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ABSTRACT Plant rhizobiomes consist of microbes that are influenced by the physi-

cal, chemical, and biological properties of the plant root system. While plant-microbe

interactions are generally thought to be local, accumulating evidence suggests that

topologically disconnected bulk soil microbiomes could be linked with plants and

their associated rhizospheric microbes through volatile organic compounds (VOCs).

While several studies have focused on the effect of soil physicochemical properties

for VOC movement, it is less clear how VOC signaling is affected by microbial com-

munities themselves when VOCs travel across soils. To gain a better understanding

of this, we propose that soil microbe-plant communities could be viewed as “meta-

rhizobiomes,” where VOC-mediated interactions extend the plant rhizobiome further

out through interconnected microbial metapopulation networks. In this minireview,

we mainly focus on soil microbial communities and first discuss how microbial inter-

actions within a local population affect VOC signaling, leading to changes in the

amount, type, and ecological roles of produced VOCs. We then consider how VOCs

could connect spatially separated microbial populations into a larger metapopulation

network and synthesize how (i) VOC effects cascade in soil matrix when moving

away from the source of origin and (ii) how microbial metapopulation composition

and diversity shape VOC-signaling between plants and microbes at the landscape

level. Finally, we propose new avenues for experimentally testing VOC movement in

plant-microbe metapopulation networks and suggest how VOCs could potentially be

used for managing plant health in natural and agricultural soils.

KEYWORDS bulk soil microbiome, microbial metapopulation networks, long-distance

communication, microbe-plant crosstalk, rhizosphere microbiome, volatile organic

compounds

P
lant-associated microbiomes have received considerable attention from scientists

as key components of plant development, growth, and immunity (1). In particular,

the rhizosphere microbiome (rhizobiome), defined as the microbes that are influenced

by the physical, chemical, and biological properties of the plant root system, has been

demonstrated to play important roles in plant growth, nutrition, pathogen suppres-

sion, and stress resistance (2–5). Traditionally, these belowground plant-microbiome

interactions are considered local, occurring within the immediate vicinity of the plant

roots (including root tissues) (5). However, increasing evidence suggests that below-

ground plant-microbiome interactions extend over longer distances in the soil matrix

via volatile organic compounds (VOCs), which could potentially connect plant roots,

rhizobiomes, and bulk soil microbiomes (6, 7). VOCs are a broad group of small lipo-

philic compounds (,C15) with low molecular weight (100 to 500 Da), high vapor
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pressure, and low boiling point (7, 8). These characteristics allow VOCs to diffuse

through gas- and water-filled pores, enabling a range of biological functions important

for microbe-microbe and plant-microbe interactions (6, 8). For example, microbial

VOCs can act as nutrient sources (9) and modulate plant vegetative growth, flowering,

and immune responses (8). They can further trigger both antagonistic and synergistic

interactions among plants, pathogens, and other soil organisms, such as nematodes

and protists (10–13), and are important for competitive (antibiosis) and facilitative

(cross-feeding) microbial interactions and microbiome assembly (14–16). Similarly,

plant-produced root VOCs can act as antimicrobials, food sources, chemo-attractants

or signaling chemicals (17, 18), affecting soil microbe community diversity, composi-

tion, and functioning (7). Soil VOC effects are thus omnidirectional and complex and

have been shown to take place within and between different trophic levels (6).

While several studies have focused on the effect of soil physicochemical properties

in governing VOC movement in the soil matrix (16–19), it is less clear how VOC signal-

ing is affected by biotic interactions. Moreover, most of the previous and ongoing

work has focused on cataloging the structure and ecological roles of VOCs under labo-

ratory conditions, focusing mainly on interactions between pairs of organisms (7, 19).

While this approach allows the controlled study of VOC mechanisms, findings are diffi-

cult to extrapolate on more natural and ecologically complex communities. For exam-

ple, while it is well established that VOC effects can impact distant individuals or even

populations (20, 21), it is unclear how VOCs travel through microbial metapopulations.

In other words, only a little is known about how VOC signals change when blending

with VOCs produced by adjacent populations, which could ultimately determine how

VOC effects cascade in space when moving away from the source of origin in the soil.

Similarly, while microbial community properties have been shown to drive VOC pro-

duction locally (22, 23), it is not clear how microbial metapopulation composition and

diversity shape VOC-signaling at the landscape level. Given the potential importance

of VOCs for soil ecology and agricultural productivity (8, 24), it is important to start con-

sidering VOC signaling in plant-microbe communities over larger spatial scales

(Fig. 1A). In this minireview, we provide an outlook on the nature and dynamics of

VOC-mediated interactions, mainly focusing on soil microbial communities. We also

propose a framework on how VOC effects could cascade through microbial metapopu-

lation networks, potentially enabling an extended metarhizobiome by connecting

plant roots, rhizobiome, and bulk soil into a cohesive underground ecosystem.

VOCs ARE PRODUCTS OF LOCAL ENVIRONMENTS WITH POTENTIALLY GLOBAL

EFFECTS

The microbial activity and plant roots are the main sources of VOCs in the soil (14,

19). Additionally, uptake of VOCs from the atmosphere, degradation of organic mate-

rial, and application of organic fertilizers and irrigation contribute to the soil VOC pool

(25, 26). Soils can also retain VOCs, and the patterns of adsorption and desorption

depend on the type of VOCs and soil properties (27, 28). For example, VOC desorption

from soils has been shown to increase with decreasing soil particulate size (29) and the

number of carbon atoms present in the benzene ring of VOCs (30). Furthermore, VOC

desorption tends to peak during periods of high temperatures and low moisture, sug-

gesting that compounds accumulated during the winter may be released later in the

summer, even after the sources of VOC emission have long vanished (31). Further,

VOCs can escape to the atmosphere (32), bind to organic matter and mineral surfaces

(33), undergo biotic and abiotic degradation (25, 26), dissolve in soil water solution

(34) and get trapped in macro- and micropores in the soil (29); Fig. 1B). The movement

of VOCs in soil results from diffusion and advection; diffusion is driven by concentra-

tion gradients, and advection can be driven by pressure, density, gravity, or thermal

gradients (35, 36). The bulk water flow also plays a significant role in the movement of

nutrients, organic waste, microbes, and VOCs in the soil (36, 37). Likewise, contiguous

and interlocking channels formed in the soil through processes of desiccation, growth
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and decay of roots and mycelia, and burrowing animals act as superhighways for long-

distance movement of VOCs (37, 38). Hence, soil physicochemical, environmental, and

VOC properties are important in determining the adsorption-desorption dynamics and

the effect radius of VOCs in the soil matrix.

While the rhizosphere gradient size for most biotic and abiotic processes has been

reported as 0.5 to 4 mm and .20 mm for inorganic gases (CO2 and O2) (39, 40), there

is no study explicitly testing the VOC diffusion dynamics in the soil. However, a few

studies have explored the effect of distance on VOC-mediated interactions (7, 41). For

example, a study conducted using an olfactometer system demonstrated that plant

root VOCs can attract beneficial soil bacteria from as far as a 12-cm distance (7). In

another field study, it was shown that nematodes can sense a root-produced terpene

FIG 1 Volatile organic compound (VOC)-mediated interactions can link plants with microbial metapopulation networks. (A) The

classical rhizobiome is located in the close vicinity of the plant roots, while VOCs produced by microbes and plant roots disperse over

long distances in the soil matrix, being able to connect and mediate multidirectional interactions among physically disconnected

metapopulations of rhizosphere and bulk soil and plant (blue arrows). (B) A single microbial metapopulation in the bulk soil. The fate

of emitted VOCs depends on the exchange rate and retention properties of VOCs, soil properties, and environmental conditions,

which ultimately determine VOC movement, binding, evaporation, and dissolution. (C) VOC diffusion signal strength (amount of VOC)

from and toward the bulk soil (VOC source) to rhizosphere soil as a function of physical distance; VOCs will have a stronger effect on

the rhizosphere and plant roots when in close vicinity (top), and this effect will become weaker with increasing distance (middle and

bottom). (D to F) Changes in the signal strength and diversity of VOCs between metapopulations in the bulk and rhizosphere soil. It

is possible that both the signal strength and diversity of VOCs decrease as a function of distance from the source of origin (D).

Alternatively, the original VOC signal could be strengthened when passing through similar metapopulations through “sequential

community activation” (E), which could also further increase the diversity of VOCs as adjacent communities blend in their own VOCs

(F). In panels C to F, the green color shows the VOC signal strength, and the shade of the blue arrows shows the diversity of emitted

VOCs. The interaction described in panels C to F could also be initiated by plant root-emitted VOCs cascading toward nearby and

distant communities in a similar fashion.
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VOC, (E)-b-caryophyllene, from a 50-cm distance (41). Moreover, diffusion experiments

conducted at up to 12-cm distances using pure VOC standards suggest that their diffu-

sion capability is specific to given VOC compounds (7, 24). Together, these findings

suggest that VOCs can extend local microbiome interactions further out, potentially

bidirectionally linking bulk and rhizosphere soils into a plant metarhizobiome.

However, relatively much less is known about the significance of microbial interactions

for the production and movement of VOCs in the soil.

MICROBIAL INTERACTIONS WITHIN A POPULATION DETERMINE LOCAL VOC

PRODUCTION

The production of VOCs is influenced by both abiotic and biotic microenvironmen-

tal conditions locally, which include intra- and interspecific microbial interactions (22,

23), substrate composition, temperature and moisture among others (42). Recent stud-

ies have demonstrated that competition between cooccurring species in a local popu-

lation can increase the relative proportion of bioactive VOCs (22, 23, 43). For example,

the production of antibacterial VOCs peaked at the intermediate community richness

level in a synthetic 12-species model bacterial community (22). Interestingly, this

effect coincided with high bacterial community evenness, which could have allowed

more even VOC production by each individual species, and in support of this, the

antibacterial activity of communities correlated positively with the number of pro-

duced antibacterial VOCs (22). Similarly, VOC effects are also affected by the absence

of certain species as shown by another study where the loss of bacterial species was

associated with reduced production and activity of antifungal VOCs (44). Such effects

could be driven by taxa-specific VOC interactions, which have been shown to vary

from positive to neutral and negative depending on the specific interacting species

pair (22, 23). Moreover, it has been found that bacterial communities can produce

“emergent” VOCs that cannot be detected when the VOC production is measured in

bacterial monocultures (22, 23, 43). This could be because the bacterial metabolism

is often changed in the presence of other species, which could trigger the upregula-

tion of otherwise silent VOC metabolism-related genes (45). It has also been shown

that pairwise VOC responses can be asymmetric. For example, VOCs produced by

Verticillium longisporum fungi upregulated the metabolic activity of Paenibacillus pol-

ymyxa, while the VOCs of P. polymyxa inhibited the cellular metabolism and growth

of V. longisporum, but upregulated genes related to stress responses and the produc-

tion of antimicrobial VOCs (46). These findings suggest that VOCs could drive and be

a result of potential coevolutionary dynamics that warrant further study in the future

(24). Microbial VOC interactions are also likely to have indirect effects on other organ-

isms, such as plants. Recently, it was demonstrated that bacterial communities that

produce large amounts of bacterium-inhibiting VOCs produce a small amount of

plant growth-promoting VOCs (22), which is indicative of a trade-off between func-

tionally different classes of VOCs. Likewise, VOCs emitted by plant roots could indi-

rectly affect microbial interactions within distantly located microbial populations. For

example, insect-damaged maize roots change their VOC emission, leading to secre-

tion of (E)-b-caryophyllene as the main VOC, which attracts entomopathogenic nem-

atodes (12, 41). Similarly, tomato roots infected with the Fusarium oxysporum fungal

pathogen have been shown to emit several VOCs with known antifungal activity (47),

which suggests that plant pathogens could indirectly affect rhizosphere and bulk soil

microbiomes by triggering changes in plant root VOC production. Together, the above-

described evidence suggests that local VOC production is highly dependent on the mi-

crobial community composition and diversity and the specific interacting species.

PREDICTING VOC SIGNALING IN MICROBIAL METAPOPULATION NETWORKS

While VOC-mediated interactions are well recognized, it is less clear how VOC

effects cascade in space when moving away from the source of origin and how micro-

bial metapopulation composition and diversity shape VOC-signaling at the landscape
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level. The VOC effects are likely to decrease as a function of distance in the soil matrix.

In support of this, Schulz-Bohm et al. (7) found a drastic decrease in the detectable

amounts of VOCs with sampling distance from the source of origin in the soil. Hence,

VOCs are likely to have relatively stronger effects on nearby communities (Fig. 1C and

D), while communities located further away will be less affected due to the natural loss

of VOCs over longer distances because of adsorption, trapping, degradation, and disso-

lution (25, 26, 28). Additionally, the original VOC signal could be amplified by adjacent

microbial populations when moving away from the site of origin. It is known that dif-

ferent microbial species produce distinct sets of VOCs (43, 48), and their VOC produc-

tion is affected by local microbial interactions and the surrounding environmental con-

ditions (22, 23, 42). Moreover, airborne VOCs have been reported to alter soil microbial

community composition (16), which is strongly correlated with the VOC emission pro-

files of “source” and “target” populations (49–51). Together, these findings support the

concept that an initial VOC signal could blend with the VOCs emitted by adjacent mi-

crobial populations, leading to the amplification or complementation of the original

signal and a potential increase in the total amount and diversity of emitted VOCs

(Fig. 1E). While this could lead to a decrease in the relative concentrations of VOCs, the

amplification of a specific VOC signal could also occur if the first VOC signal triggers the

production of the same VOC by the adjacent community, potentially along with other

VOCs, leading to ‘sequential community activation’ via amplification of the original VOC

signal. In support of this, it has been shown that VOC profiles are more similar among

closely related microbial species (48), and VOC emission has been found to correlate

negatively with soil bacterial diversity (49). While more direct experimental evidence is

needed, there is a possibility that taxonomically or functionally similar microbial popula-

tions could respond to conspecific signals in a similar way, leading to the amplification

of the original VOC signal (Fig. 1F).

Current evidence also suggests that the specificity and bioactivity of VOCs is likely

to further complicate VOC-signaling outcome in soils (19, 48). For example, schleiferon

A VOC is formed via a nonenzymatic reaction, employing precursor VOCs (acetoin and

2-phenylethylamine) that could be emitted by microbes of the same or different spe-

cies (52). In contrast to such generalist VOCs, microbes also produce specialist VOCs

that are specific to certain microbial taxa (48). The taxon-specific VOCs could play a

smaller role in spatially heterogenous soil communities if their signal is not received in

the absence of specific “responder” species. In contrast, less-specific signals might get

amplified more often, having potentially more far-reaching effects across microbial

metapopulation networks. As a result, some VOCs could be functionally redundant (19,

28). Moreover, the VOC bioactivity and species VOC sensitivity will likely be important

for VOC outcomes in the soil. For example, the same VOCs produced by bacteria can

exert no or few effects on one fungal species (Fusarium solani) but at the same time

showed a very high bioactivity to Pythium species (oomycetes) (53). VOC bioactivity

could also be affected by the total amount of VOC produced. In support of this, soil

VOC emission has been found to positively correlate with the abundances of prokary-

otic Bacteroidetes and Proteobacteria phyla in one study (49) and with Firmicutes,

Proteobacteria, Actinobacteria, and Crenarchaeota abundances in another study (50).

These findings suggest that VOC production could be driven by density-dependent

effects, where the most abundant taxa could have the strongest effect (54) on VOC-

mediated signaling. Alternatively, VOC responses could be nonlinear, where only VOCs

exceeding certain response thresholds, or highly bioactive VOCs (19, 22), would be

able to influence adjacent microbial populations. In this case, taxa present in low rela-

tive abundances could be important contributors, as low concentrations of VOCs could

mediate response cascades between adjacent microbial populations as has been dem-

onstrated in the case of antifungal VOCs produced by rare soil bacterial taxa (44) and a

relatively rare Paenibacillus sp. bacterium that strongly affected the production of

VOCs by other much more abundant members of the bacterial community (15). While

VOC signaling is further shaped by variation in abiotic microenvironmental conditions
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of a metapopulation (25), signal cascades might follow natural VOC diffusion in the soil

matrix, creating subnetworks and feedback loops between certain “source” and “tar-

get” populations. In the future, the ideas presented above need to be experimentally

tested to better understand the complex chemical interplay of VOCs in the soil matrix.

This could be, for example, achieved by adopting aquatic metapopulation microcosm

methods for soil systems (55).

METARHIZOBIOME: LINKING MICROBIAL METAPOPULATION NETWORKS WITH

PLANTS

Even though the bulk soil acts as an initial microbial pool for plant rhizobiome, the

growth, development, and aging of plants cause clear shifts in rhizobiome composi-

tion, making it distinct from the bulk soil (56). As a result, bulk and rhizosphere soils

have very dissimilar community structures, showing clear differences in the relative

abundance of different bacterial taxa (57). These relative abundance differences are

likely to be correlated with differences in bulk and rhizosphere soil VOC production

profiles (49, 50). In further support of this, VOCs belonging to some chemical groups

(i.e., alcohols, sulfur compounds, some ketones, and aromatic compounds) are pre-

dominantly produced by rhizosphere microbes compared to bulk soil microbes (58).

Also, plant roots release VOCs (i.e., terpenoids, benzenoids, aliphatics, aromatics, fatty

acids, etc.) into the rhizosphere (18, 47), making it chemically more diverse than the

bulk soil. Rhizosphere soil is thus likely to be a hot spot for VOCs (5, 59), allowing plants

to extend their rhizobiome into the bulk soil, while the effects from the bulk soil into

the rhizosphere could be relatively weaker. The resulting metarhizobiomes would

encompass a far larger space, resulting in a potentially larger number of interactions

between a more diverse set of microbial taxa present in both rhizosphere and bulk

soils (Fig. 2). Based on the current data on microbial abundance and distance-decay

patterns in the soil microbial communities (60), increasing the interaction range from

millimeters to centimeters (7) will considerably increase the effective size of the plant

rhizobiome. This could potentially result in a large range of interactions across gener-

ally larger plant rhizobiome networks. Increasing the interaction network size could

FIG 2 Volatile organic compound (VOC)-mediated interactions between bulk soil and rhizosphere could be involved in a

range of ecosystem-level functions and link the bulk soil microbiome with rhizobiome, endobiome, and phyllobiome. The

metarhizobiome would allow the plant to connect physically larger space, diversity, and abundance of microbes in the

soil matrix. Further, VOC effects emerging in the soil could cascade beyond the rhizosphere, affecting microbe-plant

interactions inside the plant (endosphere) and on the plant leaves (phyllosphere), linking below- and aboveground

microbiomes.
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also potentially have positive effects on plant rhizobiome stability if metarhizobiomes

harbor greater species diversity and functional redundancy (61), being able to act as a

source population if soil conditions change significantly, for example, during crop rota-

tion or tillage (62).

The extension of the microbial interaction range into the bulk soil via VOCs could

promote other long-distance signaling mechanisms, such as ion channel-mediated

electrical signaling (63), potentially linking the activity of bulk soil communities with

plant growth (Fig. 2). VOC-mediated signaling could also help plants to defend against

pathogen attack. For example, in response to VOCs produced by the fungal pathogen

Fusarium culmorum, the bacterium Serratia plymuthica has been shown to upregulate

the production of sodorifen VOC (51), which induced the expression of plant defense-

related genes in Arabidopsis thaliana (64). It is thus plausible that microbes are the first

to sense the stress and produce specific metabolites to alert their host plant, as has

also been suggested by Rizaludin et al. (65). VOC-sensing bacteria could thus warn

plants about invading pathogens earlier by allowing activation of immune responses

(VOC priming effect) in response to VOCs emitted by distant microbial communities

(66), as has also been reported for aboveground VOC-mediated plant-to-plant warning

against insect and disease attack (20). Furthermore, plants have also been reported to

sense, integrate, and respond to plant-plant cues transmitted through roots (67, 68),

which suggests that microbial populations could affect VOC signaling between adja-

cent plants (58). Similarly, plants could act as mediators and connect microbial meta-

populations via VOCs, potentially leading to VOC-mediated interdependences and

metarhizobiome stability at the landscape level, highlighting the importance of

Gamma diversity. For example, Dharanishanthi et al. (69) reported that modification of

the environmental pH by neighboring bacterial species could be used as a clue about

nutrient availability by local bacteria, linking individual bacterial physiology to macro-

scale collective behavior.

Microbes residing in the soil can alter plant VOC profiles as has been reported for

faba bean plants treated with arbuscular mycorrhizal fungi (70) and maize plants

treated with the plant-beneficial bacterium Pseudomonas putida (71). Hence, consid-

ering long-distance VOC dispersion (7, 16, 38), it is plausible that VOC-mediated inter-

actions triggered by bulk soil metapopulations could affect plants directly or create

conflicts by blurring the boundary of plant control over the rhizobiome. Similarly,

plant root VOCs can influence rhizosphere microbial community composition (16, 72),

and this effect could extend to bulk soil microbiomes (7) either directly or indirectly via

the rhizosphere microbiome. Plant-associated rhizobacteria can induce plant defenses

against herbivores, while plants can, in turn, attract natural enemies of herbivores by

emitting herbivore-induced plant VOCs (20). Similarly, plants can affect the rhizosphere

microbiome of neighboring plants via rhizobacterium-induced aboveground plant

VOC production (73). These findings support the concept that VOCs emerging in the

bulk soil could also have effects beyond the rhizosphere, affecting the functioning of

the whole-plant metamicrobiome, including endosphere and phyllosphere (Fig. 2).

VOCs could thus potentially be important in linking plant below- and aboveground

microbiomes.

FUTURE PERSPECTIVES

To test our ideas and to develop a predictive theoretical framework on plant meta-

rhizobiome functioning, much more experimental data are required. This could be

achieved by developing highly trackable rhizobox and olfactometer systems that allow

direct manipulation of VOC diffusion range, microbial community composition, and

the abiotic environment in plant-microbe metapopulation networks. Moreover, a care-

ful combination of complementary field approaches is needed to study the type and

diffusion radius of VOCs of naturally distributed microbial populations in relation to

soil physicochemical properties and climatic factors. The VOC-mediated interactions

will not increase the total volume of the rhizosphere but will affect the metabolism
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and physiology of (micro)organisms beyond the rhizosphere environment to at least

the centimeter scale as suggested by de la Porte et al. (74). This could be especially im-

portant in the context of ongoing climatic change, allowing us to better understand

how temperature and moisture drive the diffusion range of VOCs in the soil compared

to soluble compounds. In addition to quantifying the range of VOC-mediated interac-

tions, it will be important to compare the relative importance of different VOCs and

their functional redundancy and diversity in microbial communities. For example, iden-

tifying potential keystone microbial species with relatively strong VOC-mediated inter-

actions at the community level that could be used as microbial inoculants could be

especially useful during intercropping periods. For example, choosing crop combina-

tions based on VOC signal “compatibility” could be used as selection criteria for

increasing agricultural ecosystem productivity. The manipulation of bulk soil micro-

biome could help to avoid conflicts with the plant and rhizobiome, potentially leading

to higher functional stability and redundancy. Several VOCs can also be synthesized,

making it potentially possible to apply them as transient and ecologically compatible

biological control agents. Further, linking VOC patterns with metagenomic, transcrip-

tomic, and metabolomics data could help to elucidate to what extent VOC production

patterns can be predicted based on the genetic composition of microbial communities

and if the underlying VOC pathways can be identified. A combination of existing and

emerging omics and computational technologies could further help to identify chemi-

cal pathways underlying VOC production (24, 75). In addition, phenotyping of VOC

emissions by using inexpensive small-scale trapping devices, smartphone-based VOC-

sensitive sensors, and portable instruments for real-time measurements could help to

better comprehend the dynamics of VOC emissions and discriminating genotype-spe-

cific and stress-related VOC profiles and patterns (76). Finally, while VOC-mediated

interactions are known to have an important role in microbial ecology, they could also

drive microbial evolution by selecting for VOC-resistant bacterial genotypes similar to

soluble antimicrobial compounds (77) or facilitate other nutritional or stress-related

adaptations. Proposed experimental model systems would allow testing such evolu-

tionary questions and identifying genes and molecular mechanisms that play impor-

tant roles in VOC interactions.

CONCLUSIONS

Here, we propose that VOCs could coordinate bulk and rhizosphere soil microbiome

functioning as a metarhizobiome, superseding the topological range limitation of con-

tact-dependent microbe-microbe-plant interactions. Such plant metarhizobiomes would

include microbes residing in the near physical vicinity of the plants (rhizobiome), as well as

the VOC-connected populations located further apart in the bulk soil. Such multidirectional

long-distance communication could fundamentally change how we perceive microbial

ecology in the spatially structured soil matrix, allowing plant-microbe metapopulations to

interact and trade information without restrictions imposed by the proximity and cooccur-

rence of the same local habitat. The attained knowledge could be potentially further used

in the management of plant health in the agricultural context and to understand plant-

microbe biodiversity and distribution in natural environments. The proposed predictions

put forward by our conceptual framework should be rigorously tested in the future. This

could be achieved by bringing together interdisciplinary scientists working on microbial

ecology and evolution, genetics, biochemistry, and plant biology and by taking advant-

age of bespoke experimental systems that allow direct manipulation and quantification

of microbe-plant communities and emitted VOCs.
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