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Treatment options for idiopathic intracranial hypertension are limited. The enzyme 11b-hydroxysteroid dehydrogenase type 1 has

been implicated in regulating cerebrospinal fluid secretion, and its activity is associated with alterations in intracranial pressure in

idiopathic intracranial hypertension. We assessed therapeutic efficacy, safety and tolerability and investigated indicators of in vivo

efficacy of the 11b-hydroxysteroid dehydrogenase type 1 inhibitor AZD4017 compared with placebo in idiopathic intracranial

hypertension. A multicenter, UK, 16-week phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with

AZD4017 or placebo was conducted. Women aged 18–55 years with active idiopathic intracranial hypertension (>25 cmH2O lum-

bar puncture opening pressure and active papilledema) were included. Participants received 400 mg of oral AZD4017 twice daily

compared with matching placebo over 12 weeks. The outcome measures were initial efficacy, safety and tolerability. The primary

clinical outcome was lumbar puncture opening pressure at 12 weeks analysed by intention-to-treat. Secondary clinical outcomes

were symptoms, visual function, papilledema, headache and anthropometric measures. In vivo efficacy was evaluated in the central

nervous system and systemically. A total of 31 subjects [mean age 31.2 (SD¼ 6.9) years and body mass index 39.2 (SD¼ 12.6)

kg/m2] were randomized to AZD4017 (n¼17) or placebo (n¼ 14). At 12 weeks, lumbar puncture pressure was lower in the

AZD4017 group (29.7 cmH2O) compared with placebo (31.3 cmH2O), but the difference between groups was not statistically sig-

nificant (mean difference: �2.8, 95% confidence interval: �7.1 to 1.5; P¼0.2). An exploratory analysis assessing mean change in

lumbar puncture pressure within each group found a significant decrease in the AZD4017 group [mean change: �4.3 cmH2O

(SD¼ 5.7); P¼ 0.009] but not in the placebo group [mean change: �0.3 cmH2O (SD¼ 5.9); P¼ 0.8]. AZD4017 was safe, with no

withdrawals related to adverse effects. Nine transient drug-related adverse events were reported. One serious adverse event

occurred in the placebo group (deterioration requiring shunt surgery). In vivo biomarkers of 11b-hydroxysteroid dehydrogenase

type 1 activity (urinary glucocorticoid metabolites, hepatic prednisolone generation, serum and cerebrospinal fluid cortisol:corti-

sone ratios) demonstrated significant enzyme inhibition with the reduction in serum cortisol:cortisone ratio correlating significantly

with reduction in lumbar puncture pressure (P¼0.005, R¼0.70). This is the first phase II randomized controlled trial in idiopathic

intracranial hypertension evaluating a novel therapeutic target. AZD4017 was safe and well tolerated and inhibited 11b-hydroxys-

teroid dehydrogenase type 1 activity in vivo. Reduction in serum cortisol:cortisone correlated with decreased intracranial pressure.

Possible clinical benefits were noted in this small cohort. A longer, larger study would now be of interest.
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Introduction
Idiopathic intracranial hypertension (IIH) is a debilitat-

ing condition characterized by raised intracranial

pressure (ICP), papilledema, with the risk of permanent

visual loss (Mollan et al., 2018b) and chronic head-

aches, which reduce the quality of life (Mulla et al.,
2015). IIH predominately affects obese women between
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the ages of 25 and 36 years with a distinct androgen ex-

cess signature recently identified (Daniels et al., 2007;

Markey et al., 2016; O’Reilly et al., 2019). Incidence is

increasing in line with escalating worldwide obesity rates

(Mollan et al., 2018a).

Surgical treatment is recommended when vision rapid-

ly declines (Mollan et al., 2014, 2018c), but the major-

ity of patients (93%) are managed conservatively

(Hoffmann et al., 2018; Mollan et al., 2018a, b).

Dietary interventions are an effective treatment (Sinclair

et al., 2010a); however, meaningful and sustained

weight loss is difficult to achieve (Colquitt et al., 2014;

Manfield et al., 2017). Pharmacotherapy in IIH is lim-

ited (Piper et al., 2015), with only two previous

randomized controlled trials (RCTs) in IIH previously

reported, both evaluating acetazolamide (Ball et al.,

2011; NORDIC Idiopathic Intracranial Hypertension

Study Group Writing Committee et al., 2014). New

treatment options are therefore urgently required

(Mollan et al., 2018b).

We have previously demonstrated that the enzyme 11b-

hydroxysteroid dehydrogenase type 1 (11b-HSD1) is

expressed and active in the choroid plexus to amplify

cortisol availability and acts to regulate cerebrospinal

fluid (CSF) production (Sinclair et al., 2007, 2010b;

Gathercole et al., 2013). In patients with IIH, resolution

of disease (reduced ICP, improvements in papilledema

and headaches) was associated with reduced 11b-HSD1

activity (Sinclair et al., 2010a, b), with a study suggesting

that inhibition of 11b-HSD1 with a non-selective inhibi-

tor lowered intraocular pressure. Importantly, 11b-HSD1

expression and activity are dysregulated in obesity (Wake

and Walker, 2004; Sandeep et al., 2005).

Selective inhibitors of 11b-HSD1 have been developed

as treatments for obesity, hepatic steatosis, metabolic syn-

drome and type 2 diabetes (Boyle, 2008; Stefan et al.,

2014). Based on these data, 11b-HSD1 could represent a

therapeutic target for lowering CSF pressure. AZD4017

is a highly selective, fully reversible, competitive 11b-

HSD1 inhibitor. It has been tested over short time

intervals in healthy males (9 days) and abdominally obese

subjects (10 days) and found to be safe and tolerable

(AstraZeneca, 2000a, b, c, d, e). The ability of AZD4017

to penetrate the blood–brain barrier is not established;

however, the choroid plexus lies outside the blood–brain

barrier and consequently can be targeted directly follow-

ing oral administration (Davson, 1966; Eftekhari et al.,

2015).

We hypothesized that the inhibition of 11b-HSD1

could be therapeutically beneficial in IIH. To test this

theory, we conducted a multicenter, phase II double-

blind, placebo-controlled RCT in IIH using the selective

11b-HSD1 inhibitor AZD4017, aiming to assess thera-

peutic efficacy, safety and tolerability, and investigated

in vivo systemic and central nervous system efficacy.

Materials and methods

Study conduct

The study was conducted from March 2014 to December

2016 in three UK hospitals (Fig. 1). The National

Research Ethics Committee York and Humber-Leeds

West gave ethical approval (13/YH/0366). In vitro sub-

cutaneous and omental adipose explants were collected

from a separate IIH population undergoing bariatric sur-

gery (National Research Ethics Committee Black Country

14/WM/0011). All patients provided written informed

consent in accordance with the declaration of Helsinki.

Detailed clinical trial methodology has been published

(Markey et al., 2017).

Study population

Women (18–55 years) were eligible if they had a clinical

diagnosis of active IIH meeting the updated, modified

Dandy criteria (ICP> 25 cmH2O and active papilledema)

and normal brain imaging (including magnetic resonance

venography or CT with venography) at recruitment (for

detailed eligibility criteria see Supplementary Table 1;

Friedman et al., 2013; Markey et al., 2017).

Study design

This study was a 16-week phase II, UK, multicenter, dou-

ble-blind, placebo-controlled RCT with a 12-week dosing

duration and 4-week follow-up of drug.

Randomization and blinding

Participants were allocated to either the study drug or

placebo using a trial number randomly allocated by

phone, using block-of-6 randomization. Randomization

was performed by an independent manufacturer (Almac)

(Markey et al., 2017). Participants and investigators were

masked to treatment allocation during the trial.

Intervention

Participants received 400 mg of an oral selective 11b-

HSD1 inhibitor, AZD4017, twice daily for 12 weeks,

compared with a matched placebo. Trial dosing was

added to existing therapy for IIH; other drugs were

maintained at a fixed dose throughout the study. Patients

with IIH are typically informed about the importance of

weight loss to treat their IIH as part of routine standard

of care at diagnosis; however, they were not treated with

an additional weight management intervention during this

trial.

Assessments

Participants completed the follow-up assessments at 1, 2,

3, 4, 6, 8, 10, 12 and 16 weeks (Fig. 1A).
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Clinical assessments

The primary outcome for clinical efficacy was the difference

in ICP between AZD4017 and placebo, as measured by

lumbar puncture at 12 weeks. Secondary outcomes included

IIH symptoms, visual function [visual acuity measured using

log of the minimum angle of resolution, perimetric mean

deviation (PMD) using Humphrey 24-2 central threshold

automated perimetry and contrast sensitivity assessed by

MARs charts; Mars Perceptrix, USA], papilledema, head-

ache-associated disability and anthropometric measures.

Papilledema was evaluated using spectral domain optical

coherence tomography (Spectralis, Heidelberg Engineering)

to quantify the peripapillary retinal nerve fibre layer

(RNFL) average and maximal values. Papilledema was

graded from fundal photographs by three masked neuro-

ophthalmologists using the Frisen classification (0 denotes

no papilledema to grade 5 severest papilledema) (Frisen,

1982). Headache was evaluated through the headache im-

pact test-6 disability questionnaire, headache severity (verbal

rating scores 0–10), frequency (days per month), duration

and analgesic use (days per month) (Bayliss et al., 2003).

Pill counting at each visit determined drug compliance.

In the original grant application and early versions of the

protocol, the primary outcome measure was stated as the

change in ICP between baseline and 12 weeks. Following

adoption of the study by the Birmingham Clinical Trials

Unit, the primary outcome was changed to ICP at 12

weeks, with adjustment for baseline ICP in the analysis.

This change was made blind to any data analysis.

Safety and tolerability

Adverse events and safety bloods were monitored (time-

line Fig. 1A) including renal function (urea, creatinine

and electrolytes), liver function (aspartate transaminase,

alanine transferase, bilirubin, alkaline phosphatase,

gamma-glutamyl transferase), thyroid function (thyroid-

stimulating hormone, free thyroxine) and creatine kinase.

Hypothalamic pituitary adrenal axis activity was moni-

tored (cortisol, adrenocorticotropic hormone, dehydroe-

piandrosterone sulphate, testosterone, androstenedione,

follicle-stimulating hormone, luteinizing hormone, oestra-

diol and progesterone).

Stopping criteria for the trial would occur if more than

one participant met Hy’s law criteria or 10% or more

had bilirubin levels over two times the upper limit of

normal or alanine transaminase and/or aspartate trans-

aminase over five times the upper limit of normal for 7

days, and no other cause for the liver dysfunction could

be identified (Markey et al., 2017).

Glucocorticoid and AZD4017 blood

and cerebrospinal fluid levels

Samples were collected and stored at �80�C. Cortisol

and cortisone levels in serum and CSF were measured by

liquid chromatography–tandem mass spectrometry (LC–

MS/MS) at the University of Birmingham, as previously

described (Hassan-Smith et al., 2015; Long et al., 2016).

Plasma and CSF AZD4017 levels were quantified by an

external laboratory (Alderley Analytical, Knutsford, UK).

In vivo systemic 11�-hydroxysteroid
dehydrogenase activity

Global 11b-HSD1 activity was evaluated through the quanti-

fication of 24-hour urinary glucocorticoid metabolites, by

LC–MS/MS (Sagmeister et al., 2018). 11b-HSD1 activity

Figure 1 Participant visits (A) and CONSORT diagram (B). GC ¼ glucocorticoids.
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was inferred from the ratio of (5a-tetrahydrocortisol þ tetra-

hydrocortisol):tetrahydrocortisone [(5a-tetrahydrocortisol þ
tetrahydrocortisol):tetrahydrocortisone] alongside a stable

ratio of total urinary cortisol (F):total urinary cortisone (E)

reflecting 11b-HSD2 activity (Tomlinson and Stewart, 2001).

In vivo hepatic 11�-hydroxysteroid
dehydrogenase activity

Inhibition of hepatic 11b-HSD1 activity was informed by

measuring first-pass metabolism of 10 mg of oral prednis-

one to prednisolone. Serum prednisone and prednisolone

were measured every 20 minutes over 4 hours using LC–

MS/MS (Richards et al., 2012; Hassan-Smith et al.,
2015).

Ex vivo adipose 11�-hydroxysteroid
dehydrogenase activity

Subcutaneous adipose biopsies (n ¼ 11 paired samples

from baseline and 12 weeks, weight 100–150 mg in trip-

licate) were incubated in media (Dulbecco’s Modified

Eagle’s Medium/Nutrient Mixture F-12; ThermoFisher,

Rugby, UK) at room temperature with 100 nM cortisone

(Sigma-Aldrich, Dorset, UK), with three media controls

(without adipose) for 24 hours. Steroid conversion was

quantified using LC–MS/MS (Juhlen et al., 2015; Mooij

et al., 2015).

In vitro adipose 11�-hydroxysteroid
dehydrogenase inhibition by
AZD4017

Subcutaneous and omental adipose explants (1–2 g in

triplicate) were obtained from patients with IIH under-

going bariatric surgery. Samples were incubated with

2000, 200 or 20 nM of AZD4017 and 100 nM of corti-

sone alongside three controls (without AZD4017) for 24

hours. Steroid conversion was quantified using LC–MS/

MS (Juhlen et al., 2015; Mooij et al., 2015).

Statistical analysis

Analysis of the clinical data was based on the full ana-

lysis set according to the statistical analysis plan

(Supplementary material). Analysis was conducted using

intention-to-treat with data from all available randomized

participants used. The primary comparison was between

AZD4017 versus placebo at 12 weeks. The majority of

data was continuous, so groups were compared using lin-

ear regression models with baseline measurements

included as a covariate in the model. IIH symptom data

were binary and were analysed using log-binomial models

with baseline symptom included as a covariate in the

model. The primary analysis of visual data included data

from both eyes, using a linear mixed model with partici-

pant included as a random effect. We also analysed data

from the most affected eye at baseline as defined by

PMD (Friedman et al., 2014). Statistical significance was

set at P < 0.05, with no adjustment for multiple compar-

isons made. Clinical data were analysed using SAS (ver-

sion 9.4) and STATA (version 14).

Analysis of laboratory data was performed using SPSS

(version 24; IBM, New York, NY, USA). All laboratory

data were continuous. The primary comparison between

groups used an unpaired t-test for normally distributed

data (Mann–Whitney U test for non-parametric data).

For within-group comparisons (e.g. comparing baseline

with 12-week data in one group), either the paired t-test

or Wilcoxon signed-rank test was used for parametric or

non-parametric data, respectively. We reported mean and

standard deviation for parametric data (medians and

ranges for non-parametric data).

Sample size

To detect a difference between groups of 14% in ICP

(assuming a standard deviation of 10% for ICP) with

90% power and two-sided alpha ¼ 0.05, required 12

participants per group. Allowing for 20% drop out, we

aimed to recruit 30 participants.

Data availability

The trial is registered at Clinicaltrials.gov NCT02017444;

European Clinical Trials Database (EudraCT Number:

2013-003643-31). The data that support the findings of

this study are available from the corresponding author,

upon reasonable request.

Results
A total of 31 participants were recruited: 17 participants

were randomized to AZD4017 and 14 participants were

randomized to placebo (Fig. 1B). Baseline characteristics rep-

resent the cohort of patients with IIH with active disease

recruited (Table 1). Baseline characteristics were not signifi-

cantly different between trials arms, although mean deviation

differed between groups (AZD4017: �3.4 db versus placebo:

6.1 db; P ¼ 0.077). Acetazolamide was continued at a stable

dose in 32% of participants (balanced between the trial arms;

Table 1) and no other pharmacological IIH treatments were

taken by the trial cohort.

Clinical outcomes

Primary clinical outcome

At 12 weeks, the mean ICP was 29.7 cmH2O (SD ¼ 5.2) in

the AZD4017 group compared with 31.3 cmH2O (SD ¼
6.7) in the placebo group [adjusted mean difference: �2.8

cmH2O, 95% confidence interval (CI): �7.1 to 1.5; P ¼ 0.2;

Fig. 2A]. An exploratory analysis assessed the mean change

in ICP within each group. ICP decreased from 33.7 (SD ¼
6.3) at baseline to 29.7 cmH2O (SD ¼ 5.2) at 12 weeks in

Idiopathic intracranial hypertension drug trial BRAIN COMMUNICATIONS 2020: Page 5 of 12 | 5



the AZD4017 group [mean change: �4.3 cmH2O (SD ¼
5.7); P ¼ 0.009] and from 32.7 (SD ¼ 4.8) to 31.3 cmH2O

(SD ¼ 6.7) in the placebo group [mean change: �0.3

cmH2O (SD ¼ 5.9); P ¼ 0.8; Fig. 2B and C].

Secondary clinical outcomes

At Weeks 12 and 16, there were no statistically signifi-

cant differences between the two treatment groups in IIH

symptoms (Supplementary Table 2). At 12 and 16 weeks,

the Humphrey Visual Field PMD (worst eye) was not sig-

nificantly different between groups (adjusted mean differ-

ence at 12 weeks: 0.3 dB, 95% CI: �2.0 to 2.7, P ¼
0.8; Fig. 2D–F, Table 2 and Supplementary Table 3).

However, within-group analysis showed that the PMD

improved from �6.1 dB (SD ¼ 5.4) at baseline to �3.4

dB (SD ¼ 3.2) [mean change 2.7 dB (SD ¼ 4.3), P ¼
0.04] at 12 weeks in the AZD4017 group and from

�3.4 dB (SD ¼ 6.8) to �2.2 dB (SD ¼ 3.1) [mean

change 0.3 dB (SD ¼ 6.0), P ¼ 1.0] in the placebo

group. There were also no statistically significant differen-

ces between groups at either 12 or 16 weeks in visual

acuity, contrast sensitivity, optical coherence tomography

average and maximal retinal nerve fibre layer [Table 2;

Fig. 2G–I (maximum retinal nerve fibre layer) and J–L

(average retinal nerve fibre layer) and Supplementary

Table 3]. At 12 weeks, the mean Frisen grade in the

worst eye was 1.56 (SD ¼ 0.96) in the AZD4017 group

and 2.25 (SD ¼ 0.87) in the placebo group (adjusted

mean difference: �0.7, 95% CI: �1.4 to 0.3; P ¼ 0.06).

Data from both eyes were also analysed but yielded

equivalent results to that of the worst eye.

All headache outcomes were not statistically significant-

ly different between AZD4017 and placebo at Weeks 12

or 16 (Supplementary Table 4). There were also no stat-

istically significant differences in any of the anthropomet-

ric outcomes (body mass index, waist:hip ratio).

Specifically, the mean difference in body mass index at

12 weeks between arms was 0.4 kg/m2 (95% CI: �0.6 to

1.4). Both trial arms saw a minimal increase in weight:

AZD4017 group increased by 1.21 kg (95% CI: �0.47

to 2.89) and the placebo group increased by 0.04 kg

(95% CI: �1.88 to 1.96). The body mass index change

also saw a small increase in both groups: AZD4017

group by 0.6 kg/m2 (95% CI: �0.2 to 1.3) and placebo

group by 0.2 kg/m2 (95% CI: �0.5 to 0.8).

Safety and tolerability

Study medication was well tolerated with participants in

both arms taking on average 98% of the total 168

Table 1 Baseline characteristics and ophthalmic measurements

Placebo (n 5 14) AZD4017 (n 5 17) Total

(n 5 31)

Age, years (SD) 32.4 (8.0) 30.1 (5.9) 31.2 (6.9)

Ethnicity, n (%)

White British 13 (93) 16 (94) 29 (94)

Asian/Asian British—Pakistani 0 (0) 1 (6) 1 (3)

Asian/Asian British—other Asians 1 (7) 0 (0) 1 (3)

Number on acetazolamide (%) 4 (29) 6 (35) 10 (32)

Opening LP pressure, cmH2O (SD) 32.7 (4.8) 33.7 (6.3) 33.3 (5.6)

Weight, kg (SD) 108.4 (42.3) 97.9 (21.3) 102.6 (32.3)

BMI, weight (kg)/height (m2) (SD) 41.2 (16.6) 37.3 (7.2) 39.2 (12.6)

HIT-6 score (SD) 63.4 (8.1) 63.8 (8.2) 63.6 (8.0)

IIH symptoms, n (%)

Headache 14 (100) 16 (94) 30 (97)

Visual loss 8 (57) 4 (24) 12 (39)

Pulsatile tinnitus 13 (93) 12 (71) 25 (81)

Diplopia 5 (36) 7 (41) 12 (39)

Transient visual obscurations 6 (43) 6 (35) 12 (39)

PMD, dB (SD) �3.4 (6.8) �6.1 (5.4) �4.8 (6.1)

Log visual acuity (SD) 0.13 (0.22) 0.08 (0.23) 0.10 (0.22)

Log contrast sensitivity N ¼ 12 N ¼ 13 N ¼ 25

1.63 (0.16) 1.63 (0.22) 1.63 (0.19)

OCT, thickness in lm (SD) N ¼ 10 N ¼ 17 N ¼ 27

Average retinal nerve fibre layer 158.4 (83.0) 152.0 (68.7) 154.4 (72.8)

Maximum retinal nerve fibre 290.0 (102.4) 320.2 (117.2) 309.6 (110.4)

Frisen grading, n (%) N ¼ 11 N ¼ 16 N ¼ 27

1 2 (18) 4 (25) 6 (22)

2 5 (45) 9 (56) 14 (52)

3 3 (27) 0 (0) 3 (11)

4 1 (9) 2 (13) 3 (11)

5 0 (0) 1 (6) 1 (4)

Visual data are from the worst eye only. BMI ¼ body mass index; HIT-6 ¼ headache impact test-6; LP ¼ lumbar puncture; OCT ¼optical coherence tomography; SD ¼ standard

deviation.
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study medication doses [mean doses taken were 164

(range 146–168) and 165 (range 158–168) in the

AZD4017 and placebo groups, respectively]. There were

no participant withdrawals due to adverse effects. Nine

adverse events (in six participants) were deemed related

to AZD4017, none were serious and three were due to

non-clinically relevant fluctuations in serum cortisol.

Adverse events are shown in Supplementary Table 5.

One serious adverse event was reported in the placebo

arm and deemed unrelated (fulminant deterioration in

IIH necessitating CSF shunting 1 day post-

randomization).

Figure 2 Clinical outcomes following treatment with AZD4017 and placebo for 12 weeks and then 4 weeks after stopping

treatment. (A) Absolute LP pressure. (B) Change in LP pressure. (C) Percentage of patients with better, same or worse LP pressure at 12

weeks. (D) Absolute visual field mean deviation (dB). (E) Change in visual field mean deviation. (F) Percentage of patients with better, same or

worse visual field mean deviation at 12 weeks. (G) Absolute maximum OCT RNFL height (mm). (H) Change in maximum OCT RNFL height. (I)

Percentage of patients with better, same or worse maximum OCT RNFL height at 12 weeks. (J) Average OCT RNFL height (mm). (K) Change in

average OCT RNFL height. (L) Number of patients with better, same or worse average OCT RNFL height at 12 weeks. The number of OCT

scans performed varied during the conduct of the trial due to patients declining this aspect of the protocol and due to times when the scanner

was not operating. Data are presented as mean 6 95% confidence index. *<0.05, **<0.01. LP ¼ lumbar puncture, OCT ¼optical coherence

tomography, RNFL ¼ retinal nerve fibre layer
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No differences were noted between treatment groups

for the safety blood tests (Supplementary Table 6). As

expected, there was a rise in the hypothalamic pituitary

adrenal stimulatory hormone, adrenocorticotropic hor-

mone, over 12 weeks in the AZD4017 group (mean dif-

ference at 12 weeks: 12.36 ng/l, 95% CI: �0.03 to

24.74). There was no difference in serum cortisol, testos-

terone or androstenedione, although serum dehydroepian-

drosterone sulphate, a marker of adrenal androgen

production, was higher at 12 weeks in the AZD4017

group (mean difference at 12 weeks: 5.44 nmol/l, 95%

CI: 1.09–9.79); levels returned to normal 4 weeks after

treatment cessation (Week 16).

In vivo assessments

Blood and cerebrospinal fluid levels of AZD4017 and

glucocorticoids

AZD4017 concentrations were detected in the serum after

1 week of treatment and sustained at Week 12 (n ¼ 6).

The presence of AZD4017 in the CSF was 0.5% that of

the serum (Supplementary Table 7). No AZD4017 was

detected in the placebo group at any time point.

Serum and CSF cortisol and cortisone were examined

in the placebo and AZD4017 groups at baseline and at

12 weeks. There was no difference in the serum cortisol:-

cortisone ratio at baseline; however, the ratio fell signifi-

cantly in the AZD4017 group between baseline and 12

weeks (P ¼ 0.0083), while it did not in the placebo

group, and was significantly lower in the AZD4017

group than in the placebo group at 12 weeks (P ¼
0.0125), indicating inhibition of 11b-HSD1 activity

(Fig. 3A). Similarly, the CSF cortisol:cortisone ratio did

not differ between arms at baseline; however, at Week

12, there was a significant decrease in the CSF cortisol:-

cortisone in the AZD4017 group compared with placebo

(P ¼ 0.002) and the AZD4017 group between baseline

and 12 weeks (P ¼ 0.03) (Fig. 3B), implying that the sys-

temic inhibition of 11b-HSD1 activity can regulate CSF

glucocorticoid exposure. Importantly, in the AZD4017

group, changes between baseline and 12 weeks (n ¼ 15

with paired data) in both the serum cortisol and the cor-

tisol:cortisone ratio significantly correlated with change in

lumbar puncture pressure (R ¼ 0.65, P ¼ 0.01 and R ¼

0.70, P ¼ 0.005, respectively), while, as expected,

changes in the cortisone levels did not (Fig. 3C–E). There

was no correlation between body mass index and the

serum cortisol or cortisol:cortisone ratio. In the small

subgroup (n ¼ 6) in which changes in CSF glucocorti-

coids were measured, we did not identify a significant

correlation with changes in lumbar puncture pressure.

In vivo systemic 11�-hydroxysteroid dehydrogenase

activity

The urinary (5a-tetrahydrocortisol þtetrahydrocortisol):

tetrahydrocortisone glucocorticoid metabolite ratio reflect-

ive of systemic 11b-HSD1 activity was significantly

reduced in AZD4017 versus placebo groups at Week 1

(0.16 6 0.04 versus 0.90 6 0.36, P < 0.0001) and

Week 12 (0.27 6 0.29 versus 0.90 6 0.28; P < 0.0001).

In contrast, the ratios did not differ between the two

treatment groups at baseline (P ¼ 0.6) and 4 weeks after

the end of treatment (Week 16, P ¼ 0.8). 11b-HSD2 ac-

tivity as assessed by urinary cortisol over cortisone

remained unchanged and similar in both groups through-

out the 12 weeks of treatment (P ¼ 0.6). These data

imply that AZD4017 was effective at inhibiting 11b-

HSD1 (Fig. 3C). No correlation was found between the

change in (5a-tetrahydrocortisol þtetrahydrocortisol):tet-

rahydrocortisone and ICP (R ¼ 0.1; P ¼ 0.7) or PMD

(R ¼ 0.2; P ¼ 0.4).

Hepatic 11�-hydroxysteroid dehydrogenase activity

The placebo group had robust capacity to generate pred-

nisolone following oral prednisone at both baseline and

after 12 weeks. The baseline prednisolone generation

curve for the AZD4017 group was indistinguishable from

the placebo curve; however, at 12 weeks, the AZD4017

group was essentially unable to generate prednisolone

(Fig. 3D and E), indicating effective inhibition of hepatic

11b-HSD1 activity. Area under the curve analysis of the

mean time points at 12 weeks showed significantly

impaired prednisolone generating capacity for AZD4017

versus placebo (228 6 99 versus 1738 6 142; P< 0.0001),

an 85.9% reduction (P< 0.0001) in overall prednisolone

generating capacity after 12 weeks (Fig. 3D and E). There

was no correlation between the change in the area under

Table 2 Visual function and optic nerve head at baseline and Week 12

Worse eye Baseline, mean (SD) Week 12, mean (SD) Adjusted mean difference at

12 weeks (95% CI)

P-value

Placebo AZD4017 Placebo AZD4017

Visual acuity LogMAR 0.13 (0.22) 0.08 (0.23) 0.09 (0.18) 0.06 (0.15) �0.03 (�0.12 to 0.07) 0.5

Contrast sensitivity 1.63 (0.16) 1.63 (0.22) 1.66 (0.12) 1.65 (0.15) �0.02 (�0.15 to 0.11) 0.7

PMD �3.4 (6.8) �6.1 (5.4) �2.2 (3.1) �3.4 (3.2) 0.3 (�2.0 to 2.7) 0.8

OCT RNFL average (lm) 158.4 (83.0) 152.0 (68.7) 143.2 (78.7) 139.7 (56.3) 0.1 (�34.0 to 34.1) 1.0

OCT maximal RNFL (lm) 290.0 (102.4) 320.2 (117.2) 277.0 (133.1) 305.5 (122.3) �4.5 (�68.1 to 59.1) 0.9

Average Frisen grading 2.27 (0.90) 2.19 (1.17) 2.25 (0.87) 1.56 (0.96) �0.7 (�1.4 to 0.03) 0.06

All measures shown in the table are of worst eye. Negative values in the adjusted mean difference between treatment arms favour AZD4017. CI ¼ confidence interval; LogMAR ¼
log of the minimum angle of resolution; OCT ¼optical coherence tomography; RNFL ¼ retinal nerve fibre layer.
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the curve for prednisolone and ICP (R¼ 0.1; P¼ 0.8) or

PMD (R¼ 0.4; P¼ 0.2).

Adipose 11�-hydroxysteroid dehydrogenase activity

While AZD4017 effectively inhibited hepatic 11b-HSD1,

we were unable to show impaired capacity to generate

cortisol from cortisone in explanted subcutaneous adipose

tissue biopsies. At baseline and following 12 weeks of

oral AZD4017 (n¼ 5), there was no significant change

in total cortisol versus placebo (9.0 6 5.6 versus

12.4 6 4.9 nmol; P¼ 0.3) or percentage conversion of cor-

tisone to cortisol (23 6 14 versus 27 6 18%; P> 0.99)

and no change in those treated with placebo (n¼ 6;

Fig. 3F). However, AZD4017 was able to significantly in-

hibit 11b-HSD1 activity when added to ex vivo adipose

explants from subcutaneous and omental depots. The

20 nM AZD4017 significantly impaired the conversion of

cortisone to cortisol (>70% versus control), and 200 nM

onwards was sufficient to effectively block cortisol gener-

ation, particularly in the subcutaneous depot (Fig. 3G

and H).

Discussion
We report the first phase II RCT assessing an 11b-HSD1

inhibitor AZD4017 for the treatment of IIH. We have

shown some possible clinical benefit for AZD4017 and

have also shown that it was well tolerated and safe. We

found evidence for effective in vivo 11b-HSD1 inhibition.

Our primary hypothesis stated that 11b-HSD1 inhib-

ition in patients with IIH would reduce CSF secretion

and lower ICP while being safe and tolerable following

Figure 3 In vivo and ex vivo analyses of 11b-HSD activity after 12 weeks treatment with either AZD4017 or placebo. (A) Serum

cortisol:cortisone ratio. (B) CSF cortisol:cortisone ratio. (C) Urinary 11b-HSD1 activity [(5a-THF þ THF):THE] at Weeks 0, 1, 12 and 16.

(D) Change in prednisolone AUC (see E). (E) Hepatic 11b-HSD1 activity (mean blood prednisolone concentration after conversion from

prednisone) over 4 hours. (F) Subcutaneous adipose 11b-HSD1 activity (percentage change from cortisone to cortisol) ex vivo. (G) Ex vivo

subcutaneous adipose. (H) Omental adipose 11b-HSD1 activity (cortisol production from cortisone) after 24 hours incubation with 0, 20, 200

or 2000 nM of AZD4017 in vitro. Data presented as mean 6 SD. *P < 0.05, **P < 0.01, 0.001, ****P < 0.0001. AUC ¼ area under the curve; 5a-

THF ¼ 5a-tetrahydrocortisol; THE ¼ tetrahydrocortisone; THF ¼ tetrahydrocortisol.
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12 weeks of treatment. ICP was the primary clinical out-

come measure, representing the hallmark of the disease

driving clinical sequelae. At 12 weeks, although ICP was

lower in the AZD4017 group compared with placebo,

the difference between groups was not statistically signifi-

cant. Exploratory analyses of the mean change within

groups found a significant improvement in ICP in the

AZD4017 group between baseline and 12 weeks but not

in the placebo group. In support of our hypothesis,

among the AZD4017 group, the change in serum cortisol

and cortisol:cortisone ratio over the treatment period, a

marker of 11b-HSD1 inhibition, correlated significantly

with reduction in ICP. Of note, a minimal clinically im-

portant change in ICP in IIH has not been determined in

IIH and establishing one would be useful for future trials.

In addition, previous trials have noted that ICP reduction

below the cut-off of 25 cmH2O is not universally

required to translate into resolution of IIH clinical fea-

tures (Sinclair et al., 2010a).

The visual field perimetric assessment is another clinic-

ally meaningful measure and has been selected as the pri-

mary outcome measures in previous IIH trials. We found

no difference between groups in PMD at 12 weeks; how-

ever, there was significant improvement over time in the

AZD4017 arm but not in the placebo arm. This may re-

flect the pragmatic recruitment of all degrees of PMD at

enrolment (including those with severe visual loss with

limited capacity to improve), while other trials have

restricted enrolment to a selected cohort (e.g. �2 to

�5 dB) (NORDIC Idiopathic Intracranial Hypertension

Study Group Writing Committee et al., 2014). In add-

ition, in those with a PMD near normal at baseline (des-

pite papilloedema), there may be a floor effect, where no

further improvement is possible in the PMD in these indi-

viduals. In addition, this small trial was not powered to

determine significance in the secondary outcome

measures.

Headache is a key disabling feature in IIH (Mulla

et al., 2015). We did not detect differences between the

groups in any of the headache assessments at 12 weeks,

although data from the patient-completed headache im-

pact test-6 favoured the AZD4017 group. Evaluating the

effect of AZD4017 on headache measures over a longer

treatment duration would be of interest.

Previous trials showed that 11b-HSD1 inhibition leads

to adaptive changes in hypothalamic pituitary adrenal

stimulatory hormone adrenocorticotropic hormone and

the adrenal androgen precursor dehydroepiandrosterone

sulphate. Our data support these findings, but with no

significant change in downstream effector hormones (cor-

tisol and testosterone).

In vivo evaluation of our patients demonstrated that

AZD4017 was a highly effective systemic and hepatic

11b-HSD1 inhibitor, in line with previous studies using

11b-HSD1 inhibitors in humans (Courtney et al., 2008;

Schwab et al., 2017). Systemic efficacy may modify

metabolic aspects of IIH with indirect benefits on ICP

(Hornby et al., 2018).

While AZD4017 effectively inhibited 11b-HSD1 when

applied to subcutaneous and omental adipose tissue

explants, we were unable to prove inhibition in vivo and

propose that with this experimental design, 11b-HSD1

activity recovers over the assay period once removed

from AZD4017, a reversible competitive inhibitor.

Blood–brain barrier AZD4017 penetrance was low,

with levels in the CSF 0.5% those of plasma levels, but

was associated with reduced CSF cortisol:cortisone ratio

suggesting that 11b-HSD1 may contribute to cortisol

availability in the CSF.

Limitations

We were unable to directly evaluate 11b-HSD1 inhibition

at the choroid plexus, the tissue responsible for CSF se-

cretion; hence, we cannot be certain of inhibition by

11B-HSD1 at the target tissue. We have evaluated the ef-

ficacy of other IIH drugs using rodent ICP monitoring

models (Botfield et al., 2017; Scotton et al., 2019), but

AZD4017 is only effective in humans and primates, thus

limiting our ability to evaluate its action in rodent mod-

els. The trial duration was likely too short, with insuffi-

cient time to detect clinical efficacy. A duration of

12 weeks was chosen for the evaluation of safety and tol-

erability and represented the longest duration of dosing

to date with AZD4017. This may not have been suffi-

cient for the meaningful evaluation of clinical outcomes

with other IIH RCTs evaluating drugs over a 6-month

period (Committee et al., 2014). The enrolment criteria

for the study were deliberately broad allowing inclusion

of a spectrum of patients with IIH with active disease

and ensuring the generalizability of results; however, this

did not allow evaluation in disease subgroups such as

those with mild visual loss versus those with severe irre-

versible visual loss. Finally, the sample size (31 partici-

pants) is small, which may have reduced our power and

limited meaningful evaluation of clinical measures and

the trial was not designed to establish significant changes

in the secondary clinical outcome measures.

Conclusion
This is the first phase II study evaluating the novel

pharmacological therapy AZD4017 in IIH. We demon-

strate safety, tolerability and provide strong in vivo evi-

dence for effective 11b-HSD1 inhibition. There was a

significant reduction in ICP in the AZD4017 and not the

placebo group over the treatment duration (exploratory

within-group analysis) and reduction in ICP significantly

correlated with reduction in serum cortisol:cortisone

ratio; however, the primary analysis evaluating the differ-

ence between groups at 12 weeks did not reach statistical

significance. The data suggest that 11b-HSD1 inhibition
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may have utility for reducing the effects and consequen-

ces of raised ICP in patients with IIH. Further evaluation

of these therapeutic strategies in this disabling disease, for

which few useful medical options exist, would be

worthwhile.

Supplementary material
Supplementary material is available at Brain

Communications online.
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