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ORIGINAL ARTICLE
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ABSTRACT
Pathogenic variants in the Wnt-pathway co-receptor low-density lipoprotein (LDL) receptor-related protein 5 (LRP5) cause high bone

mass (LRP5-HBM) due to insensitivity to the endogenous antagonist of Wnt-signaling. Although indicating incessant progression of

BMD and biomarkers reflecting bone formation, this has not been confirmed in individuals with LRP5-HBM. We investigated how the

LRP5-HBM bone phenotype changes with age in adults and is associated with quantitative changes of bone turnover markers and

bone-related microRNAs (miRNAs) in the circulation. Whole body, lumbar spine, total hip, and femoral neck areal BMD (aBMD) and

radial and tibial bone microarchitecture and geometry were assessed using DXA and HR-pQCT scans of 15 individuals with

LRP5-HBMT253I (11 women; median age 51 years; range, 19 to 85 years) with a time interval between scans of 5.8 years (range, 4.9

to 7.6 years). Fasting P1NP and CTX were measured in 14 LRP5-HBMT253I individuals and age-, sex-, and body mass index (BMI)-

matched controls, and 187 preselected miRNAs were quantified using qPCR in 12 individuals and age-, sex-, and BMI-matched con-

trols. DXA and HR-pQCT scans were assessed in subjects who had reached peak bone mass (aged >25 years, n = 12). Femoral neck

aBMD decreased by 0.8%/year (p = 0.01) and total hip by 0.3%/year, and radial volumetric BMD (vBMD) increased 0.3%/year

(p= 0.03). Differences in bone turnover markers at follow-up were not observed. Compared to controls, 11 of the 178 detectable miR-

NAs were downregulated and none upregulated in LRP5-HBM individuals, and five of the downregulated miRNAs are reported to be

involved in Wnt-signaling. Bone loss at the hip in LRP5-HBM individuals demonstrates that the bone phenotype does not uniformly

progress with age. Differentially expressed miRNAs may reflect changes in the regulation of bone turnover and balance in LRP5-HBM

individuals. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral

Research.

KEY WORDS: HIGH BONE MASS; HR-pQCT; LRP5; microRNA; RARE MONOGENETIC BONE DISEASE

1. Introduction

K nowledge of the cell signaling pathways that regulate bone

metabolism has emerged from studies of rare monogenetic

bone disorders.(1) The canonical Wnt pathway was linked to

bone development and homeostasis in individuals with scleros-

teosis due to a loss-of-function variant in SOST in 2001, which

encodes sclerostin that acts as an endogenous inhibitor of Wnt

signaling.(2–4) Later, pathogenetic variants in the low-density

lipoprotein (LDL) receptor-related protein 5 (LRP5), a Wnt co-

receptor, were linked with very high or low bonemass.(5–7) These

insights have contributed in the development of romosozumab,

which is a sclerostin-neutralizing human monoclonal antibody

recently introduced as a treatment for osteoporosis.(8)

The Wnt signaling pathways are a group of cell-signaling

pathways of which canonical Wnt pathway refers to signal trans-

duction through β-catenin. Canonical Wnt-signaling is initiated

by binding of a Wnt-ligand to a Frizzled receptor and the LRP5
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co-receptor leading to inactivationof the β-catenin destruction com-

plex.(9) Subsequently, β-catenin accumulates in the nucleus where it

binds to the T-cell factor (TCF) family of transcription factors and reg-

ulates the transcription of target genes, which promote osteoblasto-

genesis and suppress adipogenesis.(10) Furthermore, Wnt-signaling

through LRP5 inhibits osteoclast differentiation.(11)

Pathogenic LRP5 variants in the first beta propeller of LRP5(12)

may render the receptor insensitive to binding of sclerostin, an

endogenous inhibitor. Thus the genetic variants is considered a

gain-of-function because less inhibition by sclerostin cause acti-

vation of Wnt-pathway causing a high bone mass phenotype

known as LRP5-HBM(13) that may include otoneurological com-

plications due to bone overgrowth,(14) torus palatinus, and teeth

encased in bone.(15) Lumbar spine and forearm BMD increased

with age in 19 LRP5-HBM individuals with the T253I genetic

variant,(12) but not in a more recent study with 10 individuals car-

rying three different LRP5 variants.(15) Although bone turnover

markers indicated increased bone formation in four LRP5-HBM

individuals,(7) decreased bone resorption and formation were

observed in 19 individuals with LRP5-HBM,(12) and iliac crest

bone biopsies display a reduced number and activity of osteo-

clasts supporting lower bone resorption in LRP5-HBM individ-

uals.(16) Romosozumab, a sclerostin-neutralizing drug, causes a

transient uncoupling of bone formation and resorption,(17) and

homeostasis in bone turnover in individuals with LRP5-HBM

may resemble that observed in the later phases of romosozumab

treatment with a lower level of resorption marker CTX. Because

the anabolic effect declines after the first year of romosozumab

treatment,(18,19) it is possible that bone mass accrual in a condition

with partial sclerostin insensitivity such as LRP5-HBM similarly sub-

sides with age. However, prospective studies supporting continu-

ous or cessation of bone mass accrual are missing.

Circulating microRNAs (miRNAs) are emerging as biomarkers

that reflect disease status in osteoporosis.(20–23)miRNAs are small

noncoding RNAs which exert posttranscriptional regulation of

expression of several genes and can regulate osteoblast differen-

tiation directly; eg, by targeting inhibitors of the Wnt co-

receptors LRP4/5/6(24,25) or the co-receptor itself.(26) Patients

with severe osteoporosis due to a pathogenic variant in WNT1,

a Wnt agonist, have normal levels of bone turnover markers(27)

but a distinct miRNA profile indicating disrupted feedback regu-

lation of the Wnt pathway.(28) Although Wnt1 is a LRP5 indepen-

dent bone anabolic Wnt-ligand,(29) miRNAs could also display

ongoing changes in the regulation of bone turnover in

LRP5-HBM.

Based on our previous cross-sectional study in LRP5-HBMT253I

individuals and controls that demonstrated associations

between age and BMD but not bone turnover markers,(12) we

hypothesized that areal and volumetric BMD (aBMD and vBMD,

respectively), microstructure, and geometry would increase with

age in adult individuals with LRP5-HBM, and that these changes

would be reflected in circulating miRNAs involved in the promo-

tion of bone formation.

2. Subjects and Methods

2.1 Study subjects

Nineteen LRP5-HBMT253I individuals from four different families

sharing the same genetic variant in LRP5 (T253I), previously par-

ticipating in a clinical study of the LRP5-HBM phenotype(12)were

invited by mail to participate in the present investigation. All

LRP5-HBMT253I individuals replied, and 15 consented to

participate. The medical history and results of a general physical

examination were compared to their previous assessments.

Bone scans were conducted in 15 participants, and blood sam-

ples were collected from 14 because one of the participants

was pregnant at the time of sampling.

Fourteen healthy control subjects matched on age, sex, and

body mass index (BMI) were recruited using public advertise-

ment for assessments of bone turnover markers and miRNAs.

Bone turnover and miRNA levels were assessed in 14 and 12 sets

of cases and controls, respectively. The investigation was

approved by the local ethics committee (file no. S20100113).

All participants consented in writing and the study was per-

formed in accordance with the Helsinki II declaration.

2.2 Anthropometrics

Body weight was measured with the participants wearing light

clothing without shoes to the nearest 0.1 kg using a Seca model

708 scale (Seca, Hamburg, Germany) and height to the nearest

0.1 cm using a wall-mounted Harpenden stadiometer (Holtain,

Crymych, UK).

2.3 DXA and HR-pQCT

Dual-energy X-ray absorptiometry (DXA) (Discovery A; Hologic,

Waltham, MA, USA) was used to measure aBMD in the lumbar

spine (L1–L4), total hip, femoral neck, and whole body. The coef-

ficients of variation were 1.0% for all parameters.

A high-resolution peripheral quantitative computed tomography

(HR-pQCT) system (XtremeCT; SCANCO Medical AG, Brüttisellen,

Switzerland)was used tomeasure bonegeometry, vBMD, andmicro-

architecture of the nondominant distal forearm and the distal

part of tibia. The method has previously been validated

and described in detail.(30,31) The manufacturer’s default setting

for patient scanning was applied, yielding a 9.02-mm three-

dimensional (3D) representation of the radius/tibia in the axial

direction. Coefficients of variation (CVs) for bone geometry,

including cortical perimeter (Ct.perimeter), cortical area (Ct.Ar),

and trabecular area (Tb.Ar), were 0.2% to 1.8%, whereas CVs of

total bone vBMD, cortical vBMD (Ct.vBMD), and trabecular vBMD

(Tb.vBMD) were 0.4% to 0.9%. CVs for microarchitectural param-

eters cortical thickness (Ct.Th), trabecular number (Tb.N), trabec-

ular thickness (Tb.Th), and trabecular spacing (Tb.Sp) were in the

range of 0.6% to 7.2%.

DXA and HR-pQCT scans were performed in 2009 to 2010 and

repeated in 2014 to 2017 on the same scanner.

Table 1. Description of LRP5-HBM Patients at Baseline and Time

of Follow-Up

Parameter

Baseline

(n = 12)

Follow-up

(n = 12)

Age (years),

median (range)

47.8 (23.6, 79.2) 53.7 (30.2, 84.8)

Sex (M/F), n 3/9 3/9

Height (cm),

median (range)

170.4 (141.6, 181.9) 170.0 (140.0, 181.2)

Body weight (kg),

median (range)

85.3 (65.0, 110.5) 87.5 (61.2, 108.5)

BMI (kg/m2),

median (range)

30.8 (22.9, 36.6) 30.9 (20.5, 36.2)
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2.4 Biological samples

After an overnight fast blood samples were drawn from the cubi-

tal vein. EDTA plasma were centrifuged at 1000g for 10 minutes

at 4�C and serumwere left for a maximum of 30 minutes at room

temperature and centrifuged at 2100g for 10 minutes at 8�C. All

sample were stored at�80�C within 1 hour and 15minutes from

sampling time. Frozen plasma and serum samples were shipped

on dry ice.

2.5 Bone turnover markers

Serum samples for analyses of procollagen type 1 amino-

terminal propeptide (P1NP) and c-telopeptide of type 1 collagen

(CTX) weremeasured in 14 cases and controls at the University of

Sheffield, UK, using an autoimmunoassay analyzer (Cobas e411;

Roche Diagnostic, Mannheim, Germany) (CVs 1.5% and 4.4%,

respectively).

2.6 miRNA analysis

Plasma levels of 187 circulating miRNAs related to bone

metabolism were selected from previous studies(20,21,32) and

five quality controls were assessed in samples from 12 cases

and controls using RT-qPCR (LightCycler 480 platform) Total

RNA was extracted from 200 μL plasma using the miRNeasy

Mini Kit (Qiagen, Hilden, Germany). Samples were thawed on

ice and centrifuged at 12,000g for 5 minutes to remove any

cellular debris. For each sample, 200 μL of plasma were mixed

with 1000 μL Qiazol and 1 μL of a mix of three synthetic spike-

in controls (Qiagen, Hilden, Germany). After a 10-minute incu-

bation at room temperature, 200 μL chloroform were added to

the lysates followed by cooled centrifugation at 12,000g for

15 minutes at 4�C. Precisely 650 μL of the upper aqueous

phase were mixed with 7 μL glycogen (50 mg/mL) to enhance

precipitation. Samples were transferred to a miRNeasy mini

column where RNA was precipitated with 750 μL ethanol

Table 2. Description of LRP5-HBM Patients and Controls for microRNA

Parameter LRP5-HBM (n = 12) Controls (n = 12) p

Age (years), median (range) 44.5 (18.5, 68.6) 41.5 (22, 69) 0.98

Sex (M/F), n 4/8 4/8 1

Height (cm), median (range) 174 (159, 182.5) 170.8 (162, 185.7) 0.79

Body weight (kg), median (range) 89.1 (66.8, 118.5) 91.5 (72.1,09.5) 0.98

BMI (kg/m2), median (range) 30.7 (21.4, 39.1) 31.4 (24.0, 39.3) 0.84

Fig 1. Demonstrates the change/D in BMD for each subjects between scan#1 and scan#2. Closed red circles: women. Closed blue circles: men.
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followed by automated washing in a QiaCube liquid handling

robot (Qiagen, Hilden, Germany) according to the manufac-

turer’s recommendation. Finally, total RNA was eluted in

30 μL nuclease-free water and stored at�80�C to await further

analysis. Starting from total RNA samples, cDNA was

synthesized using the miRCURY LNA RT kit (Qiagen, Hilden,

Germany). Reaction conditions were set in accordance to the

manufacturer’s specifications. In total, 2 μL of total RNA were

used per 10 μL reverse transcription (RT) reaction. PCR amplifi-

cation was performed in a 384-well plate format in a Roche

Table 3. Measures of aBMD from DXA and vBMD From HR-pQCT From the Baseline and Follow-Up Scan

Parameter Scan #1 (2009) Scan #2 (2014–2017) p % Change/year p

Areal BMD (DXA)

Total hip (g/cm2) 1.74 (1.50, 1.87) 1.67 (1.44, 1.85) 0.04 �0.33 (�0.72, �0.02) 0.06

Femoral neck (g/cm2) 1.63 (1.30, 1.81) 1.50 (1.25, 1.75) 0.01 �0.76 (�1.32, �0.33) 0.01

Lumbar spine, (g/cm2). n = 10 1.74 (1.55, 1.87) 1.74 (1.50, 1.75) 0.38 �0.20 (�0.42, 0.22) 0.45

Total body (g/cm2) 1.76 (1.62, 1.88) 1.83 (1.62, 1.91) 0.14 0.28 (�0.12, 0.70) 0.12

vBMD (HR-pQCT)

Radius

Total vBMD (mgHA/cm3) 541 (529, 594) 558 (525, 599) 0.81 �0.03 (�0.45, 0.78) 0.81

Cortical vBMD (mgHA/cm3) 893 (767, 930) 899 (869, 918) 0.81 �0.02 (�0.33, 0.31) 0.81

Trabecular vBMD (mgHA/cm3) 337 (288, 361) 338 (286, 374) 0.03 0.18 (�0.12,0.70) 0.03

Tibia

Total vBMD (mgHA/cm3) 501 (462, 508) 495 (455, 513) 0.94 0.02 (�0.21, 0.22) 0.94

Cortical vBMD (mgHA/cm3) 881 (876, 923) 893 (880, 919) 0.69 0.06 (�0.14, 0.10) 0.64

Trabecular vBMD (mgHA/cm3) 313 (295, 345) 309 (288, 344) 0.43 �0.05 (�0.28, 0.10) 0.39

The annual change in %/year is calculated from the individual relative difference between the second and the first scan relative to the first scan and

individual follow-up time. BMD and annual change in %/year are presented as median (interquartile range).

Fig 2. Demonstrates the change/D in vBMD in radius and tibia for each subjects between scan#1 and scan#2. Closed red circles: women. Closed blue

circles: men.
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LC480 II instrument (Roche Diagnostic) using miRCURY LNA

SYBR Green PCR kit (Qiagen, Hilden Germany) with the follow-

ing settings: 95�C for 10 minutes, 45 cycles of 95�C for

10 seconds, and 60�C for 60 seconds, followed by melting

curve analysis. To calculate the cycle of quantification values

(Cq-values), the second derivative method was used. For qual-

ity control we added spike-in controls UniSp2, UniSp4 and

UniSp5 included in the RNA Spike-In Kit (Qiagen, Hilden,

Germany) prior to RNA extraction for estimation of the overall

technical variance present in the raw data (Fig. S1A). Cel-miR-

39 was added to total RNA sample prior to reverse transcrip-

tion and qPCR and UniSp3, a synthetic qPCR primer/DNA-

template mix was added on each qPCR plate to measure the

technical variance of the qPCR reaction (Fig. S1A). Hemolysis

was assessed in all samples using the ratio of miR-451a versus

miR-23a-3p and applying a cut-off of >5 for calling a sample

hemolytic. Nine of the 187 preselected miRNAs had a low

detection rate (Cq > 35) and/or more than four missing values,

hence were not included in the analysis. Four control subjects

were excluded as two had a hemolysis ratio >5 (Fig. S1B) and

two appeared as outliers in unsupervised principal component

analysis (Fig. S2), causing heterogeneity and to reduce the risk

of a type II error as the investigation was explorative. Thus,

12 LRP5-HBM and eight control subjects were included in the

final analyses of 178miRNAs.(33) Cq-values of endogenous miR-

NAs were normalized to the RNA spike-in control UniSp4 by

subtracting the individual miRNA Cq-value from the RNA

spike-in Cq-value, thus obtaining delta-Cq (dCq) values that

were used for the analysis.

2.7 Statistics

Normality was assessed by histograms and qq-plots and data are

presented as mean (� standard deviation) for normal distribu-

tion or as median (interquartile range) for variables with a

skewed distribution. Means were compared with unpaired

t test between groups and paired t test within groups. Medians

were compared with Wilcoxon rank sum test between groups

and Wilcoxon signed rank test within groups. The change from

scan #1 to scan #2 was tested by Wilcoxon signed-rank test for

rate of change being different from zero. Differential expression

analysis of miRNA was performed using two-sided unpaired

t test. All statistical analyses were performed using Stata/IC

release 15.1 (StataCorp, College Station, TX, USA). The bone-

related outcomes were considered complementary, and ana-

lyses of these outcomes were not corrected for multiple

comparisons. For analysis of miRNAs, obtained p values were

adjusted for multiple comparisons using the Benjamini Hoch-

berg procedure. A false discovery rate (FDR) < 0.1 was consid-

ered as statistically significant. Statistical support was provided

by Epidemiology, Biostatistics and Biodemography at the

Department of Public Health, University of Southern Denmark.

3. Results

3.1 Participants–bone phenotype

A total of 15 LRP5-HBM individuals participated in the investigation

of the bone phenotype at baseline and time of follow-up. None of

Table 4. Geometry and Microarchitecture Assessed by HR-pQCT From the Baseline and Follow-Up Scan

Parameter Scan #1 (2009) Scan #2 (2014–2017) p % Change/year p

Radius

Bone area

Perimeter (mm) 71.3 (68.1, 78.7) 72.6 (69.1, 79.5) 0.24 0.16 (�0.01, 0.6) 0.18

Cortical bone area (mm2) 124.1 (102.8, 164.7) 123.9 (102.7, 177.9) 0.16 0.39 (�0.38, 1.04) 0.14

Trabecular bone area (mm2) 188.5 (160.2, 217.6) 198.6 (159.7, 223.2) 0.58 0.28 (�1.00, 1.27) 0.58

Cortical parameters

Cortical thickness (mm) 1.71 (1.54, 2.11) 1.72 (1.49, 2.29) 0.97 �0.29 (�0.73, 0.94) 0.87

Trabecular parameters

Bone volume/tissue volume (ratio) 0.281 (0.241, 0.301) 0.282 (0.229, 0.312) 0.03 0.19 (0, 0.40) 0.03

Trabecular number (1/mm) 2.4 (2.1, 2.5) 2.3 (2.2, 2.5) 0.14 0.50 (�0.22, 1.07) 0.12

Trabecular thickness (mm) 0.12 (0.12, 0.13) 0.12 (0.11, 0.13) 0.91 0.12 (�0.73, 0.65) 0.94

Trabecular spacing (mm) 0.32 (0.29, 0.35) 0.30 (0.29, 0.33) 0.10 �0.80 (�1.14, 0.13) 0.10

SD.1/Tb.N (mm) 0.127 (0.109, 0.161) 0.122 (0.109, 0.147) 0.05 �0.77 (�1.90, 0.08) 0.06

Tibia

Bone area

Perimeter (mm) 114.2 (103.9, 119.4) 113.3 (103.6, 118.7) 0.11 �0.06 (�0.14, 0.01) 0.07

Cortical bone area (mm2) 242.2 (211.6, 308.8) 241.1 (213.5, 310.1) 0.81 0.01 (�0.23, 0.17) 0.81

Trabecular bone area (mm2) 567.4 (492.8, 642.8) 565.6 (486.0, 637.1) 0.14 �0.19 (�0.47, 0.05) 0.12

Cortical parameters

Cortical thickness (mm) 2.33 (1.97, 2.64) 2.33 (1.92, 2.69) 1.00 0.00 (�0.30, 0.21) 0.87

Trabecular parameters

Bone volume/tissue volume (ratio) 0.261 (0.246, 0.288) 0.258 (0.240, 0.287) 0.35 �0.07 (�0.26, 0.09) 0.33

Trabecular number (1/mm) 2.6 (2.4, 2.8) 2.6 (2.5, 2.6) 0.56 �0.12 (�0.66, 0.34) 0.56

Trabecular thickness (mm) 0.10 (0.10, 0.11) 0.10 (0.10, 0.11) 0.84 0.0 (�0.61, 0.45) 0.72

Trabecular spacing (mm) 0.29 (0.26, 0.31) 0.29 (0.28, 0.31) 0.50 0.13 (�0.24, 0.72) 0.05

SD.1/Tb.N (mm) 0.115 (0.099, 0.120) 0.116 (0.104, 0.121) 0.35 0.28 (�0.23, 1.31) 0.31

The annual change in %/year is calculated from the individual relative difference between the second and the first scan relative to the first scan and

individual follow-up time. HR-pQCT parameters and annual change in %/year are presented as median (interquartile range).

SD.1/Tb.N = trabecular network inhomogeneity (standard deviation of 1/Tb.N).
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the LRP5-HBM individuals reported fractures between these time

points. The medical history and physical examination did not

reveal incident neurological complications; eg, visual impairment,

dental complaints or clinically overt torus palatinus.

Studies of areal and volumetric bone density, geometry, and

microarchitecture were performed with a median time interval of

5.8 years, ranging from 4.9 to 7.6 years for DXA and 5.8 to 7.6 years

for HR-pQCT. Median age at time of the first scan was 44.3 years

(range, 13.0 to 79.2 years) and 50.5 years (range, 18.8 to 84.8 years)

for the second scan for both DXA and HR-pQCT scans. The three

youngest subjects (one male and two females) were 13, 15, and

19 years when baseline DXA and HR-pQCT scans were performed,

and 19, 21, and 24 years as well as 19, 21, and 25 years at time of

follow-up to theDXA andHR-pQCT scans, respectively. Large incre-

ments in BMD and substantial changes in bone microarchitecture

were observed in the three youngest participants (Fig. S3), indicat-

ing that they had not reached peak bonemass. Therefore, to assess

age-related changes of the bone phenotype in adults, the three

youngest individuals were excluded from further investigations.

Anthropometrics for the 12 LRP5-HBM individuals included in

these analyses are presented in Table 1.

3.2 Participants–miRNA measurements

A total of 12 cases and matched controls were included in cross-

sectional study of themiRNAmeasurements, and their anthropo-

metrics are presented in Table 2.

3.3 DXA

Median aBMD in the 12 LRP5-HBM individuals included in the

analyses decreased both at the total hip (median [interquartile

range]; from 1.74 g/cm2 [1.50, 1.87] to 1.67 g/cm2 [1.44, 1.85],

p = 0.04, corresponding to an annual change of �0.33%) and

femoral neck (from 1.63 g/cm2 [1.30, 1.81] to 1.50 g/cm2 [1.25,

1.75], p = 0.01, annual change: �0.76%) (Table 2, Fig. 1) which

was not related to a change in bone area (data not presented).

Assessment of lumbar spine aBMD was not possible in two sub-

jects (aged 60.0 and 84.8 years) due to spinal stenosis and scoli-

osis. Changes in lumbar spine or whole-body aBMD were not

observed (Table 3, Fig. 1). At follow-up, the median Z-score was

6.0 (range, 3.3 to 9.6) at the hip and 5.7 (range, 3.3 to 9.7) at the

lumbar spine.

3.4 HR-pQCT

Trabecular vBMD increased in radius (from 337 mg hydroxyapa-

tite (HA)/cm3 [288, 361] to 338mgHA/cm3 [286, 374], p= 0.03) by

0.18% per year but not in tibia (Table 3, Fig. 2). Although the ratio

of the trabecular bone volume over the total cancellous tissue

volume (BV/TV) increased (0.281 [0.241, 0.301] to 0.282 [0.229,

0.312], p= 0.03) by 0.19% per year and trabecular network distri-

bution inhomogeneity (SD.1/Tb.N) decreased (0.127 mm [0.109,

0.161] to 0.122 mm [0.109, 0.147], p = 0.05) by 0.77% per year

Fig 3. Spike-in normalized dCq values for the Top 30 microRNAs (ranked according to their coefficient of variation) were used to draw a heatmap. Rows

represent microRNA, and columns represent samples. Pearson correlation and complete linkage were used for clustering of samples.
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in radius, other measures of bone geometry and microarchitec-

ture such as trabecular thickness and number, cortical area,

and bone perimeter were unchanged (Table 4).

3.5 Bone turnover markers

Fasting bone turnover markers were measured in 14 subjects

and controls at time of follow-up. Levels of P1NP and CTX did

not differ between LRP5-HBM and controls (median [interquar-

tile range]; P1NP (ng/mL): 60.5 [37.9, 93.7] versus 62.7 [40.2,

76.0], p = 0.55; and CTX (ng/mL): 0.37 [0.31, 0.61] versus 0.43

[0.28, 0.52], p = 0.91).

3.6 miRNA

Among the 30 most variant miRNAs based on CV%, a distinct

clustering of LRP5-HBM subjects was observed (Fig. 3) and sub-

sequent differential expression analysis revealed a significant

downregulation of 11 miRNAs (Figs. 4 and 5: miR-369-3p, miR-

495-3p, miR-323a-3p, miR-410-3p, miR-382-5p, miR-376c-3p,

miR-376a-3p, miR-136-3p, miR-154-5p, miR-328-3p, and miR-

127-3p. All FDR < 0.1). Five of these have been demonstrated

to interact with components of the Wnt-pathway: miR-410-3p,

miR-376c-3p, miR-136-3p, miR-154-5p, and miR-328-3p.(34–38)

The web-based service https://www.mirnet.ca/ was used to

build a network of experimentally verified target genes to

identify common targets of the 11 differently expressed miR-

NAs. Only miRNAs with at least one common target with

another miRNA were allowed to stay in the network, using this

criterion all but mir-127-3p remained for constructing the net-

work (Fig. 6). The network analyses revealed nine genes,

including ZXDA, CNBP, OCRL, ACVR1C, VEGFA, UHMK1, CBX4,

CXCL5, and MTRNR2L1. Of these, VEGFA, UHMK1, and CXCL5

are known to relate directly to bone development or homeo-

stasis, and CNBP is known to modulate Wnt-signaling directly

in zebrafish.(39) The remaining genes have no currently appar-

ent association with bone.

4. Discussion

This study demonstrated that areal and volumetric bone density,

microarchitecture, and geometry remained stable during a

6-year follow-up study of adult individuals with LRP5-HBMT253I.

We observed a loss of aBMD at the femoral neck and total hip

and an increase in trabecular vBMD at the radius as well as a

change in bone microarchitecture with an increase in trabecular

bone volume fraction in radius. Although assessments of bio-

chemical markers did not indicate differential bone turnover in

LRP5-HBMT253I as compared to closely matched controls, several

bone-related miRNAs were downregulated in LRP5-HBMT253I

participants.

4.1 DXA and HRpQCT

Prospective DXA data indicated bone loss at the hip but not spine,

and the annual decrease in the femoral neck and hip BMDwas sim-

ilar to or even slightly greater than the 0.35% to 0.55%/year that is

observed in healthy Danishmen and premenopausal and postmen-

opausal women,(40) further supporting that individuals with

LRP5T253I-HBM are not protected from age-related bone loss at least

at the hip and femoral neck. The impact of the pathogenic variant

could be compartment specific as the hipmostly consists of cortical

bone whereas the spine is dominated by trabecular bone.(41)

Fig 4. Scatterplots for 11 significantly regulated miRNAs (FDR<0.1) in 12 mutation-positive subjects (LRP+) heterozygous for the T253I genetic variant in

LRP5 and in 8 mutation-negative subjects (LRP�). Spike-in normalized delta Cq values are shown with mean and standard deviation indicated.
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Importantly, spinal degenerative changes including osteoarthritis

are commonly observed in patients with high bone mass(42) and

may falsely increase BMD. Although LRP5-HBM patients with overt

spinal diseases were excluded from the analyses, degenerative

changes may have masked age-related spinal bone loss in individ-

uals with LRP5-HBM. Increases in trabecular variableswere observed

in the radius only and the increase in trabecular vBMD in radius was

in accordance with a population-based study of Danish men and

women.(43) Changes in trabecular thickness and number, cortical

parameters, and bone areas including perimeter were not apparent

at any of the peripheral sites. These findings differ from the Danish

population-based study(43) showing age-related decreases in tra-

becular number (postmenopausal women) and thickness (men

20 to 49 years) in radius only,(43) indicating that the LRP5 variant pre-

vents deterioration of trabecular bone microarchitecture and possi-

bly increases trabecular BMD in radius. The absence of changes in

individuals with LRP5-HBM in some of the HR-pQCT–derived mea-

sures are in line with the prospective data in healthymen >50 years

regarding; eg, cortical area or trabecular number in radius(43); how-

ever, these findings are at odds with data in postmenopausal

women (decreasing) and younger men and women

(increasing),(43) showing that the heterogeneity of our cohort with

regard to sex, age, andmenopausal status makes comparisons with

these prospective data challenging. Jointly, our findings indicate

that the LRP5 variant may prevent bone loss in radius but does

not cause a continuous and general increase in bone mass, micro-

architecture, or geometry.

Contrary to our previous publication that demonstrated

lower CTX but normal P1NP levels in LRP5-HBM cases,(12) differ-

ences in bone turnover markers between cases and controls

were not observed in the present investigation. Different study

populations may explain this as the present investigation

included fewer and older LRP5-HBM individuals. BMI of the

LRP5-HBM patients was approximately 30 kg/m2, and

increases in BMI generally associate with lower levels of bone

turnover markers. Therefore, similar levels of bone turnover

markers in the present investigation may be explained by

inclusion of BMI-matched controls, which was not done in

the previous study.

4.2 miRNA

We identified 11miRNAs that were downregulated including five

reported to interact directly with components of the Wnt-path-

way.(34–38) Among these, repression of miR-328-3p impairs oste-

ogenic differentiation in human mesenchymal stem cells(32) as

downregulation of miR-328-3p promotes Axin1 activity, which

inhibits Wnt-signaling.(37) miR-154-5p is associated with

Fig 5. Scatterplots for 11 significantly regulated miRNAs (FDR<0.1) in 12 mutation-positive subjects (LRP�) heterozygous for the T253I genetic variant in

LRP5 and in 8 mutation-negative subjects (LRP�). Spike-in normalized delta Cq values are shown with mean and standard deviation indicated.
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osteogenic differentiation(44) due to suppression of DKK2, a Wnt

antagonist,(34) and lower miR-154-5p indicates increased transla-

tion of DKK2 and subsequently inhibition of Wnt-signaling.

Finally, we observed lower levels of miR-410-3p, reported to

repress the Wnt antagonist DKK1 in colorectal cancer,(45) as well

as BMP2, which induces osteogenesis.(45) Downregulation of

these three miRNAs may upregulate Wnt antagonists thus

impairing Wnt signaling and suppressing osteogenic differentia-

tion and osteoblast activity. miR-410-3p(36) and miR-376c-3p(35)

inhibit expression of Wnt3a, which promotes Wnt-signaling.

Although downregulation of these miRNAs may promote Wnt

signaling, the overall outcomes of the contrasting effects of

miR-410-3p on Wnt signaling remain unknown. We observed

downregulation of miR-136-3p, which inhibits osteoblast differ-

entiation and promotes osteoclastogenesis,(46) possibly by

repressing the Wnt agonist WNT2.(38) Thus, upregulation of Wnt

agonists and BMP-signaling by downregulation of miR-376c-3p,

miR-410-3p, and miR-136-3p could promote bone formation

and increase bone mass. It is possible that downregulation of

miRNAs controlling Wnt-antagonists represent a regulatory

mechanism that counteracts unbalanced bone formation and

resorption in individuals with LRP5-HBM, possibly contributing

to an increase in serum sclerostin as observed in patients with

this condition.(12) Downregulation of miR-136-3p is also reported

to inhibit differentiation of osteoclasts,(46) which could explain

the reduced osteoclast number and activity observed in bone

biopsies from LRP5-HBM patients.(16)We speculate that differen-

tial expression of miRNAs in LRP5-HBM individuals reflect the dis-

ease mechanism as well as counter-regulatory responses.

Assessments of patients with WNT1 osteoporosis, another

rare, Wnt-pathway-related bone disease, revealed upregulation

of two miRNAs and downregulation of six miRNAs.(28) Neither

of the miRNAs differentially expressed in WNT1 osteoporosis

overlapped with the miRNA profile identified in LRP5-HBM indi-

viduals, possibly due to the bone anabolic effect of WNT1 being

independent of LRP5.(29) Similarly, we did not observe overlap

with miRNAs that were differentially expressed in osteoporotic

patients with vertebral fractures.(22)

Of the nine genes identified in the network analysis, VEGFA,

UHMK1, and CXCL5 are known to be directly involved in bone

development or homeostasis. In addition, CNBP modulates

Wnt-signaling during embryonic mesenchymal differentiation

in zebrafish,(39) and ACVR1C(47) and ZXDA(48) interact with Wnt-

signaling, but the effect on bone cells or their precursors are

unknown. Importantly, our findings need to be corroborated in

other LRP5-HBM individuals and animal models, and further

studies of the miRNAs identified in the LRP5-HBM individuals

are needed to establish their effects on human bone cells.

The differentially expressed miRNAs identified may have dif-

ferent effects on bone accrual and after peak bone mass has

been reached. Although the present study included a relatively

large number of LRP5-HBM cases, an imbalance in the number

of men and women in the investigation precluded an assess-

ment of sex-specific effects of the genetic variant. Future clinical

and mechanistic investigations; eg, in animal LRP5 HBM models,

may clarify if the effects of the gene variants depend on the sex,

including menopausal status. Additionally, spurious associations

may have emerged in themiRNA analyses because controls were

Fig 6. Eleven microRNAs differentially regulated with a FDR < 0.1 in LRP5-HBMT253I vs. Controls were used for constructing a target network using the

online tool miRnet (accessible via mirnet.ca). The degree filter for constructing the network was set to 2, hence only target nodes with at least two con-

nections remained in the network.

JBMR® Plus LRP5-HBM BONE PHENOTYPE 9 of 11 n



not matched for ancestry. It should be acknowledged that the

present investigation was restricted to the characterization of a

single genetic variant, and the results may differ in carriers of

other LRP5 variants.

5. Conclusion

This study demonstrates that the LRP5-HBM condition does not

progress in adults. Contrary to the general population, bone den-

sity, microstructure, and geometry remain stable at most of the

sites investigated. Although LRP5-HBM individuals are not

entirely protected from age-related bone loss, indications of

clinically relevant changes in fracture risk were not observed.

The downregulation of several miRNAs in individuals with the

T253I gain-of-function genetic variant in LRP5 predicted to

reduce sclerostin sensitivity may reflect a counter-regulatory

mechanism maintaining homeostasis as reflected by normal

bone turnover markers.
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