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Abstract—Data-driven spatial filtering approaches have been
widely used for steady-state visual evoked potentials (SSVEPs)
detection toward the brain-computer interface (BCI). The ex-
isting methods tend to learn the spatial filter parameters for
a certain stimulation frequency only using the training trials
from the same stimulus, which may ignore the information
from the other stimuli. In this paper, we propose a novel
multi-objective optimisation-based spatial filtering method for
enhancing SSVEP recognition. Spatial filters are defined via
maximising the correlation among the training data from the
same stimulus whilst minimising the correlation from different
stimuli. We collected SSVEP signals using 16 electrodes from
six healthy subjects at 4 different stimulation frequencies: 14Hz,
15Hz, 16Hz, and 17Hz. The experimental study was implemented,
and our method can achieve an average recognition accuracy of
94.17%, which illustrates its effectiveness.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), multi-objective optimisation

I. INTRODUCTION

Electroencephalographic (EEG)-based brain-computer inter-

face (BCI) system has been widely explored in the past years

due to its many advantages, such as portability, low cost and

high temporal resolution [1]. Among various typical paradigms

in the EEG, steady-state visual evoked potential (SSVEP) is

the most employed one for analysing brain activities because it

has a high signal-to-noise ratio (SNR) and fast communication

rate [2]. Recent researches in many application scenarios such

as character spelling and cleaning robot [3], [4] have also

indicated the importance of SSVEP-based BCI technologies.

The main task of the SSVEP-based BCI system is to

identify the target stimulus, so the subject can output various

commands to control the external device by focusing on dif-

ferent visual stimulation. Thus far, many SSVEP recognition

methods learned spatial filters to reduce artifacts and noises

by extracting SSVEP features. Canonical correlation analysis

(CCA) is one of the most popular multivariate statistical

methods [5], which attempts to find a pair of weight vectors

to maximize the correlation coefficient between multi-channel

EEG signals and the reference signal. The sine and cosine

waves are generally used to construct the reference signal

at each stimulation frequency. The frequency corresponding

to the maximum correlation coefficient is determined as the

target stimulation. Considering the artificial reference signal

This work was supported in part by Engineering and Physical Sciences
Research Council (EPSRC) (Grant No. EP/S019219/1) and in part by China
Scholarship Council (CSC) (Grant No. 201906460007).

lacks real EEG components, various SSVEP detection methods

used individual calibration data to further optimise it. For

instance, Zhang et al. [6] proposed an extension version

of CCA (MwayCCA) which incorporates multi-dimension of

EEG tensor to construct new reference templates. They further

developed L1-regularization MwayCCA to improve Mway-

CCA by trial-way array optimization [7]. The multi-set CCA

(MsetCCA) [8] extracts common features shared by multiple

sets of real EEG signals which can provide better recognition

performance compared to MwayCCA and L1-MwayCCA. As

a more simple operation, Bin et al. [9] proposed individual

template canonical correlation analysis (ITCCA) that turns

to employ individual template signal acquired by averaging

multiple training trials. However, in the aforementioned CCA-

based target detection methods, the spatial filters were yielded

between the single-trial testing data and the optimised tem-

plate, which may also result in low recognition performance

due to lack of spatial filter training. Therefore, the latest trend

is to optimise the spatial filter based on individual templates

in the training stage. For example, Wei et al. [10] introduced

a training data-driven CCA to employ the continuous training

data created by concatenating training trials, and continuous

template signals as the two inputs of CCA, thus the model

is more robust to noise. Whereas this model did not concern

the relationship among trials from the same stimulus when

training spatial filters. Nakanishi et al. [11] proposed task-

related component analysis (TRCA) based on the idea that

the source activity can be efficiently reproduced through a

linear sum of observed multi-channel EEG signals, and finally

solved by maximizing inter-trial covariance. However, they

attempted to obtain the spatial filter of a specific target by the

training data only from the same stimulus, and they ignored

the information from the other stimuli, which could also be

used to further improve the performance of the spatial filter.

In this study, we proposed a multi-objective optimisation-

based spatial filtering model to enhance the performance for

SSVEP detection. It trains the spatial filter for each stimulus

efficiently by maximizing the correlation between the train-

ing signal and the individual template from the same target

but minimising the correlation from the other targets. The

performance was evaluated on a 16-channel SSVEP dataset

including four frequencies recorded from six participants. The

feasibility of the proposed method was verified with an average

detection accuracy of 94.17%.

The remaining paper is arranged as follows. The multi-
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objective optimisation-based target recognition methodology

is described in Section II. The results are provided in Section

III. Section IV and V present the discussion and conclusion.

II. OUR METHODS

A. EEG data collection

1) Subjects: This study collected SSVEP activities from

six healthy subjects (three female and three male, mean age:

twenty-six years) when they focused on four visual flickers

modulated at different frequencies. All participants have nor-

mal or corrected to normal vision. Each subject has read and

signed a participant consent form approved by the Research

Ethics Committee of the University of Leeds.

2) Stimulus Design: The four stimulation LEDs were pre-

sented on a SSVEP box and flickered at different frequencies,

14Hz, 15Hz, 16Hz, and 17Hz, respectively. The experimental

paradigm of each participant contains five blocks, and each

block includes 4 trials corresponding to 4 visual stimulation.

A green light is close to one of the stimuli, which indicates

the target LED. In each trial, all stimuli began to flash at the

same time and last for 5s in which the participant should focus

on the target flicker and avoid eye movement. Following the

flickering, all stimuli are blank for 5s for the subject to take a

short rest to reduce visual fatigue. After four trials, there was

a few seconds of a break before the next block starts.

3) EEG Recording: All experiment equipment is provided

by the g.tec medical engineering GmbH. In this study, SSVEP

signals were collected from 16 channels (P3, Pz, P4, P5, PO3,

POz, PO4, P6, P7, PO7, O1, Oz, O2, PO8, P8, CZ), with a

ground electrode over FPz and a reference electrode on the

right earlobe. The g.USBamp amplifier was used to record

EEG signals and sample data at 256Hz. The latency delay

in the subject’s visual system is taken into consideration, and

the data epochs were collected in [0.14s, (0.14 + d)s] where

d refers to the data length used for target identification. The

Chebyshev Type I Infinite impulse response (IIR) filter was

designed in this study to implement the band-pass filter, and

the EEG signals were filtered with the band [13-40] Hz.

B. Data processing and target identification

In this study, we present a multi-objective optimisation-

based model to detect the SSVEP response evoked by which

visual stimulation. The single-trial individual calibration data

is denoted by χh
i ∈ R

Nc×Ns . Hereinafter, i represents the

stimulus index, h represents the index of training trials, Nc

is the number of channels and Ns is the number of samples.

The single-trial template signal obtained by averaging training

trials is defined as χi = 1
Nt

Nt∑
h=1

χh
i ∈ R

Nc×Ns where Nt

is the number of training trials. Therefore, the continuous

training signal and the continuous individual template are

represented as χi = [χ1
i ,χ

2
i , ...,χ

Nt

i ] ∈ R
Nc×(Ns×Nt) and

Xi = [χi,χi, ...,χi] ∈ R
Nc×(Ns×Nt), respectively. The

averaged reference signal can efficiently improve the SNR of

EEG signals which helps to train the spatial filter with better

performance compared with the artificially constructed signal.

Fig. 1: Flowchart of the proposed multi-objective optimisation-

based target identification method.

The multiple objectives optimisation-based spatial filtering

model uses the training trials from all targets to learn each

spatial filter via exploring various correlations among visual

stimulation. To be specific, when the model trains the spatial

filter ŵi, i-th stimulus is defined as the “aim”, and j-th

stimulus (j = 1, 2, .., Nf , j 6= i) refers to the “non-aim”. Here,

Nf is the number of stimuli. This model provides the spatial

filter ŵi by maximizing the correlation coefficient between

continuous training signal χi from “aim” and its continuous

individual template Xi, whilst minimising the correlation

between continuous training data from “non-aim” χj and Xi.

Therefore, Nf objective functions can be represented as:

fi(wi) = ρ(χT

i wi,X
T

i wi)

fj(wi) = ρ(χT

j wi,X
T

i wi), j = 1, 2, ..., Nf , j 6= i
(1)

where ρ(a, b) refers the Pearson correlation coefficient be-

tween vector a and vector b. A multi-objective optimisation

problem is given by the following statement:

minimize
wi

F (wi) = [−fi(wi), fj(wi)],

j = 1, 2, ..., Nf , j 6= i

subject to wi ∈ W

(2)

The W ⊆ R
Nc is the feasible set of solution vectors. The

spatial filter ŵi can be solved as follow:

ŵi = argmin
wi

F (wi) (3)

The solution ŵi need to satisfy all objective functions. The

multi-objective optimisation problem is solved by the fgoalat-

tain function in the Matlab. In the test process, for a single-

trial testing EEG signal X̃ ∈ R
Nc×Ns , it is spatially filtered

with optimal weight vector ŵi. Meanwhile, the single-trial

template signal χi is also spatially filtered with ŵi. The
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(a) (b)

Fig. 2: Performance comparison between the proposed method and TRCA with various data lengths. (a) Average recognition

accuracy, (b) ITRs across six subjects. The error bars represent standard errors.

correlation coefficient is calculated between these two vectors,

and Nf coefficients can be computed in the same way as:

ri = ρ(X̃Tŵi,χ
T

i ŵi), i = 1, 2, ..., Nf (4)

The frequency of test SSVEP signal f is identified as the

frequency of the template signal with the maximal correlation

coefficient value:

f = argmax
fi

ri, i = 1, 2, ..., Nf (5)

The multi-objective optimisation-based model can design

the spatial filter for each target which extracts more features

of the same stimulus and reduce those of the other stimuli.

The diagram of the proposed method is shown in Fig. 1. It

is divided into two parts, namely the training stage and the

testing stage. The training process aims to train the spatial

filter and obtain the individual template signal for each target,

and then the test process detects the current test trial belonging

to which stimulus based on products of the training stage.

III. RESULTS

To verify the effectiveness of the proposed multiple objec-

tives optimization-based target identification method for the

SSVEP-based BCI system, we compared its performance with

TRCA. The TRCA extracts task-related components through

maximizing the reproducibility to learn an efficient spatial

filter in the training process [11]. Its test process is the same

as that of the proposed algorithm. The feature extraction and

target detection can use (4) and (5).

The classification accuracy and information transfer rates

(ITRs) based on the same SSVEP dataset were regarded

as indicators to assess their performance. The leave-one-

out cross-validation was applied to compute the accuracy in

which four blocks were employed as training data and one

block was used as test data. Fig. 2 illustrates the averaged

Fig. 3: SSVEP recognition accuracy derived by the TRCA and

multi-objective optimisation-based target identification method

for each subjects. The error bars indicate standard errors.

classification accuracy and ITRs across all subjects provided

by the proposed method and the TRCA algorithm at various

TWs, which range from 1s to 5s. As shown in Fig. 2, the

multiple objectives optimisation-based method achieved higher

accuracy and ITRs with different data lengths. Especially when

the TW = 2s, the advantage of the proposed method is

more obvious. Fig. 3 depicts the recognition accuracy for each

subject with these two target recognition methods. For most

subjects, the presented algorithm provided higher accuracy. In

particular, Subject 4 and Subject 6 achieved 100% recognition
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Fig. 4: Averaged detection accuracy with (a) different numbers

of electrodes with 5s TW. (b) 8 channels with 1s-5s data

lengths across subjects. The error bars indicate standard errors.

accuracy with some TWs.

IV. DISCUSSION

A. Parameter optimisation

Fig. 4 (a) shows the classification accuracy across subjects

with different number of channels using 5s data length (C=4,

8, 12 and 16). Although some confidence intervals appear to

overlap, the proposed method still shows comparable accuracy

with regard to the TRCA at each number of channels, which

demonstrates that spatial filters yielded by training signals

from entire stimuli have potential in target identification. Fig. 4

(b) depicts the averaged accuracy of these methods with

8 electrodes with 1s-5s data lengths. The presented spatial

filtering method achieved higher accuracy regardless of TWs,

which further confirms that its effectiveness does not depend

on the number of electrodes.

B. Spectral analysis

In our study, the multi-objective optimisation-based model

focuses on training the spatial filter to extract distinct features

of the SSVEP signal. As an example, Fig. 5 (a) and (b)

illustrate the amplitude spectrum of the filtered SSVEP signals

provided by the presented method and TRCA in response

to 16Hz. Fig. 5 (a) shows the superiority of the spatial

filter learned from the proposed model which provides a

higher amplitude of target frequency. Besides, it captured more

harmonic features from filtered test data compared with Fig. 5

(b). The extracted characteristic contributes to identifying the

target more effectively.

V. CONCLUSION

A novel multiple objectives optimisation-based spatial fil-

tering method was proposed to improve the recognition per-

formance for the SSVEP-based BCI system. The presented

algorithm used the training data from all visual stimulation

to learn the spatial filter for each target by setting multiple

objectives functions. Experimental results on four frequencies’

Fig. 5: Single-sided amplitude spectrum of the test signal

transformed by spatial filters trained by (a) the proposed model

and (b) TRCA. The target frequency is 16Hz.

SSVEP dataset collected from six healthy participants verified

its effectiveness with various data lengths. This work provides

a potential and practical direction for the implementation

of SSVEP-based BCIs. Future work will apply relatively

large dataset and explore more forms of the multi-objective

optimisation model in the SSVEP field.
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