the average fitness of the population

at time t:

F n p; t
� �h i

¼
Z
P2

F p
� �

n p; t
� �

dp: ð5Þ

The conditions (4) correspond to the two physical constraints
satisfied by the system: conservation of the total population at
every time, because neither mutations nor competition alter the
number of individuals; and zero flux across the boundaries of the
phenotype space, due to reflecting nature of mutations close to
the boundary (n̂ being the unit vector normal to the boundary
@P2). The mathematical conditions for which the RME has station-
ary solutions have been extensively studied (Bürger and Bomze,
1996; Bürger, 1998). However, explicit analytical solutions are rare
because they are hard to obtain (see e.g. Alfaro and Carles, 2017;
Alfaro and Veruete, 2019; Ruijgrok and Ruijgrok, 2015). Moreover,
multidimensional cases have generally been treated numerically
(Cohen, 2009). In order to find the stationary solutions, we employ
a self-consistent technique (detailed in the Supplementary Infor-
mation, section A) that has been applied in similar contexts
(Tsimring et al., 1996; Rouzine et al., 2003; Hallatschek, 2011).

Note that, although Eq. (3) contains the timescale c�1 and the
diffusive coefficient l, the stationary solution will depend on only
one relevant parameter d ¼ c

l, that determines the relative impor-

tance of selection and mutation. In the following, we will make
simplifying assumptions for the space P2 and the fitness function

F p
� �

, in order to facilitate analytical calculations on the model.

This will allow us to derive useful forms for both the phenotype
and the marginal fitness distributions, and compare the differences
between symmetric and asymmetric landscapes.

A substantial focus will be put on characterising the dynamics
of the sole fitness information, upon marginalisation of the neutral
degrees of freedom. Neutral information is often modelled by
introducing effective contributions mimicking mutational robust-
ness, e.g. by biasing mutations (Beardmore et al., 2011; Draghi
et al., 2010; De Martino et al., 2016; De Martino et al., 2019;
Rigato and Fusco, 2020). In these effective formulations, the mar-
ginal fitness distribution N fð Þ is governed by some effective RME
dynamics depending only on the selective variable f, such as:

dN f ; tð Þ
dt

¼ bMeff N f ; tð Þ½ �N f ; tð Þ
þ N f ; tð Þ Feff fð Þ � Feff N f ; tð Þ½ �� �

; ð6Þ

where the interplay between neutrality and selection is described

by either/both a modified ‘mutational operator’ bMeff N f ; tð Þ½ �, and/
or a modified ‘effective fitness’ function Feff (f) (similarly to the case
of monomorphic populations). However, we shall see that the above
effective formulation is not general, and is not appropriate unless
the landscape is symmetric.
4

2.3. Simulations

All the analytical results are confirmed by simulating the corre-
sponding finite size stochastic agent-based dynamics. As expected,
consistency with the deterministic description is obtained when
the population size is very large (order of 105 individuals). The
study of finite size effects is possible (Ardaševa et al., 2020),
although it goes beyond the scope of the paper. Simulations have
been performed with Java-based language ‘‘Processing”, and
detailed information can be found in the Supplementary Material,
section E. The Processing codes are freely available https://github.
com/LeonardoMiele/RedundancySelection_RME.
3. Results

In the following, we will first consider a simple non-redundant,
one-dimensional fitness landscape. This case will provide the base-
line results for comparison with the dynamics on redundant land-
scapes, so as to elucidate the dual behaviour triggered by the
concomitant presence of neutral and selective traits. Finally, we
will derive the exact equations governing the marginal dynamics
of the sole fitness variable, in both the symmetric and asymmetric
cases, and compare them with effective formulations (Eq. (6)).

3.1. Trait distribution on non-redundant landscapes

Let the variable x 2 P1 ¼ 0;1½ � be the single quantitative trait of
interest. Let F xð Þ be a non-degenerate monotonically increasing
function, such that x ¼ 1 represents the optimal trait, while x ¼ 0
the least fit one. Clearly, since F xð Þ is not degenerate, the corre-
sponding fitness landscape is not redundant; each phenotype x is
uniquely determined by its fitness value. For the sake of simplicity,
we shall consider the linear fitness function F xð Þ ¼ x, for which
analytical stationary solutions can be found (mathematical details
in the Supplementary Information). However, any monotonic fit-
ness function will produce qualitatively equivalent distributions.

In Fig. 2, we plot the analytical stationary distribution n xð Þ for
different values of d (solid lines), and compare it with results from
numerical simulation (circles and squares). For d ¼ 0, that is in the
purely neutral scenario, the distribution is flat since every pheno-
type is equally likely to survive competition, regardless of their fit-
ness value. For d > 0, the distribution is monotonic, always
showing an absolute maximum at x ¼ 1 (the optimal phenotype),
as well as an absolute minimum at x ¼ 0 (the least fit one). On
increasing d (that is, increasing selection strength or decreasing
mutation coefficient), the distribution becomes narrower around
the maximum. These profiles represent qualitatively the prediction
of the standard survival-of-the-fittest paradigm: the most success-
ful phenotype is always the one with the fittest trait, and the pop-
ulation is distributed around the peak of the landscape.

3.2. Trait distribution on redundant landscapes

In redundant landscapes, the phenotype distribution n x; y; tð Þ
evolves in time according to the two-dimensional RME. In general,
it is not possible to find an exact closed solution for the stationary
distribution. However, in some cases it is possible to obtain spec-
tral solutions. In the following, we shall consider an asymmetric
landscape with triangular shape, that is for B xð Þ ¼ 1� x (with
0 6 x � 1). This specific choice is made in order to facilitate the
mathematical tractability of the asymmetric problem. This choice
also facilitates the comparison with the symmetric landscape,
since the redundancy-selection trade-off decreases linearly with
fitness in both cases (see Supplementary Material, sections C and
D for mathematical details). However, the same qualitative results

https://github.com/LeonardoMiele/RedundancySelection_RME
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Fig. 2. Stationary phenotype distribution on non-redundant landscape. Solid lines
refer to the analytical solution of the one-dimensional RME, while circles and
squares correspond to agent-based numerical simulation of N ¼ 105 individuals.
With the exception of the neutral case d ¼ 0 (dashed line), the distribution is always
monotonically increasing towards the optimal trait x ¼ 1, indicating the standard
survival-of-the-fittest scenario. Inset: simple fitness landscape for the sole selective
variable x.
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are expected to hold for any choice of monotonically decreasing
boundary B xð Þ.

In Fig. 3, we explore the differences between the phenotype dis-
tributions n x; yð Þ and the marginal fitness distributions N a;s fð Þ, at
stationarity. The former describes the full distribution of traits over
the two-dimensional space P2. By contrast, the latter describes the
one-dimensional distribution of fitness values f, and is obtained by
integrating the former over the neutral variables. In panels a-d of
Fig. 3, we plot the analytically obtained phenotype distributions
on the trait plane x; yð Þ: for the asymmetric case, the iso-density
contour lines (a and c); for the symmetric case, the color-map pro-
jection (b and d). Color code represents the density of n x; yð Þ,
according to the respective color-bars. With the exception of the
purely neutral case d ¼ 0, for which the distribution is trivially flat
(not shown), the phenotype distributions increase monotonically
in the selective direction, i.e. the x direction for the asymmetric
case, and the radial direction for the symmetric one. In all cases,
the distributions display an absolute maximum located at the phe-
notype with the optimal trait. Similarly to the one-dimensional
model, these results again indicate a survival-of-the-fittest para-
digm, where fitter individuals are more abundant in the popula-
tion, and the other types are distributed around the optimal with
a steepness that increases as d increases.

3.3. Marginal fitness distribution on redundant landscapes

Let us now consider the behaviour of the marginal fitness distri-
butionN s fð Þ andN a fð Þ for, respectively, symmetric and asymmet-
ric landscapes. In panels e-f of Fig. 3, we compare analytical (solid
lines) and numerical (circles and squares) profiles of the stationary
marginal fitness distributions, for the same values used in the one-
dimensional model d ¼ 0;10;30.

For d ¼ 0, the purely neutral case, the flat uniform distribution in
the two-dimensional phenotype space results in the monotonically
decreasing linear profile. Hence, for d ¼ 0 the absolute maximum is
found at x ¼ 0, which is the most redundant fitness value. Thus, in
5

the absence of selection pressure, fitness values belonging to larger
neutral subsets are rewarded, and a scenario consistent with the
survival-of-the-flattest effect is obtained (Wilke, 2005).

For small values of d, the profiles are still monotonically
decreasing yet considerably different from the purely neutral case,
displaying an increase in the density for intermediate fitness val-
ues (see d ¼ 10 case).

For larger values of d, the fitness profile becomes non-
monotonic; the previously absolute maximum is now a local one,
with the emergence of a new local minimum and of a new absolute
maximum. This new absolute peak is located at an intermediate
fitness value (see d ¼ 30 case).

In Fig. 4, the positions of the extrema of the fitness profile are
shown for a wide range of effective selection pressure values, for
asymmetric landscape (the symmetric case preserves the same
features and is shown in the Supplementary Figure 3). For dK14,
the profiles are all monotonically decreasing and have an absolute
maximum at f ¼ 0; we call this regime redundancy-dominated,
because the most redundant trait is the most abundant in the pop-
ulation. When d crosses a threshold value dth, monotonicity is bro-
ken, with the emergence of a new peak, that then becomes the
absolute maximum at higher d; we call this the sub-optimal regime,
since the new maximum is located at an intermediate fitness value
instead of the optimal one. Increasing selection pressure, the max-
imum shifts progressively towards the value f ¼ 1 (see Supple-
mentary Figures 4–5). In the limit of infinite d, the Laplacian
term can be neglected and the system obeys a Replicator Equation;
therefore the equilibrium distribution turns out to be a Delta Dirac
centered on the phenotype with highest fitness, among those pre-
sent in the initial distribution at t ¼ 0 (Desvillettes et al., 2008).

For small values of d in the asymmetric case with linear fitness
and triangular shape, a closed analytical approximation of the mar-
ginal fitness distributionN a fð Þ can be obtained. In the Supplemen-
tary material, section C, we show that performing a linear
perturbation expansion on d, we get:

N a fð Þ ¼ 2 1� fð Þ þ dN a
I fð Þ þ O d2

� �
; ð7Þ

with

N a
I fð Þ ¼ 4

3
1� fð ÞB4

f
2

� �
� 8
15

B5
f
2

� �
þ 4
15

B5 fð Þ; ð8Þ

where Bk zð Þ is the kth Bernoulli polynomial of the variable z. This
approximation then predicts that the average fitness of the popula-
tion / at stationarity increases linearly with selection pressure,
according to:

/ ¼ 1
3
þ 1
189

dþ O d2
� �

: ð9Þ

This approximation also predicts the emergence of intermediate
local maxima and minima in the marginal fitness distribution for
dth ’ 14 (see Supplementary Figure 1), which is consistent with
the results obtained with the spectral solution.

3.4. Marginal fitness dynamics

For the symmetric landscape, the marginal fitness distribution
N s fð Þ is obtained performing the temporal derivative of Eq. (1),
and replacing the correspondent RME (details in the Supplemen-
tary Information, section D). We find (recall that f ¼ 1� r):

dN s f ; tð Þ
dt

¼ l @2N s f ; tð Þ
@f 2

þ @

@f
v fð ÞN s f ; tð Þ� 	( )

þ cN s f ; tð Þ F fð Þ � F N s f ; tð Þ� 	� �
¼ 0; ð10Þ



Fig. 4. Marginal fitness behaviour - asymmetric landscape. The different regimes of the marginal fitness distribution N a fð Þ are identified by tracking the extrema of its
spectral solution at the variation of selective pressure d. Diamonds (circles) refer to maxima (minima). Filled (empty) symbols refer to absolute (local) extrema. A threshold
value dth ’ 14, estimated with the perturbative solution, separates the two qualitative behaviours. Below dth, the fitness distribution is dominated by the most redundant
fitness value (redundancy-dominated regime). Above dth , the distributions exhibit sub-optimality, as they are dominated by intermediate fitness values. Then, the survival-of-
the-fittest scenario is expected to be recovered in the limit of very large selection (d ! 1).

Fig. 3. Stationary phenotype distributions and marginal fitness distributions for redundant landscapes. Phenotype distributions: contour lines of iso-density are shown for
the asymmetric case (a and c), while colormaps are shown for the symmetric case (b and d). In both cases and for every value of d > 0, the distribution has maximum density
in correspondence of the optimal trait (that with max fitness), exhibiting a survival-of-the-fittest behaviour. However, the corresponding marginal fitness distributions (e-f)
display rather different behaviours depending on the value of d. Particularly, we distinguish the redundancy-dominated profile (squares d ¼ 10), where the most redundant
fitness values are favoured; and the sub-optimal profile (circles d ¼ 30), where the fitness distributions exhibit maximum at an value, smaller than the optimal one. Solid lines
refer to analytical solutions of the RME, while scatter plots to agent-based simulations with N ¼ 105 individuals.
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with

v fð Þ ¼ 1
1� f

: ð11Þ

For an asymmetric landscape of general boundary B xð Þ, the
marginal fitness distribution N a f ; tð Þ is obtained performing the
temporal derivative of Eq. (2), and replacing the correspondent
RME (details in the Supplementary Information, section C). In this
case, we obtain (recall that f ¼ x):

dN a f ; tð Þ
dt

¼ l d2N a f ; tð Þ
df 2

þ F 1 f ; tð Þ þ F 2 f ; tð Þ
( )

þ cN a f ; tð Þ F fð Þ � F N a f ; tð Þ� 	� �
¼ 0; ð12Þ

with

F 1 f ; tð Þ ¼ B02 fð Þ � 1� 2B0 fð Þ� 	
@n f ;y;tð Þ

@f jy¼B fð Þ
F 2 f ; tð Þ ¼ �B00 fð Þn f ; y; tð Þjy¼B fð Þ;

ð13Þ

where the prime notation indicates the derivative with respect to
the selective variable f. The dynamics of the marginal fitness distri-
bution in the symmetric (Eq. (10)) and asymmetric (Eq. (12)))) land-
scape, display significant differences, which are discussed in detail
below.

4. Discussion

In this work, we have considered both symmetric (Fig. 1, panel
b) and asymmetric (Fig. 1, panel c) fitness landscapes. Both cases
display selective degrees of freedom (namely x and r), and neutral
degrees of freedom (namely y and h), which are entwined by a gen-
eral redundancy-fitness trade-off. However, the different nature of
the trade-off generates differences, that are detectable at the mar-
ginal fitness dynamics level. Here we shall discuss the consequent
analogies and differences, as well as their practical implications.

Contrary to their non-redundant counterpart (Fig. 2), we have
shown that redundant landscapes display a dual behaviour,
depending on the dynamics’ level of description: full phenotype
distributions exhibit survival-of-the-fittest patterns (Fig. 3, panels
a-d), where most of the population lies in proximity of the land-
scape optimum; on the other hand, their correspondent marginal
fitness distributions may exhibit sub-optimal patterns (Fig. 3, pan-
els e-f), where most of the population displays less fit but more
redundant traits (Fig. 4). For triangular geometry, we have calcu-
lated the marginal fitness distribution (Eq. (7)) and the average fit-
ness value (Eq. (8)), in the weak selection approximation. We
observe that the above formulae provide a good estimate of the
state of the system up to d ’ 30, above which they break down
due to second order selective effects (for details, see Supplemen-
tary Material, section C and Supplementary Figure 2). This approx-
imation might also be used as a baseline result to measure
landscape’s geometric deviations from the triangular shape.

Acknowledging this duality of behaviours, can help improving
the fields in evolutionary epidemiology (Galvani, 2003; Day et al.,
2020) and cancer dynamics (Solé and Deisboeck, 2004;
Clairambault, 2019), where pathogens are modelled as
phenotype-structured populations, and the information on the
state of the distributions can be used to design treatment policies.
For example, in a viral or bacterial population, suppose that x quan-
tifies the resistance to a drug or antibiotic, so that larger x confers
higher fitness to its carriers (Day and Proulx, 2004). Then, one
might expect the population to be dominated by individuals with
highest resistance (i.e. optimal fitness), and a therapy would be
7

developed to counter ‘survival-of-the-fittest’ distributions, hence
maximising the intervention on the traits carrying the maximal
resistance value. However, if such a selective trait is entwined with
another, neutral one (i.e. not affecting the resistance) via a
redundancy-fitness trade-off, then the distribution will very likely
be dominated by individuals with sub-optimal resistance, and the
therapy would erroneously target non-redundant traits, with the
possibility of unwittingly helping sub-optimal strains to mutate
and become fitter.

On the other hand, suppose that an experimentalist measures
the growth rates in a rapidly mutant population as a function of
x, and obtains a profile similar to panels e-f of Fig. 3, with a peak
in the distribution at an intermediate value x ¼ ~x with 0 < ~x < 1.
Then they might erroneously conclude that ~x confers the optimal
fitness value, whereas, in fact, the trait ~x dominates the population
due to its redundancy, rather than due to a selective advantage. In
the ‘worst case’, by confusing a redundancy-dominated fitness pro-
file with a one-dimensional survival-of-the-fittest distribution, one
would infer a direction of selection opposite to the true one, and
conclude that trait x ¼ 0 has optimal fitness.

In light of the above practical examples, a proper characterisa-
tion of neutral contributions is crucial to understand the dual
behaviour between full and marginal trait distributions. In this
work we have derived the marginal fitness dynamics, by explicit
integration over the landscape’s neutral degrees of freedom, and
we shall now compare them with the commonly employed, effec-
tive formulation represented by Eq. (6). In the symmetric land-
scape, marginalisation leads to a new drift term @

@f v fð Þ, where

v fð Þ plays the role of a velocity field pushing individuals away
from the optimum. This contribution is referred as a ‘mutational
entropy’ biasing mutations due to redundancy of the landscape
(Tsimring et al., 1996; Gerland and Hwa, 2002). Thus, the marginal
dynamics Eq. (10) is consistent with the effective RME formulation
Eq. (6), with:

bMeff N f ; tð Þ½ � ¼ l @2

@f 2
þ @

@f
v fð Þ

( )
being the new effective mutational operator.

However, in asymmetric landscapes with generic boundary pro-
file B xð Þ, marginalisation generates contributions of different nat-
ure. In Eq. (12), mutations and competition are still captured by,
respectively, a local diffusion term and a replicator term. However,
marginalisation generates the new contributions F 1 f ; tð Þ and
F 2 f ; tð Þ. The magnitude of such terms depends on the landscape’s
geometry, that is on the slope B0 fð Þ and curvature B00 fð Þ of the
boundary profile.

Moreover, from Eq. (13) we observe that these contributions
depend on the full phenotype distribution n f ; y; tð Þ, thus making
the marginal dynamics Eq. (12) an inhomogeneous differential
equation. Unlike Eq. (10), neutral contributions deriving from
asymmetric landscapes do not lead to an equation in N fð Þ alone,
but include fluxes which in general will be unknown, if looking
at the sole fitness level. Therefore, neutral contributions deriving
from asymmetric landscapes cannot be identified as ‘effective
operators’ acting on the fitness level of description. This imposes
severe limitations on the utility and exactness of effective formula-
tions, for phenotype-structured populations. Indeed, our calcula-
tions have shown that solving the high-level fitness dynamics
still requires the knowledge of the underlying low-level trait
details, and that this issue will occur whenever asymmetries in
the trait-space are present.

The new terms due to asymmetry, F 1 x; tð Þ and F 2 x; tð Þ, have the
appearance of effective source contributions to the dynamics, anal-
ogous to a spontaneous generation of individuals, if interpreted in
the context of a lower-dimensional (non-redundant) fitness land-
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scape. Note that the marginal one-dimensional profiles, shown in
Fig. 3 panels e-f, display a non-zero gradient at the boundaries of
the fitness domain, which would require a flux to be present in a
truly one-dimensional system. This feature cannot be present in
profiles generated by one-dimensional RME models, due to the
physical constraints (as, we recall, the total population size is con-
served and the system has no flux boundary conditions), unless
they are introduced ad hoc. We call these emerging sources effec-
tive because they are generated by the asymmetry in the neutral
degrees of freedom, that are unobserved at the marginalised fitness
level.
5. Conclusions

In this work, we have investigated the RME dynamics of
phenotype-structured populations, on minimally redundant land-
scapes. This kind of dynamics is widely employed in many biolog-
ical (and other) research areas: population genetics (Wakano et al.,
2017), pathogenic evolution (Day and Proulx, 2004; Korobeinikov
and Dempsey, 2014; Bolzoni and De Leo, 2013), RNA evolution
(Tsimring et al., 1996), game theory (Ruijgrok and Ruijgrok,
2015; Bomze and Burger, 1995), language evolution (Page and
Nowak, 2002). Its application depends on the identification of
rapidly mutating quantitative traits, responsible for phenotypic
heterogeneity in the individuals composing the population. Exam-
ples of such traits are cytotoxic-drug resistance (Lorenzi et al.,
2016), pathogenic virulence (Day and Proulx, 2004; Bolzoni and
De Leo, 2013) and transmission (Korobeinikov and Dempsey,
2014), antigenic types (Sasaki, 1994; Sasaki and Haraguchi, 2000)
and hosts’ resistance to infection (Lorenzi et al., 2020).

Concomitantly with such potential selective traits, accounting
for neutral traits is expected to result into asymmetric fitness land-
scapes, featuring redundancy-selection trade-offs. Particularly,
asymmetric landscapes are expected to be found whenever meta-
bolic trade-offs occurs between traits. For instance, the
MacArthur’s consumer-resource model (MacArthur, 1970), is
employed to investigate the coexistence of communities compet-
ing for a common pool of resources (Pacciani-Mori et al., 2020;
Gupta et al., 2021). When multiple resource types are present,
the different rates of consumption can be modelled as mutating
quantitative traits. If an energetic constraint limits cells’ ability of
consumption due to metabolic trade-offs, then the population will
evolve on a asymmetric trait space (Amicone and Gordo, 2020).

Similar mechanisms are expected to lead to asymmetric land-
scapes, in presence of life-history trade-offs. An ideal pathogen
would be characterised by high infection transmission, and low
induced mortality. In practice, such super-pathogens are rarely
observed, whereas milder strains are more frequent. This observa-
tion is generally explained by acknowledging the existence of a
life-history trade-off between transmission and virulence (Alizon
et al., 2009), that, in fitness terms, might relate to trade-offs akin
to the redundancy-selection one. Asymmetric landscapes also
emerge whenever the phenotype space effectively available is
bounded by Pareto-like fronts, outside of which lie all those pheno-
typic configurations that long-term evolution has excluded, due to
their systematic inefficiency (Shoval et al., 2012; Xue et al., 2019).
Such trait-spaces have been proposed to explain observed patterns
in gene regulation (Weiße et al., 2015), and bacterial growth
(Klumpp and Hwa, 2014). Triangular-shaped landscapes, that
herein have been used to facilitate calculations, have actually been
observed in animal morphology (McGhee, 2006; Wilson, 1980;
Norberg and Rayner, 1987). In game theory, triangular geometries
also characterise three-strategies games (Boccabella et al., 2011),
and have been recently observed to emerge in a numerical study
of a rapidly mutant version of the Ultimatum Game (Evans,
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2018). Ultimately, the experimental quantification of the land-
scape’s asymmetries in the neutral directions is as important as
that of selective traits.

In our theoretical work, selection has been introduced by
explicitly considering a fitness landscape F, and an arbitrary com-
petition rate c. However, in applied contexts, the fitness landscape
emerges from the mechanistic interactions associated with the
quantitative trait under analysis, whose measurable parameters
combine to form effective competition rates (Day and Gandon,
2006; Day and Gandon, 2007). On the other hand, mutations have
been modelled by local diffusion over the trait space, characterised
by a diffusion coefficient l. Mutations are intended as a global,
effective representation of genetic (or higher level) changes that
induce phenotypic modification, ignoring the extensive knowledge
of the underlying molecular details (Martin et al., 2007). This term
is appropriate when mutations induce small perturbations on the
quantitative traits, i.e. when the components mutate into ‘pheno-
typically close’ variants. This is not necessarily the case; for
instance, when mutations induce a major disruption of the original
phenotype, they cannot be modelled by a local diffusion operator
(as is the case in the house-of-cards model Kingman, 1978).

To conclude, we consider our qualitative results to be general
and to be relevant whenever rapidly mutant populations evolve
on asymmetric redundant fitness landscape. They do not depend
on the specifics of the model (which here have been chosen in
order to facilitate the mathematical analysis). Our results convey
an important message: in general, neutral effects will not be prop-
erly captured by effective formulations of mutational robustness;
rather, they will generate effective sources at the marginalised
fitness-level description. In general, these new contributions will
depend on the geometry of the landscape, and the phenotype com-
position of the population, so that all the microscopic trait infor-
mation (even for the neutral traits) must be retained in order to
properly derive the observable fitness dynamics.

The mathematical procedure herein presented allows the expli-
cit calculation of the trait distribution at stationarity and could be
employed to straightforwardly implement redundancy in previous
one-dimensional models, so as to include neutral effects. More-
over, it could improve the accuracy of models in evolutionary epi-
demiology, and the consequent predictions in terms of disease
management. As a result, the most effective interventions might
not be those that focus on the extremes of the sole fitness-
related traits. To interpret such a study, it will be important to con-
sider the relationship between the relevant selective components
of traits, as well as their the degree of redundancy in all of the
other, neutral, components.
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