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Predictive Functional Control with Explicit Pre-conditioning for

Oscillatory Dynamic Systems

Muhammad Saleheen Aftab1 and John Anthony Rossiter2

Abstract— Predictive functional control (PFC) is a popular
industrial process control strategy, but its rather simplistic
design renders it less effective in more demanding situations;
for example, under-damping, open-loop instability or signifi-
cant non-minimum phase characteristics have been difficult to
control. Devising efficient strategies for such systems remains a
topic of interest within the PFC community. This paper shows
how a systematic pre-conditioning approach can improve PFC
performance for under-damped systems. The proposed pre-
conditioning stage is essentially an additional feedback loop
whose sole purpose is to provide reliable predictions for PFC
decision making. To prevent complicated performance tuning
and constraints management procedures, compensator design
is kept fairly simple and intuitive. Numerical studies verify the
efficacy of the proposal.

Index Terms—PFC, coincidence point, under-damping, feed-
back compensation, pre-conditioning

I. INTRODUCTION

The industrial popularity of predictive functional control

(PFC) stems from the simplistic design and development,

cost-effective commissioning and maintenance thereafter,

and also from the fact that being model-based strategy,

it provides better closed-loop control than the obvious al-

ternative of PID, especially in handling large dead-times

and constraints [1]. This argument is strongly supported by

numerous successful industrial PFC applications [2].

The basic PFC algorithm [2]–[4] matches output predic-

tions with a desired first-order response at only one future

point, known as the coincidence point, and with a fixed

control action. Intuitively this approach is effective as long as

the model behaviour is smooth and monotonically convergent

after immediate transients. A prime example is stable first-

order plants for which PFC technique is proven to drive the

controlled variable to any desirable target trajectory provided

“coincidence” occurs exactly one-step ahead [3]. Similar

closed-loop performance could be expected with monotonic

higher-order dynamics (i.e. dynamics with over-damping),

although a coincidence point of one may not suffice due to

lag in the predictions [5]. PFC design guidelines for such

simple systems are well understood in literature.

What happens when model predictions are oscillatory or,

in the worst scenario, completely divergent? Simply put,

PFC loses efficacy in such difficult situations [3], [5]. This

apparently relates to the fact that constant input within pre-

diction horizon lacks enough flexibility to tackle oscillatory

or divergent dynamics and also provide a smooth closed-loop
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system output [6]. Nevertheless researchers have suggested

various modifications in the original PFC to handle difficult

dynamics.

One proposal [7] recommends altering the input by sep-

arating and subsequently cancelling the un-wanted dynam-

ics to obtain convergent predictions. This method provides

many-fold performance improvements while retaining the ba-

sic PFC characteristics but lacks practicality as the proposed

minimum-moves shaping produces aggressive input activity.

Another input shaping proposal [6] ensures relatively less

aggressive control moves by allowing predictions to converge

over many more samples. This method, tested on numerous

simulation models and hardware application, outperforms the

predecessor but relies on some rather less intuitive offline

computations. Yet another proposal utilises the partial frac-

tion decomposition of higher-order models [8] into several

first-order systems to avail a simple tuning procedure. For

oscillatory dynamics [9], however, such a decomposition

explicitly embeds complex number algebra into computations

limiting its practicality. Suggested modifications (within the

same paper) guarantee real number computation but at the

price of increased coding requirements.

Designs integrating explicit pre-compensation are fairly

common in the mainstream model predictive control litera-

ture, whereby one stabilises the unsettled model predictions

with some form of feedback compensation [10], [11]. The

concept of pre-compensation in PFC, however, is generally

restricted to the use of simple proportional gains [12]–[14]

to avoid the resultant complex constraints management [4].

Although proportional compensation is usually sufficient for

simple systems, challenging dynamics require more involved

pre-conditioning strategies. This paper has therefore two

major contributions: firstly it proposes an intuitive pre-

conditioning technique that relates the compensator parame-

ters to open-loop system dynamics, and secondly guarantees

simpler tuning and constraints handling, on par with the

standard PFC at best.

The remainder of this paper is organised as follows:

Section II defines the problem and sets control objectives.

The main methodology is presented in Sections III & IV

where the pre-compensator and PFC designs are discussed

in detail. Numerical studies follow next in Section V which

discuss nominal performance and draw comparisons against

standard PFC. Finally the paper concludes in Section VI.



II. PROBLEM STATEMENT

Consider an nth order stable SISO system

G(z) =
b(z)

a(z)
; a(z) = a−(z)a+(z) (1)

where G(z) is strictly proper, a+(z) contains the dominant

oscillatory modes z+a = pr ± jpi, and a−(z) represents the

remaining poles. The system (1) may also be subject to input

(uk), input-rate (∆uk) and/or output (yk) constraints,

umin ≤uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax

ymin ≤yk ≤ ymax (2)

where ∆ = 1− z−1 is the difference operator. The aim is to

design a predictive functional controller that operates on pre-

conditioned (by using a simple inner feedback loop) model

predictions. The pre-compensator is expected to filter out

effectively the oscillatory dynamics from (1), while adhering

to specified constraints at the same time.

III. MODEL PRE-CONDITIONING

It is obvious that the constant future input assumption

within the PFC framework would fail to damp the oscillatory

predictions resulting in relatively poor performance. How-

ever one can modify predictions to be smoother with pre-

conditioning, and this will enable better-posed PFC decision

making. The idea of Pre-conditioned PFC (PPFC) is shown

in Fig. 1 where the prediction dynamics (1) are compensated

through C(z) via an internal feedback control loop. Next we

present the design of C(z) with a pole-placement technique.

A. Simple Pole-Placement Compensator

Assume that feedback compensation of G(z) with C(z),
as shown in Fig. 1, results in the transfer function T (z) which

provides smooth and monotonically convergent prediction

behaviour. Then one may write

T (z) =
C(z)G(z)

1 + C(z)G(z)
=

β(z)

α(z)
(3)

After simple manipulations, this leads to

C(z) =
β(z)a(z)

b(z)[α(z)− β(z)]

G(z)+-
vk uk yk

C(z)



yk

T(z)

PFC
r

Fig. 1. PPFC structure comprising inner feedback pre-compensation and
outer PFC loop.

The open-loop zeros b(z) become compensator poles that

could cause stability issues especially with unstable zeros.

To avoid this, we set β(z) = Kb(z), K 6= 0 and get

C(z) = K
a(z)

α(z)−Kb(z)
(4)

From (4), it is obvious that the compensator actually cancels

the open-loop poles a(z) and places new poles given by

α(z). Would such a design based on pole-cancellation be

acceptable? Let us try to understand the rationale behind

pole-placement in the context of PFC.

B. Rationale behind Pole-Cancellation

At this point, readers are reminded of the main design

objective, that is to obtain smooth and well-settled model

predictions because conventional PFC lacks flexibility to

handle oscillatory dynamics efficiently. Traditional PID and

lag-lead compensation have been proven ineffective in com-

pletely eliminating oscillations especially with higher-order

dynamics [15]. The obvious alternative in this case is pole-

placement (4).

While it is best to avoid cancelling open-loop unstable

poles, researchers report that the decision to either shift or

cancel a real stable pole is merely based on design trade-

off between either having the shifted pole appear as zero of

the sensitivity function to output disturbance, or having the

cancelled mode appear as pole of the sensitivity function to

input disturbance [16]. A similar argument holds for complex

conjugate pole pair, albeit cancellation in this case implies

oscillatory input disturbance rejection.

Another concern is related to inexact pole-zero cancel-

lation which is almost always inevitable due to modelling

errors. For unstable poles this may lead to output divergence,

but for stable open-loop poles the impact depends upon

magnitude of the residues from partial fraction expansion

and consequently on the design specification for satisfactory

performance. Nevertheless, one should not forget that the

pole-placement compensator (4) is assisted by an outer

PFC loop, which is tuned for performance, robustness and

disturbance rejection.

Although a clear understanding would require formal

sensitivity analysis, here we demonstrate the performance

of a pole-placement technique in combination with PFC,

shown in Fig. 2, against a pole-shifting compensator in

the presence of output disturbance (constant 0.25 amplitude

starting at 25th sample) and input disturbance (constant

−0.25 amplitude starting at 60th sample) for G1 (see Sec-

tion V-A) with deliberately introduced modelling errors.

Evidently pole-placement provides better output disturbance

rejection whereas input disturbance rejection is equivalent

for both controllers. Moreover, while it may not always be

possible to design a pole-shifting controller, the proposed

pole-placement compensator always exists for any order

dynamic model (1).

From now onwards, we shall focus on the attributes of

pole-placement compensator and the design simplicity it

brings within the PFC framework.
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Fig. 2. PFC comparison with pole-cancellation and pole-shifting com-
pensation for G1 in the presence of input and output disturbances with
modelling mismatches

C. Selecting Compensated Dynamics

In order to design a pole-placement compensator, appro-

priate selection of α(z) is extremely important. Ideally one

would want the compensated model T (z) to exhibit non-

oscillatory behaviour. A good starting point then is to place

the “new” poles of T (z) at the projection of dominant oscilla-

tory poles of G(z) along the real axis. This would effectively

filter out the unwanted oscillations without compromising

convergence speed [6]. Mathematically

T (z) = K
b(z)

α(z)
; α(z) = a−(z)α+(z) (5)

with α+(z) = (1− prz
−1)2.

It is necessary for internal stability that all poles of C(z)
remain inside the unit circle. This can be guaranteed by

keeping K within the stable range. However it is quite

tedious to obtain an analytical expression for K for higher

than second-order systems and therefore we recommend

using a graphical tool such as root locus (see, for example

[17]) on the denominator of (4) to find the stability margin

of C(z).

D. Second-Order Models

Before moving on to the next design stage, it is pertinent

to discuss pre-conditioning of under-damped second-order

systems exclusively. Assume a(z) = 1+a1z
−1+a2z

−2 and

b(z) = b1z
−1+b2z

−2 and also that the oscillatory modes are

za = pr ± jpi. Then according to the preceding discussion

α(z) = 1 − 2prz
−1 + p2rz

−2 is the pole polynomial of the

compensated model. Theorem 1 below provides analytical

expressions for the stable K range.

Theorem 1: A pre-conditioning compensator designed for

second-order model using (4)-(5) is guaranteed stable if:

K <































min

[

(1− pr)
2

b1(1− zz)
,−

(1 + pr)
2

b1(1 + zz)

]

; −∞ < zz ≤ −1

(1− pr)
2

b1(1− zz)
; −1 < zz < pr

1− p2r
|b1zz|

; zz > pr

where zz = −b2/b1 is the system zero.

Proof: The controller poles are:

zC =
(2pr +Kb1)±

√

(2pr +Kb1)2 − 4(p2r −Kb2)

2

For convenience, we substitute x1 = 0.5(2pr + Kb1) and

x2 = 0.5
√

(2pr +Kb1)2 − 4(p2r −Kb2). Then zC1
= x1 −

x2 and zC2
= x1 + x2.

(i) if zz ≤ −1 then by increasing K, zC1
moves towards zz

whereas zC2
goes towards +∞. For stability we must ensure

zC1
> −1 and zC2

< 1. These two conditions transform into:

zC1
> −1 =⇒ K < −

(1 + pr)
2

b1(1 + zz)

zC2
< 1 =⇒ K <

(1− pr)
2

b1(1− zz)

Depending on the actual position of pr, one of the controller

poles is relatively nearer to the stability boundary. Therefore:

K < min

[

(1− pr)
2

b1(1− zz)
,−

(1 + pr)
2

b1(1 + zz)

]

;−∞ < zz ≤ −1

(6)

(ii) for −1 < zz < pr, zC1
can never leave the unit circle.

Therefore it is sufficient to check only:

K <
(1− pr)

2

b1(1− zz)
; −1 < zz < pr (7)

(iii) zz > pr results in complex conjugate controller poles.

In this case, guaranteed stability |zC | < 1 implies:

K <
1− p2r
|b1zz|

; zz > pr (8)

which completes the proof.

Remark 1: For some systems one or more zeros might be

located at pr. To prevent inadvertent pole-zero cancellation in

such cases, we suggest replacing pr in the preceding analysis

with pr + ǫ, where ǫ→ 0 and |pr + ǫ| < 1.

IV. NOMINAL PFC DESIGN

The design stage implements the pre-conditioned model

predictions within a PFC framework, as shown in Fig. 1.

A. The PPFC Control Law

Similar to conventional PFC, the Pre-conditioned PFC

(PPFC) drives the output prediction yk+i|k exponentially

closer to the set point r with each time step. This convergence

mainly depends upon the target pole ρ defined by ρ =
exp(−3T/CLTR) where T and CLTR are sampling time

and desired closed-loop settling time respectively. Mathemat-

ically, the PFC law is derived from the target:

yk+i|k = r − (r − yk)ρ
i; i > 0 (9)

On the other hand, eqn. (5) i.e. α(z)y(z) = Kb(z)v(z)
provides i-step ahead prediction information as follows:

yk+i|k = KHi v−→k +KPi v←−k−1 +Qi y
←−

k; i > 0 (10)



where Hi, Pi and Qi depend upon model parameters. For

an N th order model:

v−→k =











vk
vk+1

...

vk+i−1











; v←−k−1 =











vk−1

vk−2

...

vk−N+1











; y
←−

k =











yk
yk−1

...

yk−N+1











By keeping a constant future input i.e. vk+i = vk, ∀i > 0, the

i-step ahead model prediction (10) is matched to the target

(9) at one future point called the coincidence point ny i.e.

at i = ny . This results in the PPFC law

vk =
r − (r − yk)ρ

ny − (KPny
v←−k−1 +Qny

y
←−

k)

Kh
(11)

where h =
∑ny

j=1
Hj

ny
and Hj

ny
is the jth element of Hny

.

Naturally the main interest is in finding actual input uk that

drives the plant. It is evident from Fig. 1

u(z) = C(z)[v(z)− y(z)] (12)

Lemma 1: Formulation (12) is equivalent to:

u(z) = K
a+(z)

α+(z)
v(z)

Proof: Substituting C(z) = Ka(z)/[α(z)−Kb(z)] and

y(z) = [b(z)/a(z)]u(z) in (12), we get:

u(z) = K
a(z)

α(z)
v(z)

further α(z) = a−(z)α+(z) and a(z) = a−(z)a+(z) imply:

u(z) = K
a+(z)

α+(z)
v(z) (13)

which is a simple equivalent of (12).

Extracting either uk or vk from the other simply requires

vector/matrix multiplication as shown below. Hence the

associated coding requirement is elementary.

uk = Kâ+ v←−k − α̂+ u←−k−1

vk =
α̂+

K
u←−k − â+ v←−k−1 (14)

where vectors â+ and α̂+ contain coefficients of polynomials

a+(z) and α+(z) respectively.

Remark 2: Subtleties related to prediction-bias removal

and offset-free tracking have been omitted from (11) as

these do not affect the main analysis and results. Numerical

examples nonetheless include relevant algebra. Readers are

referred to [3] for details.

B. Tuning Procedure

Though PFC tuning has traditionally been heuristic, re-

searchers have managed to establish some generic guidelines

for simpler systems [7], [18]. Pre-compensation effectively

changes the oscillatory open-loop step response of G(z) to

smoother and more settled behaviour, and therefore standard

PFC tuning procedures can be fully utilised. In this study,

the PPFC control law (11) depends upon three significant

parameters: the coincidence horizon ny , the target pole ρ

and the compensator gain K. While a judicious selection of

ny and ρ is of paramount importance, surprisingly K does

not affect the closed-loop performance.

Theorem 2: The plant input uk is independent of compen-

sator gain K.

Proof: In z-domain, eqn. (11) can be written as:

v(z) =
(1− ρny )r(z) + [ρny −Q(z)]y(z)

K[h+ P (z)]

where P (z) =
∑N−1

j=1
P j
ny
z−j and Q(z) =

∑N−1

j=0
Qj

ny
z−j .

It follows from Lemma 1:

u(z) =✚✚K
a+(z)

α+(z)
·
(1− ρny )r(z) + [ρny −Q(z)]y(z)

✚✚K[h+ P (z)]

or equivalently in the time-domain:

uk =

∑2

j=0
a+j (1− ρny )r − (P̃ny

u←−k−1 + Q̃ny
y
←−

k)

h
(15)

for suitable P̃ny
and Q̃ny

. Hence the plant input is indepen-

dent of K. Nevertheless, appropriate selection of K is still

necessary to maintain internal stability.

The recommended tuning procedure [5] suggests choosing

ny within the range kL ≤ ny ≤ kU , where kL and

kU represent the time samples when the normalised unit-

step response of T (z) reaches approximately 0.4 and 0.8
respectively with significant gradient. As for the target pole,

one may compare several first-order responses with differing

ρ against the normalised step-response to find an intercept

within the above-mentioned ny range. See, for instance,

Figs. 3 and 5.

C. Constraint Management

Knowledge of uk from (14) can facilitate constraint han-

dling in fairly straightforward manner. Instead of adopting

computation-intensive algorithms, such as back-calculation

[4], one may opt for input and output predictions for con-

straint assessment. The only caveat, however, is the need to

recalculate corrected vk, using (14), if input violations are

detected. Furthermore, output constraints must be validated

before inputs, since yk is based on the pre-conditioned

model predictions and hence depend upon vk. One may use

prediction equation (10) by selecting such value of vk closest

to the one obtained with (11) that satisfies all constraints for

sufficiently large validation horizon nc i.e.

ymin ≤ KHjvk +KPj v←−k−1 +Qj y
←−

k ≤ ymax (16)

where j = 1, 2, . . . , nc and nc ≫ ny .

Remark 3: Constraint handling with the pre-conditioned

model predictions (16) is guaranteed recursively feasible as

long as nc is sufficiently large [19]. This, however, may not

be true with open-loop oscillatory predictions.

V. NUMERICAL EXAMPLES

This section demonstrates the efficacy of PPFC algorithm

with two numerical examples. To better understand its ad-

vantages, a comparison of closed-loop performance is drawn

against the standard PFC for two challenging processes: G1
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Fig. 3. Target responses with ρ = [0.6(red), 0.75(yellow), 0.9(purple)]
overlaying the normalised step response of T1

is a second-order oscillatory system whereas G2 is slightly

non-minimum phase third-order under-damped system.

A. Example-1 (Second-Order Model)

Consider a second-order under-damped system (17) with

|∆uk| ≤ 0.45, −0.25 ≤ uk ≤ 1.75 and 0 ≤ yk ≤ 1.05. For

fair comparison, both PPFC and PFC control laws will be

tuned identically.

G1 =
0.1z−1 + 0.4z−2

1− z−1 + 0.8z−2
(17)

The oscillatory modes of G1 are za = 0.5±j0.742, whereas

zz = −4 is the system zero. For stability the compensator

gain should be K < 0.5 as obtained from (6). Consequently
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Fig. 4. Nominal constrained performance with G1, ny = 4 and ρ =
[0.6(blue), 0.75(green), 0.9(red)]
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Fig. 5. Targets with ρ = [0.9(red), 0.92(yellow), 0.95(purple)] over-
laying the normalised step response of T2

the pre-conditioned prediction model with K = 0.25 is:

T1 =
0.025z−1 + 0.1z−2

1− z−1 + 0.25z−2
(18)

Next we find ny and ρ. Fig. 3 shows the pre-conditioned step

response overlaid with various first-order target responses

and suggests 3 ≤ ny ≤ 5 as a suitable coincidence horizon

window. Evidently target dynamics with ρ = 0.6 or ρ =
0.9 do not match predictions within the desirable ny range

and hence would need over-actuation or under-actuation to

enforce an intercept. However, a sensible choice would be

ρ = 0.75 which gets an exact match at ny = 4.

Efficacy of the PPFC algorithm is obvious with the con-

strained nominal closed-loop performance shown in Fig. 4.

Specifically we observe that the PPFC plant output (upper
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Fig. 6. Nominal unconstrained performance with G2, ny = 12 and ρ =
[0.9(blue), 0.92(green), 0.95(red)]



figure) is smooth and oscillation-free, and strongly linked to

the corresponding ρ. Additionally no constraint violation is

visible, although control input for faster target dynamics is

relatively aggressive which reinforces the expectation. The

conventional PFC (lower figure) appears incapable within

transient period. There seems no obvious link between the

output and target dynamics (ρ), and inputs are generally too

aggressive. As a result, input-rate and output saturation are

seen within first 10 samples.

B. Example-2 (Higher-Order Model)

Consider the model G2 with no constraints

G2 =
−0.1z−1 + 0.4z−2 + 0.2z−3

1− 2.1z−2 + 1.69z−2 − 0.445z−3
(19)

with a+(z) = 1 − 1.6z−1 + 0.89z−2 and a−(z) = 1 −
0.5z−1. The oscillatory modes are located at za+ = 0.8 ±
j0.5. Therefore, we define α+(z) = 1− 1.6z−1 + 0.64z−2,

α−(z) = a−(z) and get the compensated model:

T2 = K
−0.1z−1 + 0.4z−2 + 0.2z−3

1− 2.1z−2 + 1.44z−2 − 0.32z−3
(20)

The root locus plot (not shown) suggests K < 0.04 for

compensator stability. We choose K = 0.02 as its numerical

value does not affect the closed-loop performance. Fig. 5

shows the normalised step response of T2, which clearly

recommends a coincidence point within 9 ≤ ny ≤ 16.

An intercept between step response and target exists with

ρ = 0.92 at ny = 12. To enforce an intercept with faster

targets, one would need to over-actuate the input which in

practice may result in constraint violations.

Nevertheless we examine the closed-loop behaviour with

ρ = [0.9, 0.92, 0.95] and ny = 12 in Fig. 6, which presents a

rather contrasting display of performance between the PPFC

and simple PFC algorithms. Key observations are: Simple

PFC with constant future input fails to damp the oscillatory

modes of G2. With the proposed scheme, while vk remains

constant within the coincidence horizon, the plant input uk

is aptly parametrised to overcome the under-damping. This

difference is obvious from the varied control dynamics for

both controllers. With PPFC, the target pole ρ seems more

effective. This is clearly evident in the amount of time the

outputs take to settle for both the algorithms. To sum up,

while the conventional PFC algorithm may not be suitable for

oscillatory dynamics, it is possible to improve its capabilities

via pre-conditioning in straightforward fashion.

VI. CONCLUSION

This paper has proposed a pre-conditioned PFC de-

sign methodology for under-damped dynamic systems. The

proposed pre-conditioning stage, based on pole-placement,

transforms the unsettled open-loop model dynamics into

smoother prediction behaviour, known to work well with

the standard PFC algorithm. The overall design process is

fairly straightforward; one that does not complicate standard

constraint handling and controller tuning, and also retains

the key attributes of original PFC i.e. simplicity and intu-

itiveness. We have demonstrated that the PPFC algorithm

in essence parametrises control action to efficiently handle

oscillations, a quality not present in the conventional PFC.

Moreover the main tuning parameter, the target pole, shows

improved efficacy in relation to the closed-loop performance

as seen in the numerical simulations.
Nevertheless, as discussed in Section III-B, the improved

set-point tracking with pole-placement pre-conditioning

comes at the price of rather oscillatory input disturbance

rejection, but a relatively better response to output distur-

bance compared to an equivalent pole-shifting compensator

balances out this shortcoming. A formal analysis of sensitiv-

ity functions is required to fully understand the pros and cons

of pole-placement and this constitutes our future research

work.
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