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José David Machado

Correspondence

david.machado@ull.edu.es

In brief

GLP-1R regulates exocytosis in adrenal

chromaffin cells. González-Santana et al.
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SUMMARY

Agonists for glucagon-like-peptide-1 receptor (GLP-1R) are currently used for the treatment of type 2 dia-

betes and obesity. Their benefits have been centered on pancreas and hypothalamus, but their roles in other

organ systems are not well understood. We studied the action of GLP-1R on secretions of adrenal medulla.

Exendin-4, a synthetic analog of GLP-1, increases the synthesis and the release of catecholamines (CAs) by

increasing cyclic AMP (cAMP) production, without apparent participation of cAMP-regulated guanine nucle-

otide exchange factor (Epac). Exendin-4, when incubated for 24 h, increases CA synthesis by promoting the

activation of tyrosine hydroxylase. Short incubation (20min) increases the quantum size of exocytotic events

by switching exocytosis from partial to full fusion. Our results give a strong support to the role of GLP-1 in the

fine control of exocytosis.

INTRODUCTION

Adrenal catecholamines (CAs) actively participate in the adap-

tive mechanisms used to restore body homeostasis in the

body, especially in response to stress conditions such as hypo-

glycemia, cold, hypotension or fear (Goldstein, 2010). Like all

neuroendocrine cells, chromaffin cells exert their control of

body functions through the secretion of stored transmitters

into the blood stream using regulated exocytosis. Stored within

their large dense core vesicles (also called chromaffin granules)

is a cocktail of small molecules, such as adrenaline, noradrena-

line, and ATP, as well as bioactive peptides, granins, and en-

kephalins. Because of the neural origin of chromaffin cells, the

nature of their secretory products, and the basic mechanisms

of regulating exocytosis, chromaffin cells have been a widely

used model for the study of the molecules that control vesicle

fusion (Jahn et al., 2003; Neher, 2018; Neher and Marty, 1982;

Wightman et al., 1991). As the amount of CA stored in the adrenal

medulla is enough to kill an individual, the processes controlling

their secretion must by tightly regulated. Classically, the main

mechanism considered for this regulation is by receptor-oper-

ated mechanisms leading to variation in the number of secretory

vesicles that undergo exocytosis, either through modulation of

the number of ‘‘readily releasable’’ vesicles available to respond

to a stimulus and/or the calcium signals that regulate vesicle

priming and fusion (Bauer et al., 2007; Gillis et al., 1996; Neher

and Sakaba, 2008; Powell et al., 2000; Yim et al., 2018). Howev-

er, because the amount of secretory products released by each

quantal fusion (partial versus full fusion) and its kinetics are sub-

ject to regulation (Álvarez de Toledo et al., 2018; Shin et al.,

2018), this raises the possibility that even this late stage of

exocytosis may be modulated by receptors.

The insulinotropic hormone glucagon-like peptide-1 (7-36)-

amide (GLP-1) has potent effects on glucose-dependent insulin

secretion, insulin gene expression, and pancreatic islet cell for-

mation (Baggio and Drucker, 2007; Doyle and Egan, 2007; M€uller

et al., 2019). Both peptide agonists of the GLP-1 receptor (GLP-

1R) (e.g., exendin-4 [Ex-4]) and inhibitors of GLP-1 degradation

(e.g., DPP-4) are used clinically for this purpose in diabetes treat-

ment. Since adrenaline plays a key role in counter-regulation and

recovery from hypoglycemia (Verberne et al., 2016; Vollmer

et al., 1997), it seems plausible that GLP-1R in chromaffin cells

could be involved in the fine regulation of glycaemia, especially

under stressed conditions.

In this study, we have addressed the question of whether the

incretin receptor GLP-1R regulates adrenal chromaffin secretory

responses by examining the effects on CA content, secretion,

and kinetics of single exocytotic events.

RESULTS

The GLP-1 incretin receptor is expressed in chromaffin

cells

The expression of GLP-1R mRNA in bovine chromaffin cells was

verified by RT-PCR (Figure S1) and its localization determined by

immunocytochemistry and confocal microscopy. Chromaffin

cells were positively identified by labelingwith antibodies against

tyrosine hydroxylase (TH); over 95% of cells in our cultures were

labeled as TH positive. In unpermeabilized, intact cells, GLP-

1R immunoreactivity was restricted to the plasma membrane
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(Figure S2A), whereas in permeabilized cells, fluorescence was

prominent in subcellular compartments exhibiting a punctuated

distribution (Figure S2B). Similar results have been described

where the receptor is mainly located in the plasma membrane

and in intracellular compartments visualized a punctuated distri-

bution that co-localizes with caveolin-1 (Jones et al., 2018; Syme

et al., 2006; Thompson and Kanamarlapudi, 2015). Conversely,

TH fluorescence appeared diffuse throughout the cell interior.

Western blotting of enriched plasma membrane fractions iso-

lated from PC12 shows two bands in the lane of GLP-1R (Fig-

ure S3). These have been described also in the Beta-TC-6 cell

line and correspond to different forms of GLP-1R (canonical

and glycosylated) (Zhou et al., 1999).’’

Ex-4 increases expression of TH and CA synthesis in

chromaffin cells

To test the effect of the activation of GLP-1R on CA synthesis, we

incubated chromaffin cells with Ex-4 (100 nM; for 1 and 24 h). Ex-4

is a high-affinity, potent agonist at GLP-1Rwhich is known to acti-

vate the full complexity of signaling observedwith GLP-1 but, with

the added benefit of being resistant to degradation (Fletcher et al.,

2016). As shown in Figure 1, after 24-h exposure to Ex-4, the total

CA content of chromaffin cells is significantly increased (Figures

1A and 2B). This increase occurred for both noradrenaline and

adrenaline (Figures 1C and 1D). By comparison, treatment with

Ex-4 for only 1 h did not increase total CA content, consistent

with a slower, possibly transcription-dependent signaling event

following GLP-1R, as has been reported in other cells expressing

the receptor (Sonoda et al., 2008). Because TH catalyzes the rate-

limiting step in CA biosynthesis and is known to be a highly regu-

lated enzyme (Dickson andBriggs, 2013) whose transcriptionmay

be regulated by cAMP responsive element binding protein (CREB/

(Piech-Dumas and Tank, 1999), a downstream target of GLP-1R-

mediated cyclic AMP (cAMP) signals, we tested whether the in-

crease in CA after GLP-1R activation was due to an increase in

the activity or amount of TH. Western blot analyses showed

increased expression of TH only after 24-h treatment with Ex-4

(Figures 1E and 1F). Taken together, the results indicate that pro-

longed GLP-1R activation in chromaffin cells increases CA

biosynthesis in both adrenergic and noradrenergic cells by

increasing TH gene expression.

Ex-4 enhances TH gene expression in PC12

In b cells, GLP-1R cAMP signaling increases proinsulin gene

transcription and subsequent insulin biosynthesis (Fletcher

et al., 2016), and since the TH promoter also contains response

elements to cAMP (Fader and Lewis, 1990), we measured the

effect of Ex-4 on transcription of the TH gene with a luciferase

reporter assay. PC12 cells were transfected with p50TH-Luc

(�272 / + 27) and GLP-1R-EGFP or EGFP and treated with

A B

C D

E F

G H

Figure 1. Ex-4 increases catecholamine (CA) biosynthesis and TH

expression in chromaffin cells

(A) Superimposed chromatograms showing the noradrenaline (NA), adrenaline

(A), andDHBA (internal standard) measured in untreated (dashed line) and cells

treated for 24 h with Ex-4 (solid line). Amine content in lysates was analyzed by

high-performance liquid chromatography (HPLC).

(B) Average total CA content in lysates from untreated cells and cells treated

with Ex-4 for 1 or 24 h, as indicated.

(C and D) Average adrenaline and noradrenaline content in the same lysates

described in (B).

(E) Representative western blot of TH expression carried out 0, 1 and 24 h after

treatment with Ex-4. Equal amounts of protein (21 mg/lane). Actin was used as

an internal loading control.

(F) Quantification of TH expression expressed as the TH/actin ratio from three

or four experiments.

(G) Ex-4 increases transcription of the gene for TH and dopamine content.

PC12 cells, transiently nucleofected with p50TH-Luc (�272/+27) and EGFP

(open bars) or GLP-1R-EGFP (filled bars), were treated for 12 h with Ex-4

(100 nM) and compared to untreated cells (control). Cell lysates were as-

sayed for firefly luciferase activity and normalized to protein concentration

as described in STAR Methods (n = 10 lysates of 1 3 106 cells per con-

dition).

(H) In parallel experiments, total dopamine content in EGFP- and GLP-1R-

EGFP-expressing cells was measured by HPLC (n = 7 lysates of 1 3 106 cells

per condition).

Data shown (B)–(D) are the means ± SEM for n = 6 replicates of 1.53 106 cells

per condition; *p < 0.05 (ANOVA; Dunnett’s multiple comparisons test). Data

presented in (G) and (H) are means ± SEM of two independent cell cultures;

*p < 0.05 and **p < 0.01 (ANOVA; Dunnett’s multiple comparisons test).
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100 nM Ex-4 for 12 h. As shown in Figure 1G, Ex-4 stimulated

transcription ~2-fold in PC12 expressing endogenous levels of

GLP-1R and ~3-fold when the receptor was overexpressed.

No significant differences were observed between untreated

cells regardless of receptor expression, confirming the effects

of Ex-4 were a consequence of GLP-1R activation.

To ascertain whether the increased TH expression correlated

with increased CA biosynthesis, we quantified the effects of Ex-4

on dopamine content in EGFP-transfected PC12 cells and cells

overexpressing GLP-1R-EGFP. Consistent with the observa-

tions made in chromaffin cells, 12-h treatment of PC12 cells

with Ex-4 increased dopamine (DA) biosynthesis (Figure 1H), in

line with the increased expression of the TH gene.

Single-cell amperometry reveals an increase in the

amount of CA released per vesicle in cells treated with

Ex-4

Cells were stimulated by pressure application of 5 mM BaCl2 for

5 s from a micropipette located ~40 mm from the cell (Figure 2A;

Baraibar et al., 2018). To avoid bias, measurements were made

on the same day using a calibrated carbon fiber electrode and

alternating between control cells and those treated with

100 nM Ex-4 for 20 min. We used this period of time in order to

discard the hypothesis that increases in Q size upon Ex-4-

treated cells is caused by newly synthesized CA.

Ex-4 induced an increase of secretion (Figure 2B) caused

mostly by enhance ~75% of the quantum CA release size (Q)

of the vesicles (Table 1). Conversely, the frequency of secretory

events, defined as the number of spikes per unit time, showed no

significant difference following treatment with Ex-4 (mean ±

SEM, 1.48 ± 0.3 [control] versus 1.69 ± 0.3 [Ex-4-treated cells];

p = 0.63, Student’s t test) (Figure 2C). Therefore, the ~35% in-

crease in total CA secretion recorded over 120 s after stimulation

was caused through the increase in quantum size.

Analysis of stimulus evoked amperometric spikes showed

further that acute exposure to Ex-4 significantly increases Imax,

Q, and apparent foot duration (Table 1). As Imax and Q are tightly

related parameters, we plotted Imax versus Q (Figure 2E) and

observed, as expected, a linear relationship. The analysis of

slopes shows a similar kinetics (slopes: 54 ± 1 [pA/pC; control]

versus 57 ± 3 [(pA/pC; Ex-4]; p = 0.3101), indicating that CA

secretion is similar in Ex-4-treated and untreated cells.

The increase in apparent foot duration observed when

Ex-4 is applied is directly related with the increase in

quantal size

These results again suggest that the increase in CA secreted

following activation of GLP-1R is caused by more CA being

released from each vesicle and not as a result of an increase in

the number of exocytotic events per stimuli.

A B

C D

Figure 2. Ex-4potentiates thesecretionofCA

(A) Typical amperometric recording fromacontrol cell

showing a characteristic firing pattern of exocytosis

after barium injection (red trace) and the cumulative

secretion obtained by integrating the amperometric

signal measured for 2 min, expressed as pico-Cou-

lombs (pC) (superimposed blue trace). Inset: repre-

sentative image showing the position of the carbon-

fiber electrode on the top of a single chromaffin cell

and the glass pipette used for secretagogue injection

(puffer) to the right of the cell. Secretion was elicited

by a 5-s pressure ejection of 5 mM Ba2+. After stim-

ulation, themicropipettewasmovedup1mmusing a

motorized micromanipulator to avoid any effects of

unwanted leakage. Scale bar, 15 mm. Parameters

obtained from each secretory spike: Imax, maximum

oxidation current; t1/2, spike width at the half-height;

Q, net CA charge;m, ascending slope of the spike.

(B) Bars show cumulative secretion pooled from

different cells obtained in the absence (n = 10) or

presence of 100 nM Ex-4 (n = 12) and 500 mM IBMX

(n = 10), 50 nMH-89 (n = 14), 100mM8-pCPT (n = 17),

500 mM IBMX (n = 13), or 50 nM H-89 (n = 7) as indi-

cated (all drugs were incubated for 20 min before

recording). Bars shownormalized secretion obtained

in the absence or presence of 100 nM Ex-4. Data are

mean± SEM; *p < 0.05 and**p < 0.01,Mann-Whitney

U test with the Bonferroni correction. Data are from

the same experiment summarized in Table 1.

(C) Spike frequency analysis of cells treatedwithEx-4

(black trace) and untreated cells (gray trace) Mean ±

SEM, 1.48± 0.3 versus 1.69± 0.3; p= 0.63, Student’s

t test.

(D) Spike amplitude (Imax) versus quantum size (Q) of

secretory spikes from cells treated with Ex-4 and

untreated cells (control) and linear fits (slopes: 54 ± 1

(control) versus 57 ± 3 (Ex-4); p = 0.3101.
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GLP-1R overexpression intensifies the effect of Ex-4

As a further verification to show that the effects of Ex-4 on

increasing CAs secretion in chromaffin cells is mediated by the

activation of GLP-1R, we next examined the impact of overex-

pressing the receptor on secretory responses. Bovine chro-

maffin cells were nucleofected with GLP-1R-EGFP plasmid.

Cells with overexpressed receptor can be distinguished because

of the fluorescence emitted by EGFP (Figure S4A). Using only the

fluorescent cells, single cell amperometry was used to compare

cells treated with 100 nM Ex-4 for 20 min with untreated cells.

Treatment with Ex-4 on cells overexpressing GLP-1R-EGFP

resulted in 38% increase in quantum size (see Figure S4, table,

Q), which is smaller than the increased quantum CA size

observed in cells treated with Ex-4 where GLP-1R was not over-

expressed (note the quantitative differences between controls

intact cells with those transfected by nucleofection in Table 1

and the table in Figure S4).

In agreement with results obtained from untransfected cells,

Ex-4 did not produce a significant increase in the frequency of

secretory events recorded in response to stimulation in cells

overexpressing the receptor (Figure S4C); however, the duration

of stimuli-evoked increases in spike frequency was notably

briefer in cells overexpressing the receptor compared with un-

transfected cells. Despite the lack of increases in the number

of stimulus-evoked secretory events (Figure S4), and in agree-

ment with results from untransfected cells, 20-min treatment

with Ex-4 again increased total CA secretion by 70% (142 pC

in control cells versus 243 pC in cells treated with Ex-4) (Fig-

ure S4B), consistent with an effect on quantum size.

Analysis of individual spike parameters in GLP-1R overex-

pressing cells, showed that Ex-4 resulted in increased Imax and

Q, with a non-significant decrease in t1/2 (see Figure S4, table).

Examining the relationship between Imax and Q further, showed

a change in slope (83 ± 3 (pA/pC; control) versus 101 ± 2 (pA/

pC; Ex-4); p = 0.002) indicating that Ex-4 increased the speed

of CA secretion from single vesicles (Figure S4D).

The increase in CA secretion is due to activation of the

intracellular pathway mediated by PKA

Canonical signaling by GLP-1R is predominantly mediated by

activation of G proteins and increases in cAMP; in b cells, where

the underlying signals generated by GLP-1 and Ex-4 have been

investigated, downstream activation of protein kinase A (PKA)

and cAMP-regulated guanine nucleotide exchange factor

(Epac) accounts for enhanced insulin synthesis and secretion

(Fletcher et al., 2016). To elucidate the intracellular pathways

that give rise to increased CA secretion from chromaffin cells,

we used single-cell amperometry to determine howCA secretion

was modified in response to drugs that interfere with cAMP

signaling. Incubation with the nonspecific phosphodiesterase in-

hibitor 3-isobutyl-1-methyl-xanthine (IBMX) to prevent cAMP

degradation and slightly increase basal cellular cAMP levels in

the absence of agonist does not induce an increase in CA secre-

tion in chromaffin cells (Machado et al., 2001); however, when

added together with 100 nM Ex-4 for 20 min, an increase CA

secretion was observed, which was significantly larger than

that observed with Ex-4 alone (Figure 2B). Moreover, this was

accompanied by increases in Imax and Q, consistent with an ef-

fect on quantum size (Table 2). Cell treatment with 50 nM H-

89, an inhibitor of the catalytic activity of PKA, co-incubated

for 20 min with 100 nM Ex-4 by contrast, ablated the increase

in total CA secretion caused by Ex-4 (Figure 2C) and decreased

the quantum CA size by ~36% (Table 2). Finally, incubation with

100 mM 8-pCPT (8-(4-chlorophenylthio) �20-O-methyladeno-

sine-30, 50-cyclic monophosphate acetyl methyl ester) to directly

activate the Epac pathway was found to have no significant

potentiating effect on CA secretion from chromaffin cells (Fig-

ure 2B; Table 2). When Ex-4 is added with 8-pCPT, no significant

increase in the quantal size was measured.

These data indicate that GLP-1R activation increases CA

secretion from chromaffin cells through the activation of a sec-

ond messenger pathway mediated by cAMP and PKA, without

the apparent involvement of the Epac pathway.

Ex-4 does not affect exocytosis or Ca2+ currents

measured by membrane capacitance

Although our amperometry experiments indicated that Ex-4 did

not increase the number of vesicles undergoing exocytosis in

response to a stimulus, we wanted to test this independently

by directly measuring vesicle fusion using membrane capaci-

tance (Cm) measurements. Cells were voltage clamped in the

whole-cell patch-clamp configuration, and exocytosis was

evoked with a train of 6 3 10 ms depolarizations followed by

4 3 100 ms depolarizations to distinguish between the immedi-

ately releasable vesicle pool and the readily and slowly releas-

able pools (Voets, 2000). The activation of GLP-1R with

100 nM Ex-4 did not significantly increase evoked exocytosis

measured in response to either the short or long depolarizations

(Figure S4). Moreover, the calcium currents measured using the

same protocol were also unaffected by Ex-4 (Figure S4). A lack of

effect of Ex-4 on calcium signaling was also confirmed using cal-

cium imaging (Figure S5), which shows that after nicotinic stim-

ulation, there is no significant contribution from intracellular cal-

cium stores (Mollard et al., 1995). We therefore concluded from

these experiments that the number of vesicles undergoing fusion

with the plasma membrane is not significantly higher in cells

Table 1. Amperometric spike characteristics are altered in chromaffin cells treated with Ex-4

Imax (pA) Q (pC) t1/2 (ms) m (pA/ms) N (cells) n (spikes) Foot (ms) n

Control 85.6 ± 11 1.2 ± 0.1 19.4 ± 2 18.8 ± 3 10 647 4.3 ± 0.2 628

Ex-4 126.4 ± 13* 2.1 ± 0.3* 15.1 ± 1 29.8 ± 3* 12 1166 4.9 ± 0.2** 1156

Change +47.7% +75% �22.2% +58.5%

This is a representative experiment from two carried out on independent cell cultures; recordings were performed by alternating between cells treated

with Ex-4 and control untreated cells. Data are expressed as means ± SEM in the units in parentheses. In all cases, *p < 0.05 (Mann-Whitney U test).
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treated with Ex-4, in agreement with the frequency analysis of

secretory events obtained with single-cell amperometry experi-

ments (Figure 2C).

CgA release is increased by GLP-1R activation

Results from the amperometry and Cm experiments suggest

that the effects of Ex-4 on CA secretion is not from modulation

of the number of vesicles undergoing fusion but rather the ki-

netics of fusion, allowing more CA to escape the vesicle. Chro-

mogranin A (CgA) is a key constituent of secretory granules in

chromaffin cells whose secretion may also be modified by

GLP-1Rs, especially if the modulation promotes full fusion of

vesicles. To test this idea, we developed a protocol to measure

CA andCgA secretion in parallel from chromaffin cells. CA secre-

tion was continuously recorded by on-line electrochemical

detection and the perfusate collected for dot blotting analysis.

Cells were stimulated with repeated 10-s pulses of 10 mM dime-

thyphenylpiperazinium (DMPP) applied at 5-min intervals. A

representative recording is shown in Figure 3A. This is the typical

time course of release with this protocol. When Ex-4 and IBMX

were added to the perfusion buffer (6th to 10th pulses), the

amount of CAs released significantly increased (Figure 3B).

Cell perfusion with Ex-4 and IBMX also dramatically increased

the amount CgA released (Figure 3D).

Ex-4 increases the release of CgA-EGFP from the

chromaffin granules

Since CgA is an 49-kDa protein, an increase in release could re-

sults from either an increase in the size or longevity of the fusion

pore or an enhancement of disaggregation of the granule matrix.

To explore further the effects of GLP-1R activation on exocy-

tosis, we used total internal reflection fluorescence microscopy

(TIRFM) to image single vesicle fusion events. Chromaffin cells

transfected with CgA-EGFP plasmid (for 24 h) were stimulated

with 10 mM DMPP. When granules containing CgA-EGFP fuse

with the membrane, the increase in vesicular pH results in an in-

crease in fluorescence intensity that persists while the release of

the granule content occurs (Abbineni et al., 2019; Dominguez

et al., 2014). For analysis purposes, and to synchronize all

measured fusion events, we set the time at the moment of

granule fusion at 0 s (Figure 4A). Analysis of all observed exocy-

totic events showed that almost half of the events presented as

partial release, whereas the other half represented full release in

control cells (53% of partial release versus 47% of full release;

Figure 4D). Partial-release events were those events where the

vesicle continues to fluoresce after the fusion (Figure 4B), indi-

cating that the granule released only part of its content. Full-

release events were those in which the fluorescence intensity

of the granule completely disappeared after fusion with the

plasmamembrane (Figure 4C). In cells treatedwith Ex-4, the pro-

portion of full-release events significantly increased to 71%

(Figure 4D).

DISCUSSION

The secretory response of adrenal medullary tissues must be

tightly controlled, since the large amounts of CA stored within

the chromaffin cells that make up the gland would be life threat-

ening if they were all suddenly released (Borges, 1997). The regu-

lation occurs at various levels, from activation of receptors result-

ing from splanchnic-mediated responses (nicotinic, muscarinic,

pituitary adenylate cyclase-activating polypeptide [PACAP], sub-

stance P, and vasoactive intestinal peptide [VIP]) (Carbone et al.,

2019) to those exerted by hormones, such as histamine, bradyki-

nin, and angiotensin II (Alvarez et al., 1997). Activation of G-pro-

tein-coupled receptors onchromaffincells in turnhasbeen shown

tomodulate channels, transporters, thecalciumsignals regulating

exocytosis, and priming of releasable vesicles to fine-tune CA

output to meet demand under different stress conditions (Aunis,

1998; Carbone et al., 2019). The existence of different degrees

of exocytosis, from ‘‘kiss-and-run’’ to full collapsing release, rep-

resents another important way to regulate the amount of vesicle

cargo liberated from each individual exocytotic event. Compari-

son of data from patch amperometry (Albillos et al., 1997; Monte-

sinos et al., 2008) and vesicle impact electrochemical cytometry

(Dunevall et al., 2017) with conventional amperometry indicates

that only 30%–40% of the CA cargoes are normally released on

single-event exocytosis (Montesinos et al., 2008). The regulation

of this latter process might involve structural mechanisms such

the dilation and duration of fusion pore as well as the association

of CAs with intravesicular components of the granule matrix (Ab-

bineni et al., 2019;Montesinoset al., 2008; Zhanget al., 2019). The

recent description indicating that the amount of CA released can

Table 2. Amperometry spike characteristics obtained in

chromaffin cells treated with IBMX, H-89, and 8-pCPT in the

presence or absence of Ex-4

Experiment Imax (pA) Q (pC) t1/2 (ms)

m

(pA/ms)

n

(cells)

Control 30.5 ± 3 1.3 ± 0.1 36.9 ± 3 6.2 ± 2 15

IBMX 22.0 ± 3* 1.3 ± 0.2 46.4 ± 2* 3.7 ± 1* 13

Change �28.0% +1% �25.7% 41.2%

Control 58.9 ± 4 1.4 ± 0.1 19.5 ± 2 8.5 ± 1 9

IBMX + Ex-4 110.7 ± 13** 2.2 ± 0.3* 16.4 ± 1 18.2 ± 2** 10

Change +87.9% +57.1% �15.9% +114.1%

Control 26.7 ± 2.5 0.9 ± 0.1 32.2 ± 1 3.0 ± 1 9

H-89 32.3 ± 6.6* 0.7 ± 0.1* 26.1 ± 1* 4.4 ± 1* 7

Change +21.0% �22.2% �18.9% 46.6%

Control 67.9 ± 10 1.4 ± 0.2 17.5 ± 1 8.1 ± 1 13

H-89 + Ex-4 52.5 ± 6 0.9 ± 0.1* 14.1 ± 1* 6.9 ± 1 14

Change �22.7% �35.7% �19.4% �14.8%

Control 58.1 ± 1 1.0 ± 0.1 13.6 ± 1 12.3 ± 2 13

8pCPT 63.4 ± 6 1.1 ± 0.1 14.7 ± 1 14.7 ± 2 17

Change +10.4% +10.0% +8.1% +14.6%

Ex-4 69.9 ± 11 1.7 ± 0.3 20.6 ± 2 20.1 ± 4 12

Ex-4+8pCPT 36.4 ± 3* 1.6 ± 0.2 32.6 ± 4* 5.8 ± 1** 14

Change �47.9% �5.6% �58.6% �70.8%

Representative data from cells recorded from the same culture on the

same day. Each condition was carried out twice with cells of two different

cultures, obtaining similar results. Data are expressed asmeans ±SEM in

the units in parentheses. In all cases, *p < 0.05 and **p < 0.01 (Mann-Whit-

ney U test).

Each cell provides at least 30 spikes, which pass the criteria specified in

STAR Methods.
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be modified without changing the number of vesicles released

probably means that many publications on adrenal regulation

just explained on the basis of more or less secretory vesicle (SV)

released might need to be revisited.

Here, we have centered our attention on GLP-1R. While the

signaling and function of GLP-1Rs has been studied extensively

in b cells (Fletcher et al., 2016; Jones et al., 2018; Tomas et al.,

2020), knowledge of their extra-pancreatic activity is very limited,

despite the wide interest in targeting these receptors for a variety

of conditions in addition to type 2 diabetes (Andersen et al.,

2018). Although the presence of GLP-1R has been described

in PC12 cells (Perry et al., 2002), to the best of our knowledge,

all studies published so far were not related to secretion (Qiu

et al., 2016; Wang et al., 2018; Zhang et al., 2015; Zhao et al.,

2019a), and no studies on chromaffin cells have been reported.

The receptor for GLP-1 is particularly interesting in chromaffin

cells, as itsmain secretory product, adrenaline, is one of themain

counteracting anti-insulin hormones. GLP-1R can favor the insu-

lin hypoglycemia and also modulate the effect of insulin by pro-

moting adrenaline release (Verberne et al., 2016) .

The presence of GLP-1R in bovine chromaffin cells was

confirmed by a combination of RT-PCR (Figure S1), microscopy

(Figure S2), western blot (Figure S3), protein analyses (Figures 1E

and F), and functional responses (Figures 2 and 3). Although

membrane traffic is out of the scope of this paper, the unusual

accumulation of GLP-1R in the cytosol (Figure S2) might reveal

an intense up-/downregulation, suggesting that this receptor

could be an important actor in the homeostatic control of adre-

nomedullary response. Although we have not explored the func-

tional significance of this intracellular receptor pool in this paper,

the importance of trafficking of GLP-1R on regulating signaling in

pancreatic b cells is well recognized (Tomas et al., 2020).

Our functional studies onGLP-1R in chromaffin cells show that

its activation does not directly trigger the release of CA but rather

enhances their secretory responses to physiological stimuli.

Hence, its activation (1) upregulated the expression of TH (Fig-

ures 1E and F) through the activation of its gene (Figure 1G), (2)

potentiated the synthesis of CAs (Figures 1A–1D), and (3)

increased the secretory responses to nicotinic stimuli (Figure 2B).

This was caused not by an increase of the releasable pool of the

B

C

D

E

A

Figure 3. Ex-4 potentiates the secretion of CgA as well as CAs from

chromaffin cells

(A and B) Representative on-line measurements from perfused chromaffin

cells. Each current peak indicates CA secretion induced by 12 successive

stimuli with 10 mM DMPP in the absence (A) or presence of 100 nM Ex-4 and

500 mM IBMX (B). Below each recording is shown a representative dot blot

probed for CgA obtained from the same experiment.

(C) Average peak area (total CA) measured from control cells (n = 14) and cells

treated with Ex-4 and IMBX (n = 10). The difference between the 1–5 pulses

from control and treated cells shows a p = 0.27, the difference between 5–10

shows a p = 0.04*, and the difference between 10–15 pulses shows a p = 0.09;

*p < 0.05, Student’s t test.

(D) Average blot intensity obtained from dot-blots from control cells (n = 8) and

cells treated with Ex-4 and IMBX (n = 8). The difference between the 1-5 pulses

from control and treated cells show a p = 0.87, the difference between 5–10 is

p = 0.003** and 10–15 pulses is p = 0.09; **p < 0.01, Student’s t test.

(E) Ratios of chromogranin A versus CAs during the perifusion of chromaffin

cells with Ex-4. Data obtained from panels C and D. Gray band indicates 95%

confidence interval.
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vesicles (Figures 2C and S4) but by (4) increasing the amount of

cargo released by each quanta (Table 1; Figure S4). Further-

more, we showed that the effects of GLP-1R on CA secretion

occurred through the activation of cAMP/PKA, but apparently

not through the Epac pathway (Table 2).

The effects of short incubation with Ex-4 on the quantum size

and on the kinetics of exocytosis are intriguing, as modulation of

CA release at this level has not been reported previously for a G-

protein-coupled receptor. On average, CAs are strongly concen-

trated inside chromaffin granules. Direct measurements esti-

mated adrenaline concentration as large as 0.8–1 M (Albillos

et al., 1997; Montesinos et al., 2008). As mentioned above,

only a fraction of it seems to be released during ‘‘standard’’

exocytosis that could be addressed to partial exocytosis.

Although long-term (24 h) incubation with Ex-4 increased the

synthesis and CA cell content, the effect of a short treatment

(20 min) on quantum size was due to not an increase in the syn-

thesis but to a large discharge of granule cargo by a shift from a

partial- to full-fusion exocytotic mode. These effects contrast

with those observed in pancreatic b cells, where the rise in

cAMP promotes, through the activation of Epac2, the constric-

tion of the fusion pore and the retention of vesicle cargo (Gu�cek

et al., 2019).

CgA is an acidic intragranular protein of ~49 kDa that binds CA

with high capacity and low affinity (Helle et al., 2018). In chro-

maffin cells, we demonstrated a drastic reduction in quantum

size when it is absent (Montesinos et al., 2008) and an increase

when CgA is overexpressed (Dominguez et al., 2014). This pro-

tein and its derived peptides are released along with CA, being

the first historical proof that CAs are released by exocytosis

(Banks and Helle, 1965). Chromogranins and other intravesicular

cargo proteins have been used as tools to estimate the functional

Figure 4. Ex-4 increases the number of full-

fusion events

(A) Representative examples of the two modes of

CgA-EGFP exocytosis in transfected bovine

chromaffin cells, with sequential frames showing

partial (top panel) and full release (bottom panel).

Scale bar, 1 mm.

(B and C) Average traces of the fluorescent signal

from partial-release events (B) and full-release

events (C) from cells treated with Ex-4 (incubation

time, 20 min).

(D) Normalized distribution of 17 exocytotic events

analyzed in 10 control cells and 34 exocytotic

events analyzed in 15 cells treated with Ex-4.

**p < 0.01, binomial test. Open bar represents

partial release, and solid bar represents full

release.

diameter of fusion pores based on their

molecular weight and hydrated molecular

diameters (Steyer and Almers, 2001;

Steyer et al., 1997; Zhang et al., 2019).

The ratio CgA/CA largely increased

when Ex-4 was added to the perifusion

buffer, indicating an increase in the num-

ber of full fusions (Figure 3D). Also, TIRFM

observations revealed that cells switched from partial to full

exocytosis upon treatment with Ex-4 (Figure 4).

The main second messenger mobilized by GLP-1R activation

is cAMP. We previously described an increase in quantum size

caused by cAMP acting through the canonical PKA pathway

(Machado et al., 2001). Other agents, such as estrogens or

b-sympathetic agents, also promote similar effects on exocy-

tosis (Machado et al., 2001, 2002). However, there are some

important differences between those data and the effects of

GPL-1R described in the present work. Modest rises in cAMP,

like those promoted by estrogens (Machado et al., 2002) or

isoproterenol (Machado et al., 2001), slow down the granule

emptying kinetics without modifying the apparent quantum

size. However, when cAMP levels are strongly elevated or the

classical route involving PKA activation is stimulated (e.g., for-

skolin or okadaic acid), the slow-releasing kinetics are accompa-

nied by a significant increase in quantum size (Machado et al.,

2001). The effects of Ex-4 observed in this paper, in spite of be-

ing carried out in the same laboratory, showed the acceleration

of exocytotic events (largerm and Imax), an effect that was poten-

tiated by IBMX and antagonized by H-89 (Tables 1 and 2)

(Kobayashi et al., 1999).

We cannot offer an easy explanation to these differences;

however, differences in the spatial and temporal properties of

cAMP increases induced by different stimulus conditions may

impact on downstream effectors, as observed in b cells (Buena-

ventura et al., 2019; Lester et al., 1997).

Given the fact that GLP-1R agonists are gaining interest as a

coadjutant treatment of diabetes, the role of these drugs on

the adrenal-sympathetic axis should be taken into account. If

our observations extend to the sympathetic system, then we

would expect that even though the activation of GLP-1Rs would
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not activate it per se, they would potentiate sympathetic

responses. In fact, treatment with GLP-1R agonists such as lira-

glutide or exenatide lower blood pressure (Zhao et al., 2019b),

probably by b-receptor activation. However, GLP-1R activation

strongly potentiates the responses to stress (Holt and Trapp,

2016), probably through an amphetamine-like effect. Interest-

ingly, increases in neuronal DA have also been reported in

several rodent models of Parkinson’s disease following treat-

ment with Ex-4 (Athauda and Foltynie, 2018), suggesting that

GLP-1R activation of CA may also occur in central TH-positive

neurons.

Our working hypothesis explains how stimulation of PKA in-

creases the apparent quantum size by causing a release of a

larger fraction of CgA. This effect could result from a longer-lived

pore or a larger dissociation of granule matrix.

In this paper, we have described the role of GLP-1R in the

regulation of the stimulus-secretion coupling in adrenomedullary

tissues. We propose that this target may be involved in the phys-

iological regulation of general homeostasis by the adrenal me-

dulla, which would be physiologically involved in the regulation

of general mechanisms such as glycaemia, stress, and blood

pressure.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyAb anti-GLP-1R Abcam Cat# ab39072, RRID: AB_880213

Monoclonal anti-actin Sigma-Aldrich Cat# A3853, RRID: AB_262137

Monoclonal anti-tyrosine hydroxylase Sigma-Aldrich Cat# T1299, RRID: AB_477560

Goat polyclonal anti-CgA Santa Cruz Biotechnology Cat# sc-1488, RRID: AB_2276319

Secondary horseradish peroxidase-

conjugated anti-rabbit IgG

GE Healthcare Cat# NA934, RRID: AB_772206

Secondary horseradish peroxidase-

conjugated anti-mouse IgG

GE Healthcare Cat# NA931, RRID: AB_772210

Alexa 488-conjugated anti-rabbit Thermo Fisher Scientific Cat# A-21206, RRID: AB_2535792

Alexa 568-conjugated anti-mouse Thermo Fisher Scientific Cat# A-21124, RRID: AB_2535766

Chemicals, peptides, and recombinant proteins

Fetal bovine serum Biowest SAS Cat# S1810

Horse serum Biowest SAS Cat# S0900

Bicinchoninic acid Sigma-Aldrich Cat# BCA1

Bovine serum albumin Sigma-Aldrich Cat# A8551

Collagenase type IA Sigma-Aldrich Cat# C2674

DMEM high glucose Sigma-Aldrich Cat# D5648

Glycine Sigma-Aldrich Cat# G8898

HEPES Sigma-Aldrich Cat# H3375

Oligo(dT)23 Sigma-Aldrich Cat# Q4387

Paraformaldehyde Sigma-Aldrich Cat# P6148

Penicillin G Sigma-Aldrich Cat# P3032

Percoll Sigma-Aldrich Cat# P4937

poly-D-lysine Sigma-Aldrich Cat# P1024

RPMI-1640 Sigma-Aldrich Cat# R6504

Trypan blue Sigma-Aldrich Cat# T6146

Tween 20 Sigma-Aldrich Cat# P2287

Gentamicin Acofarma Cat# 1405-41-0

Urografin 76% Schering España Cat# 909846.9

Moloney murine Leukemia virus

transcriptase

Promega Cat# M368C

RQ1 RNase-free DNase Promega Cat# M610A

Tri-Reagent Zymo Research Cat# R2050

Green Taq DNA Polymerase GenScript Cat# E00043

Exendin-4 Tocris Bioscience Cat# 1933

8-pCPT-2-O-Me-cAMP-AM Tocris Bioscience Cat# 4853

cOmplete, EDTA-free Protease Inhibitor

Cocktail

Roche Cat# 04693132001

Critical commercial assays

Steady Glo luciferase system kit Promega Cat# E2510

Direct-zolTM RNA miniprep kit Zymo Research Cat# R2052

Deposited data

Raw and analyzed data This paper N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, José David

Machado Ponce (david.machado@ull.edu.es).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This study did not generate/analyze datasets/code.

d Any information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bovine chromaffin cells culture

Cells were isolated by adrenal medulla digestion as described by (Domı́nguez et al., 2012; Moro et al., 1990). Briefly, adrenal glands

werewashedwith 3-4mL of warm Locke’s solution (150mMNaCl, 5.6mMKCl, 3.6mMNaHCO3, 11mMglucose, and 10mMHEPES

buffer at pH 7.3). Medulla digestion was carried out by injecting the gland with 3-4 mL of a solution containing 1.5-2 mg/ml of colla-

genase IA and 3-4 mg/mL of BSA in Locke’s solution, followed by 20 min incubation at 37�C. The digestion procedure is repeated

three times. Using sterile scalpel and scissors, the gland was opened longitudinally and the digestedmedulla was separated from the

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

PC12 ATCC� CRL-1721

Oligonucleotides

GLP-1R forward50-TCCTTCATCC

TCCGAGCACT-30

(IDT) Integrated DNA Technologies N/A

GLP-1R reverse50-TGCATGAGCA

GGAACACCAG-30
(IDT) Integrated DNA Technologies N/A

HPRT (hypoxanthine phosphoribosyl

transferase) forward50- CTCATGGAC

TGATTATGGACA-30

(IDT) Integrated DNA Technologies N/A

HPRT (hypoxanthine phosphoribosyl

transferase) reverse50- GCAGGTCA

GCAAAGAACTTAT-30

(IDT) Integrated DNA Technologies N/A

Recombinant DNA

Human GLP1-R-EGFP Syme et al., 2006 N/A

Rat TH promoter p50TH-Luc (�272/+27 Nakashima et al., 2003 N/A

Mouse CgA-EGFP Dominguez et al., 2014 N/A

pEGFP-N1 discontinued (actually

pAcGFP1-N1 Vector)

Clontech-Takara 632469

Software and algorithms

IGOR-Pro Wavemetrics https://www.wavemetrics.com

Spikes 50 - Macros for Igor-Pro that allows

Automatic analysis of amperometrical

recordings.

Segura et al., 2000 http://rborges.webs.ull.es/

protocols-and-software/

Metamorph software Molecular Devices https://www.moleculardevices.com/

products/cellular-imaging-systems/

acquisition-and-analysis-software/

metamorph-microscopy#gref

Prism� Software Graphpad https://www.graphpad.com/

scientific-software/prism/
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cortex and transferred to a clean tube. Additional 10 min incubation with collagenase solution was carried out to dissociate the

adrenal medullary cells. Cells were filtered first with a sterile cotton gauze and then with a 200-mmnylonmesh. Resuspension in fresh

Locke’s solution and centrifugation at 900 x g for 5 min were followed after each filtration step. In order to purify the chromaffin cells,

the cells obtained in the previous step were resuspended in fresh Locke’s solution andmixed with 15%Urografin solution to obtain a

final Urografin concentration of 7.5%. The new cell suspension with 7.5% Urografin was carefully added onto the surface of 15%

Urografin solution in centrifuge tubes. The chromaffin cells appeared as a diffuse band at the interface of the two Urografin solutions

after centrifugation at 7500 x g for 20 min at 18�C. Chromaffin cells were washed twice in Locke’s solution and resuspended in (1:1)

DMEM and Ham’s-F12 medium supplemented with 10% fetal bovine serum, 50 IU mL–1 penicillin and 50 mg $ mL–1 gentamicin.

Finally, the cells were filtered with a 90-mm nylon mesh, counted using trypan blue and plated on Petri dishes, plates or coverslips,

depending on the experimental procedure. The cells weremaintained in an incubator at 37�C in a humidified chamber at 5%CO2 and

the medium changed by replacing 50% with fresh medium every 2 days.

PC12 cells (ATCC� CRL-1721) were grown in RPMI-1640 media supplemented with 5% fetal bovine serum and 5% horse serum,

as well as the aforementioned antibiotics. The cells were maintained at 37�C in a humidified atmosphere with 5%CO2 and passaged

regularly every 2–3 days. In order to preserve their neural phenotype, only non-attached cells were passaged and used.

METHOD DETAILS

Cell transfection. PC12 cells (3$106 cells per cuvette) were transfected using a Nucleofector II device (Lonza, Verviers, Belgium) and

the protocol (U-029) with DNA construct. A specific Amaxa-kit was used for delivery 2 mg of cDNA. The experiments were performed

between 24 – 48 h after transfection.

Chemiluminescence. Firefly luciferase activity was determined using Steady Glo Luciferase System (Promega) according to the

manufacturer’s instructions. PC12 cells were lysed with 50 mL of the luciferase substrate and 50 mL of PBS. The luminescence

was measured immediately with a Victor X Luminescence Plate Reader (Perkin-Elmer). Luciferase activity was normalized to protein

concentration of the samples determined using bicinchoninic method. At least four cell culture plates were used for each treatment.

All experiments were performed twice.

Western blotting. The extent of protein expression was assessed by western blot of cell lysates. Cells were lysed at different time

points for 20 min at 4�C in lysis solution TENT (mM): Tris HCl (50), EDTA (5), NaCl (150) and 1% Triton X-100, with the protease in-

hibitor mixture cOmplete� (11697498001 Roche Diagnostics, Mannheim, Germany). Equivalent amounts of proteins were separated

by SDS–PAGE using 10% acrylamide gels and electroblotted onto 0.45 mm polyvinylidene difluoride membranes (Immobilon-P

IPVH00010 Millipore Corporation, Billerica, MA, USA). Cell lysates were immunoblotted with specific antibodies. To confirm the

selectivity of the GLP-1R antibody, we tested the lack of labeling in non-ectodermic cells using HEK293 as negative control versus

bovine chromaffin and PC12 cells, showing no labeling in the former. Also, the antibody labels the membrane fraction of PC12 cells.

Protein bands were detected by luminescence using an ECL-prime Western Blotting Detection Reagent (RPN2232 GE, Health Care,

UK), and protein bands were analyzed using a ChemiDoc MP VersaDoc device and Quantity One 4.6.7 software (Bio-Rad, Hercules,

CA, USA).

HPLC analysis of catecholamines. Chromaffin cells and PC12 (1$106) cells were triturated in ice-cold lysis buffer containing

perchloric acid (0.05 N) and 3,4-dihydroxybenzylamine (200 nM) as an internal standard. The homogenates were centrifuged and

the cleared supernatants were analyzed by HPLC (Shimadzu, Japan) coupled to an electrochemical detector LCB-4 (BioAnalytical

Sciences, Bloomington, IN, USA) as described elsewhere (Borges et al., 1986).

Amperometric detection of exocytosis. Chromaffin cells transfected with GLP-1R-EGFP and un-transfected control cells were

viewed by epi-fluorescence under an inverted microscope (Olympus IX51, using a 40X/0.60 NA objective). Excitation light (mercury

lamp, X-cite EXFO series, 120W) was band-pass–filtered (BP480/20) and the emitted light passed through a dichroic mirror 500

and emission filter (BP520IF; all filters were fromOlympus) and imaged with a CCD camera (Orca C4742-80-12AG; Hamamatsu Pho-

tonics, HamamatsuCity, Japan). Carbon fibermicroelectrodes of 6 mmradius, (Thornel P-55; AmocoCorp., Greenville SC, USA) were

prepared as described (Kawagoe et al., 1993) and calibrated to assure the reproducibility of results (Machado et al., 2008). Electro-

chemical recordings were performed using a VA-10X potentiostat (NPI Electronics, Tamm, Germany) connected to a data acquisition

system (PowerLab 8/30, ADInstruments). All amperometricmeasurementswere acquired at 4 kHz and low-pass filtered at 1 kHz. After

gently touching the surface of a cell with the carbon fiber microelectrode, secretion was elicited with 5 s pressure ejections of 5 mM

BaCl2 (Baraibar et al., 2018). Cells were maintained in Krebs-HEPES buffer solution (K-H), at 37�C for the duration of the recordings.

On-Line analysis of catecholamine release

This method has been described by (Estévez-Herrera et al., 2016). Briefly, chromaffin cells (4$106 cells) plated in plastic Petri dishes

(92-mm diameter, Nunc) were cultured for 24-72 h in standard conditions. The cells were then gently removed from the bottom of the

dish with a cell scraper, centrifuged at 365xg during 5min, and re-suspended in 1 mL of K-H buffer. Then, cells were packaged into a

0.22 mm filter that was used as cell chamber (Whatman, GE, Healthcare). The cells were perifused at 37�C with K-H solution at a rate

of 2mL$min-1 and the liquid which emanatedwas conducted to an electrochemical detector with a fixed potential of +650mV (LC-4B,

BioAnalytical Systems), connected to data acquisition hardware PowerLab 8/30 (ADInstruments Ltd, Oxford, UK). Secretion was

stimulated every 5 min with 10 s pulses of K-H solution supplemented with DMPP (10 mM). Secretion was quantified by integration
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of the amperometric signal. The emanating buffer was also collected in Eppendorf microtubes and stored at �20�C until analysis by

dot-blot, being recommended this technical approach for the concentration of secreted proteins and their quantitative determination.

TIRF Microscopy. Chromaffin cells (105 cells) plated on coverslip (18-mm diameter, WPI) were visualized on an inverted micro-

scope (200M; Zeiss, Jena, Germany) through a 1.45 NA objective (a Fluar, x100/1.45; Zeiss), as described elsewhere (Barroso-Gon-

zález et al., 2009; Dominguez et al., 2014). Briefly, the objective was coupled to the coverslip with an immersion fluid (n488 = 1.518;

Zeiss) and for evanescent field illumination, the expanded beam (488 nm) from an argon ion laser (Lasos; Lasertechnik GmbH, Jena,

Germany) was band-pass filtered (488/10; Zeiss) and used to excite EGFP. The laser beam was incident to the coverslip at 64-66�

from normal; imageswere capturedwith EM-CCDdigital camera (C9100-13; Hamamatsu Photonics,). Each cell was imaged for up to

1 min with HC Image acquisition software (Hamamatsu Photonics) with a 10 ms exposure time at 10 Hz.

RNA isolation, cDNA synthesis, and PCR

RNA was isolated from purified bovine chromaffin cells using Tri-Reagent (R2050, Sigma) and Direct-zol RNA Miniprep kit (R2052,

Zymo Research). Primary chromaffin cell purity reaches 95% using Urografin gradient purification. 4$106 cultured cells were lysated

in 800 mL of Tri-Reagent. After adding 200 mL of chloroform and mixing, samples were centrifugated at 12,000 x g for 15 min at 4�C.

One volume of absolute ethanol was added to the supernatant, mixed, and then RNA was cleaned and eluted using the Direct-zol

RNA miniprep kit, according to the manufacturer0s instructions. Genomic DNA contamination was removed adding DNase I

(M610A, Promega). The effectiveness of the DNase treatment was assessed in samples with no reverse transcriptase added

(RT-negative). Integrity of RNA was checked by agarose gel electrophoresis and finally, the concentration of RNA was determined

spectrophotometrically using a NanoDrop ND-1000 (Thermo Scientific).

Retro-transcription was carried out using 2 mL of RNA, and first-strand complementary DNA was synthesized using Moloney

murine leukemia virus reverse transcriptase (M368C, Promega) and a 1:1mix of oligo(dT)23 (Q4387, Sigma-Aldrich) and random hex-

amers (11-034-731-001, Roche) according to the manufacturer’s instructions.

The PCR were carried out for 40 cycles using following sets of primers: 94�, 2 min; 40x (94�, 15 s; 60�, 20 s; 72�, 30 s); 72�, 5 min

forward 50-TCCTTCATCCTCCGAGCACT-30

reverse 50-TGCATGAGCAGGAACACCAG-30 which amplifies 146 bp of GLP-1R; forward 50- CTCATGGACTGATTATGGACA-30

reverse 50- GCAGGTCAGCAAAGAACTTAT-30, which amplifies 195 bp of HPRT (hypoxanthine phosphoribosyl transferase).

All PCR experiments were performed using GenScript kit according to the manufacturer’s instructions (Promega).

Plasma membrane and cytosol-enriched fractions

PC12 cells were homogenized in 0.25 M sucrose, 1 mM EDTA, 20 mM HEPES, pH 7.4, with protease inhibitor cOmplete�. The ly-

sates were then cleared of unbroken cells by centrifugation (700 3 g for 10 min) and subjected to differential centrifugation at

20,000 3 g for 20 min. We first isolated plasma membranes by Percoll gradient fractionation. The postnuclear supernatant was

layered onto 30% Percoll and sedimented at 84,000 3 g for 30 min. The plasma membrane and cytosol fraction were analyzed

by western blot.

Immunofluorescence

Chromaffin cells were seeded on 12 mm diameter glass coverslips. After 24 h cells were fixed for 10 min at room temperature (RT) in

2% paraformaldehyde in PBS/150 mM sucrose, then washed three times with PBS and permeabilized with 0.2% Tween-20 in PBS

(where indicated). Cell autofluorescence was quenched with 100 mM glycine in PBS. Non-specific binding was reduced by blocking

with 5% of BSA in permeabilization solution (or in PBS/150 mM sucrose for non-permeabilized cells) for 1 h at RT. The cells were

washed with PBS and immunostained overnight at RT with indicated primary antibodies diluted in PBS/150 mM sucrose. The fluo-

rophore-conjugated secondary antibody was also diluted in PBS/150 mM sucrose for 1 h at RT. Finally, after several washing steps

with PBS at RT, coverslips were mounted in Mowiol-antifade (Dako, Glostrup, Denmark) and imaged at high resolution in x-y mid-

sections on a Leica confocal microscope TCS SP8 (Leica Microsystems, Wetzlar, Germany). The final images were analyzed with

Metamorph software (Universal Imaging Corp., Downington, PA, USA).

Electrophysiology

A coverslip carrying chromaffin cells was placed in a cell chamber on the stage of an inverted phase-contrast Axiovert microscope

(Zeiss, Jena, Germany). Cells were perfused with an extracellular solution consisting of 140 mM NaCl, 5 mM NaHCO3, 2 mM KCl,

1 mM MgCl2, 10 mM Glucose, 10 mM HEPES, 2.5 mM CaCl2; pH adjusted to 7.3 with NaOH, 300-310 mOsM. Capacitance mea-

surements were recorded in whole cell-patch-clamp configuration using borosilicate glass electrodes coated with Sylgard 184 (Dow

Corning, Midland, MI, USA) and fire-polished to a resistance of 4-6 MU. Electrodes were filled with a solution consisting of 145 mM

Cs-glutamate (Calbiochem, Nottingham, UK), 10 mM HEPES, 9.5 mM NaCl, 0.3 mM BAPTA (Molecular Probes, Eugene, OR, USA)

and 2 mM ATP-Mg; pH adjusted to 7.3 with CsOH (ICN Biomedicals, Aurora, OH, USA). Series resistance was ˂20 MU and compen-

sated electronically using a patch-clamp amplifier (HEKA EPC-10; HEKA, Lambrecht, Germany). Capacitance measurements were

performed according to the Lindau-Neher technique (Lindau and Neher, 1988) using the 0sine + dc0 mode in the Lock-in Extension of
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Patchmaster (HEKA). The frequency and peak-to-peak amplitude of the sine wave were 1042 Hz and 30 mV, respectively, and the

holding potential was�70mV. Recordings were sampled at 12.5 kHz and filtered at 2.9 kHz. Ca2+ influx was quantified by integrating

ICa, omitting the first 2 ms, which were contaminated by Na+ currents. Exocytosis was elicited by stimulating cells with a train of 6 X

10 ms step depolarizations to +10 mV followed by 4 X 100 ms step depolarizations to +10 mV (Voets, 2000). Recordings of control

cells and cells pretreated for 20 min with 100 nM Ex-4 were alternated and analysis was restricted to the capacitance changes

induced by the first stimulus applied after establishing the whole cell recording. Depolarization evoked changes in membrane capac-

itance (delta Cm) were quantified by averaging 5 points before each step (pre), 5 points 400 ms after the step (post), and then sub-

tracting the former from the latter (ie. post-pre = delta Cm). All experiments were performed at room temperature (21-25�C).

Measurement of Cytosolic-Free Ca2+

This protocol is similar than has been described by Estévez-Herrera et al., 2016. Chromaffin cells were seeded on 12-mm Ø cover-

slips in 24-well culture plates at a density of ~100,000 cells per well. After 24 h the cells were incubated for 45 min at 37�C with 2 mM

Oregon green (Molecular Probes, Invitrogen) in Krebs-HEPES. The cells were then washed for 45 min at room temperature and

placed in a chamber mounted on the stage of a Zeiss Axiovert 200 microscope with continuous perfusion. Cells were stimulated

with 5 s pulses of DMPP every 4 min. Ex-4 was perifused from 4 min prior to the second pulse and remained bathing cells along

the rest of the experiment. Single-cell fluorescence was excited at 488 nm using an argon ion laser (100 ms of excitation every 1

s, 10-nm bandwidth; Lasos, Lasertechnik) and with a EC Plan-Neofluar 20 3 /0.50 objective (Zeiss). All measurements were taken

at room temperature. Images were collected using a 510-DCLP dichroic mirror and aD525/50 emission filter (Chroma Technology),

and then recorded on a CCD camera (AxioCam MRm, Zeiss). Single-cell fluorescence records were plotted against time using the

Metamorph software (Universal Imaging).

QUANTIFICATION AND STATISTICAL ANALYSIS

Amperometric data analysis. Data analysis was carried out using IGOR-Pro (Wavemetrics, Lake Oswego, OR, USA). Tailoredmacros

and routines werewritten to extract the following parameters from each spike: Imax, maximumoxidation current, expressed in pA; t1/2,

spike width at half height, expressed in ms; Q, spike net charge, expressed in pC; m, ascending slope of spike, expressed in pA/ms

(Machado et al., 2000; Segura et al., 2000). The foot duration was calculated as the time between the beginning of the spike and the

intersection point of the initial slope and the basal line.

The data was analyzed by a second investigator who was blinded to the experimental conditions. To reduce bias caused by the

decaying sensitivity of an electrode over time, recordings were alternated between control and test cells; no comparisons weremade

between experiments carried out on different days. The kinetic parameters were calculated as mean values. The discrimination

threshold was fixed at 2.5 SD of the basal noise of the first derivative of each recording. Spikes with an Imax over 2.5 pA are usually

included in the data analysis. The kinetic parameters were calculated as mean values from at least 20 spikes per cell.

To avoid the deviations caused by the different number of spikes produced by each cell, the average values of spikes parameters

recorded from each cell were considered as N = 1 (Colliver et al., 2000). ‘‘n, the number of amperometry spikes that were used in the

statistical analysis. All of those spikes had to satisfy the following selection criteria:

i. Spikes Imax must be above the detection threshold.

ii. Spikes must not show overlapping.

iii. None of the measured parameters were not affected by any artifact.

Quantitative data may differ from day to day and require daily controls experiments. This is especially important when using trans-

fected cells, since permeabilized procedures greatly affect the secretory machinery. Cumulative secretion was calculated by integra-

tion the amperometric signal measured for 2 min and expressed as pico-Coulombs (pC). The results were normalized with respect to

the mean their own control.

Image analysis TIRFM. Fluorescence intensity over time was calculated using custom designed routines in Metamorph (Molecular

Devices, Sunnyvale, CA, USA) as described previously (Dominguez et al., 2014; Taraska et al., 2003). Briefly, exocytotic events were

located by eye, a region of interest (9 pixels- diameter) was centered on the position of the event, and a stack of images in that region

was extracted from themovie. The fluorescence intensity profiles from individual granule stacks were plotted against time. In order to

differentiate whether a decrease in the fluorescence signal of vesicle was caused by partial exocytosis or from a variation in TIRF

plane, we measured the s changes of the Gaussian function of the fluorescent spots (Dominguez et al., 2014; Perrais et al., 2004;

Steyer and Almers, 2001; Taraska et al., 2003) as this parameter increases at the moment of the spread of protein in the media.

All exocytotic events were aligned to the frame just before exocytosis.

Statistics. Datasets are expressed asmeans ± SEM. The statistical significance between groups of experiments was performed by

the non-parametric Mann-Whitney rank sum, ANOVA; Dunnett’s multiple comparisons test or by Student’s t test, where appropriate,

based on the D’Agostino-Pearson normality test. The differences were considered significant at the level of p < 0.05; data were

analyzed using Prism� Software (Graphpad Software, San Diego, USA). No sample calculation was performed. Outliers were not

removed from any of the analysis.
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