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Abstract

Reliable climate change projections over East Africa are vital because of

regional vulnerability to precipitation changes. However, global climate

models from Coupled Model Intercomparison Project Phase 5 (CMIP5) display

significant biases in their representation of key East African rainfall seasons,

which call into question the reliability of projected climate change. We investi-

gate the links between models' representation of rainfall over Kenya during

the long and short rains and the proximate Walker circulation. There is a

strong correlation in the short rains between model biases in Kenyan rainfall

and in the mid-to-upper tropospheric vertical velocity associated with this cir-

culation. The overturning Indian Ocean Walker cell at the equator is absent in

5/25 models during the short rains – these models exhibit wet biases. In the

long rains, dry biased models overestimate the strength of the descending limb

of the circulation over East Africa. Omega biases over the Congo Basin are

linked to broader Walker circulation biases. During the long rains, models

overestimate equatorial descent more generally across the Western Hemi-

sphere Tropics (0�E–200�E). A significant correlation is obtained across the

model ensemble between model rainfall over Kenya and Western Hemisphere

equatorial ascent during November. Atmosphere-only models display some

improvements over coupled models, but biases of a similar magnitude remain.

We therefore propose Indian Ocean Walker circulation errors as a key source

of bias in CMIP5 East African rainfall. The results add to recent work on

CMIP5 biases in this region, demonstrating that the Indian Ocean Walker cir-

culation should be a focus for future model improvement and a consideration

when assessing the reliability of climate projections over East Africa. Further

work is needed on the causes of Walker circulation biases (in particular the

role of SST), and on understanding the impact of Walker circulation biases on

modelled tropical rainfall elsewhere in the world.
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1 | INTRODUCTION

Climate models are our primary tool for projecting the

global climate system's response to warming brought

about by anthropogenic greenhouse gas emissions. They

are used to formulate policy on scales from the global to

the local, but often exhibit substantial biases in vital out-

put fields such as precipitation (Li and Xie, 2014; James

et al., 2015; 2018; Rowell et al., 2015; Tierney et al., 2015;

Ongoma et al., 2017). In some regions of the world,

models display sizeable systematic biases relative to

observations – errors which, having a shared direction,

may be indicative of a common underlying dynamical

problem (Sanderson and Knutti, 2012). It is therefore

important to understand the underlying physical pro-

cesses operating within models with respect to biases, so

that these biases can be both foci for targeted model

improvement (James et al., 2015; 2018; Collins et al., 2018)

and can be taken into account when assessing the reli-

ability of projections derived from a specific model or

model ensemble (McSweeney et al., 2015). Global climate

models are run at spatial resolutions that make it difficult

to replicate the complexity of the circulation responsible

for specific characteristics of regional circulations. The

approach whereby climate model performance is evalu-

ated based on dynamical processes is therefore of particu-

lar use in climate projections on smaller spatial scales

useful to policy-makers (Collins et al., 2018), and is more

revealing than simply relying on a comparison between

model output and a reference dataset (James et al., 2015),

especially in regions such as the tropics where observa-

tional data may be sparse or of poor quality (Washington

et al., 2013; Gebrechorkos et al., 2018). Therefore, study-

ing model dynamics in such regions can have useful

impacts on both the modelling and climate adaptation

communities.

Models participating in the Coupled Model

Intercomparison Project Phase 5 (CMIP5; Taylor

et al., 2012) exhibit systematic biases in their representa-

tion of historical rainfall over East Africa (Yang

et al., 2014; Tierney et al., 2015). The models tend to

underestimate rainfall in the long rains season (March–

April–May), some by over half, and to overestimate it in

the short rains season (October–November–December),

some by over 100%. In historical coupled simulations, the

magnitude of the model ensemble range (i.e., the differ-

ence between the wettest and driest models) is greater

than the observed monthly mean rainfall in all rainy sea-

son months other than April (Tierney et al., 2015).

An understanding of model rainfall biases is crucial

to climate change adaptation planning in East Africa

(Collier et al., 2008; Shongwe et al., 2011; Uhe et al., 2018).

Around 75% of the working population are involved in

rain-fed agriculture (Lyon, 2014), and hydroelectricity

provides the majority of the region's energy; rainfall is

thus closely linked to development (Funk et al., 2008;

Borgomeo et al., 2018). East Africa has recently experi-

enced a series of severe droughts, for example in 1983–

1984 and 2010–2011 (Lyon, 2014), with drought condi-

tions prevailing since around 2008 (Nicholson, 2016a).

Around 17.5 million people are at risk from food short-

ages in Ethiopia, Somalia, and Kenya (Williams and

Funk, 2011) and links have been suggested between

drought and conflict in Somalia (Thalheimer and

Webersik, 2020). Uncertain rainfall projections raise sig-

nificant dilemmas (Washington et al., 2006; Giannini

et al., 2018). For instance, should countries invest in

more irrigation infrastructure and hydroelectric power,

given projected rainfall increases (Kaunda et al., 2012)?

Or, rather, should they focus on reducing the impacts of

drought events, given the climatic trends of the last 30–

40 years? A first step towards addressing these questions

is an understanding of the causes behind models' rain-

fall biases. Elsewhere in Africa, model rainfall bias has

been shown to condition the nature of projected climate

change (Munday and Washington, 2018).

The seasonal cycle of rainfall in East Africa is associ-

ated with the northward/southward movement of the

tropical rain belt, although the complexity of the local

topography and rainfall dynamics limits the explanatory

power of this feature (Nicholson, 2018). Important funda-

mental influences on East African rainfall include mois-

ture flux from the Indian Ocean (Viste and

Sorteberg, 2013; Yang et al., 2015b), moist static energy

profiles (Yang et al., 2015b), and topography (Slingo

et al., 2005; Hession and Moore, 2011; Naiman

et al., 2017). Dynamically the rainfall is modulated on

intraseasonal to interannual timescales by the Madden-

Julian Oscillation (Berhane and Zaitchik, 2014;

Zaitchik, 2017), Indian Ocean SST, and the Quasi-Bien-

nial Oscillation (Vellinga and Milton, 2018). The under-

studied low-level jet in the Turkana Channel may also

have a role in controlling regional aridity and rainfall

variability (Nicholson, 2016b; Hartman, 2018;

MacLeod, 2019).

Efforts to understand the nature of future climate

change have put a premium on circulation over thermo-

dynamics in the tropical atmosphere (Chadwick

et al., 2013). On a global scale, the wider multi-cell

Walker circulation is associated with the El Niño South-

ern Oscillation (ENSO), and while the strength of the

teleconnection between East African rainfall and ENSO,

primarily observed during the short rains, has varied

throughout the observational record (Nicholson, 2015),

the Walker circulation may act as a mechanism by which

the ENSO signal (and Pacific SST warming more
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generally) is transmitted to East Africa via modification

of vertical velocity and moisture transport (Black, 2005;

Hoell et al., 2014; Lyon, 2014).

Models tend to exhibit positive IOD biases in boreal

autumn and winter (Cai and Cowan, 2013), but attribu-

tion of recent East African spring drying to the IOD is

limited because the IOD is generally neutral in this sea-

son. Furthermore, the tendency of models to project

increasing spring rainfall under future forcing scenarios,

in direct contrast to the recent observed drying trend, has

been termed the ‘East African Climate Paradox’ (Rowell

et al., 2015; Wainwright et al., 2019). While the ‘paradox’

refers to the long rains, the majority of the models' pro-

jections of wetting occur during the short rains in

response to projected Walker circulation weakening

(Kociuba and Power, 2015; Tierney et al., 2015; Endris

et al., 2018). This is in opposition to recent observations,

leading the models' representation of the Walker circula-

tion to become a significant source of uncertainty in

future projections (Tierney et al., 2015; Giannini

et al., 2018).

The link between the Walker circulation and East

African rainfall in observations has been well established

(e.g., Black et al., 2003; Behera et al., 2005; Liebmann

et al., 2014; 2017; Vigaud et al., 2017), particularly for the

short rains where there is a strong correlation between

surface equatorial westerlies and rainfall (Mutai

et al., 2012). These westerlies, which form part of the

overturning Walker cell in the Indian Ocean, are in turn

closely correlated with the zonal SST gradient in the

Indian Ocean. This is most pronounced during boreal

winter when the Indian Ocean Dipole (IOD) is most

active (Black, 2005). The Pacific component of the

Walker circulation has been observed to be strengthening

on decadal timescales since the 1950s (L'Heureux

et al., 2013), coincident with a decadal drying signal over

East Africa during the long rains (Rowell et al., 2015). A

dynamic link between the two has been suggested; SST

warming in the eastern Indian Ocean (a negative IOD)

has led to increased convection/precipitation in the east

of the basin (Liebmann et al., 2017), resulting in easterly

movement of air aloft which suppresses convection over

East Africa (Williams and Funk, 2011; Liebmann

et al., 2017). Recent work has linked model rainfall biases

in East Africa to erroneous low-level zonal winds over

the equatorial Indian Ocean (Hirons and Turner, 2018),

which are part of the overturning circulation. The Walker

circulation has also been found to be poorly represented

over Madagascar, with an overly simplified connection

between Indian Ocean subsidence and Southern African

convection (Munday and Washington, 2018). Given that

SST warming in the Indian and Pacific oceans is likely to

be anthropogenic, whereas ENSO is fundamentally a

natural mode of variability modified by warming, it is

likely that both anthropogenic and natural forcings need

to be considered to explain the recent drying trend –

however, model biases frustrate such attribution (Hoell

et al., 2017). In addition, work on the Walker circulation

tends to focus on the zonal winds and/or the ascending

component, whereas both ascending and descending

components interact to produce observed rainfall (Li

et al., 2015). Here, we add to this analysis by presenting

an assessment of how models' circulation biases affect

their rainfall biases. We aim to address the following

questions:

1. What is the relationship between the reanalysis verti-

cal components of the Indian Ocean Walker circula-

tion and observed Kenyan rainfall?

2. How is this relationship represented in CMIP5

models?

3. How are the CMIP5 rainfall biases in the East African

region associated with their simulations of the Walker

circulation?

The layout of the rest of the article is as follows: Sec-

tion 2 introduces the datasets used. Section 3 reviews the

rainfall climatology of Kenya and examines the Walker

circulation/rainfall relationship using gridded rainfall

and reanalysis data. Section 4 analyses the representation

of the Walker circulation in CMIP5 models and its links

to Kenyan rainfall. Section 5 summarizes the article in

the context of future climate projections, and provides a

conclusion.

2 | DATA

Rainfall data used in this study were obtained from ver-

sion 2 of the Climate Hazards Group Infrared Precipita-

tion with Stations dataset (CHIRPSv2.0; Funk

et al., 2015). This is a high-resolution (0.05�) gridded

dataset which combines observed rainfall from

raingauges with remotely sensed infrared measurements

of cold cloud duration. It has performed well in assess-

ments of precipitation datasets over East Africa relative

to station data, and has been suggested to be the best

available satellite estimate of rainfall over eastern equato-

rial Africa (Kimani et al., 2017; Gebrechorkos et al., 2018).

Given the lack of direct observations of the upper tropo-

sphere, reanalysis data were used as the reference clima-

tology for the Walker circulation. Reanalysis products

differ slightly in their representations of the tropospheric

circulation over equatorial Africa (Washington et al., 2013;

Maidment et al., 2015). While the difficulty of obtaining

direct observations of tropospheric vertical motion over
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TABLE 1 CMIP5 models used in this study. Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList. Asterisks denote models used in AMIP ensemble.

Model name Modelling group

Mean March Kenya rainfall

(mm�day−1)

Mean November Kenya

rainfall (mm�day−1)

ACCESS1-3* Commonwealth Scientific and Industrial

Research Organization and Bureau of

Meteorology (Australia)

0.72018468 5.39158201

BCC-CSM1-1-M* Beijing Climate Centre, China Meteorological

Administration

3.12062645 4.77377367

BNU-ESM* College of Global Change and Earth System

Science, Beijing Normal University

0.50848675 2.30800176

CanESM2 Canadian Centre for Modelling and Analysis 2.20307994 3.82551479

CanAM4* (atmosphere only) Canadian Centre for Modelling and Analysis 3.519263 4.191565

CCSM4* National Center for Atmospheric Research (USA) 1.12436569 4.88698149

CESM1-CAM5* National Science Foundation, Department of

Energy, National Center for Atmospheric

Research (USA)

0.88511753 4.35356998

CMCC-CM* Centro Euro-Mediterraneo per I Cambiamenti

Climatici (Italy)

1.52150857 3.66852021

CNRM-CM5* Centre National de Recherches Météorologiques

(France)

1.19458139 3.20929885

CSIRO-Mk3-6-0* Commonwealth Scientific and Industrial

Research Organisation in collaboration with the

Queensland Climate Change Centre of

Excellence (Australia)

1.85005295 3.11245489

EC-EARTH EC-EARTH consortium (Europe) 1.29948533 3.00232744

FGOALS-g2* LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences; and CESS, Tsinghua

University

1.54839027 4.2387495

FIO-ESM The First Institute of Oceanography, SOA (China) 1.97875655 2.83555794

GFDL-CM3* Geophysical Fluid Dynamics Laboratory (USA) 0.35625046 4.54361105

GISS-E2-R* Goddard Institute for Space Studies (USA) 2.65551329 4.94359398

HadGEM2-A* (atmosphere only) Met Office Hadley Centre (UK) 2.047307 3.890381

HadGEM2-AO Met Office Hadley Centre (UK) 0.99927062 3.21843314

INMCM4* Institute for Numerical Mathematics (Russia) 3.36340737 5.58793449

IPSL-CM5A-LR* L'Institut Pierre-Simon Laplace (France) 0.67848229 1.46617961

IPSL-CM5A-MR* L'Institut Pierre-Simon Laplace (France) 1.60588074 1.69666374

(Continues)
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the oceans precludes direct validation studies for the time

being, version 2 of the Modern-Era Retrospective Analy-

sis for Research and Applications (MERRA-2) reanalysis

(Gelaro et al., 2017) has been suggested to be the most

realistic of those currently available at representing tro-

pospheric wind fields over equatorial Africa when

compared to quality-controlled observations from radio-

sondes (Hua et al., 2019). Given that such winds are part

of the overturning cells upon which this article is

focussed, MERRA-2 data has been used. ERA-Interim

and NCEP2 data produced similar results (not shown).

The climate model data used are from CMIP5 (Taylor

et al., 2012). A subset of 25 GCMs was selected based

upon the availability of vertical velocity and wind fields

from the historical coupled runs, and forcing experiments

with the RCP8.5 scenario (which is the closest to

observed recent CO2 concentration increases [Sanford

et al., 2014]) for use in future work (Table 1). The first

ensemble member for each model was used over the

period 1975–2005. Initial analysis using the first three

ensemble members for two randomly selected models

(ACCESS1-3 and MPI-ESM-LR) indicated that the

results were not sensitive to the ensemble member

selected – no statistically significant differences were

found between the ensemble members for the correla-

tions between monthly mean precipitation and 400 hPa

vertical velocity over Kenya. The individual models var-

ied in resolution from 0.5625� to 7.84�. Consequently,

where model composites were calculated, the data were

first regridded onto a common 1� x 1� grid using a

nearest neighbour interpolation algorithm. A subset of

22 atmosphere-only models (AMIP) was selected from

the CMIP5 ensemble, which are denoted with asterisks

in Table 1. Analysis involving wind field computations

using spherical harmonic functions (e.g., velocity poten-

tial) was performed using the Windspharm library

(Dawson, 2016).

3 | OBSERVATIONS AND
REANALYSIS

The vertical motion associated with the Walker circula-

tion acts as a large-scale control on rainfall over Kenya

during the short rains (Mutai et al., 2012). It has been

suggested as a mechanism for recent drying trends in the

long rains (Williams and Funk, 2011), and many CMIP5

models exhibit mean-state biases in the low-level zonal

winds which are associated with the circulation (Hirons

and Turner, 2018). We explore the possibility that rainfall

biases in CMIP5 models are linked to the models' repre-

sentation of vertical motion in both the ascending and

descending limbs of the Indian Ocean Walker circulation.T
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Here, we briefly review the climatological Walker circula-

tion and its links to the observed rainfall climatology

within the two main Kenyan rainy seasons.

Rainfall in the Greater Horn of Africa (GHA) region

generally displays either a unimodal or bimodal regime.

The Ethiopian Highlands region has a unimodal rainfall

climatology with a rainy season extending from July to

September (Dunning et al., 2016), although there is com-

plex seasonality in sub-regions (Diro et al., 2011). Areas

further south, including Kenya, have a bimodal rainfall cli-

matology, with a ‘long rains’ season from March to May

and a ‘short rains’ which is considered by some to extend

from October to December (Yang et al., 2015a) but by

others to only include October and November (e.g., Nich-

olson, 2017). Figure 1 illustrates the spatial distribution of

rainfall in each month of these two rainy seasons. For

Kenya, rainfall maxima in excess of 250 mm�month−1 are

located in the central highlands around Mt. Kenya in April

and November, as well as along the eastern edge of Lake

Victoria in April and along the coast in May. North-west

Kenya, around Lake Turkana, is consistently dry with less

than 100 mm�month−1 of rainfall in each month of the

rainy seasons. Averaged across the Kenya domain (box in

Figure 1), the wettest long rains month is April

(4.22 mm�day−1) and the wettest short rains month is

November (3.06 mm�day−1).

The climatological structure of the vertical velocity

(omega) component of the Indian Ocean Walker circu-

lation in MERRA2 reanalysis can be seen in Figures 2,

3, and 4. The core ascending region over the Maritime

Continent is strongest in April during the long rains

(−0.065 Pa�s−1) and November during the short rains

(−0.094 Pa�s−1) (Figure 2). In March, the upper-tropo-

spheric descent over Kenya is 10� more longitudinally

extensive than in April and 20� more extensive than in

May. The region of ascent over the Indian Ocean is

more extensive in May; there are also clear differences

in the strength of descent between the months. March

(0.027 Pa�s−1) and May (0.021 Pa�s−1) have stronger

descent over Kenya than April (0.013 Pa�s−1). October

(0.029 Pa�s−1) and December (0.027 Pa�s−1) have stron-

ger descent than November (0.024 Pa�s−1) (Figure 2)

Months within the rainy seasons are characterized by

ascending air throughout the troposphere extending

westward as far as 50�E (December) from the Maritime

Continent across the Equatorial Indian Ocean. We

FIGURE 1 CHIRPS v2.0 rainfall climatology for East Africa averaged for each month in the period 1981–2010. The black box shows

the area over which Kenya rainfall is averaged

KING ET AL. E621



extend this analysis of vertical motion to the 200 hPa

velocity potential field and its associated divergent

wind, which is frequently used to diagnose overturning

circulations in the Tropics by linking the lifting of the

200 hPa geopotential to patterns of convergence and

divergence in the wind field. (Tanaka et al., 2004;

Schwendike et al., 2014; Hart et al., 2018). Figure 3

indicates that a zonal gradient in large-scale atmo-

spheric vertical motion is present across the equatorial

Indian Ocean in MAM and OND, and also indicates

upper-level convergence over Kenya associated with

both the Maritime Continent and Congo Basin regions

of ascent.

The descending limb of the circulation overlies Kenya

(34�E–42�E), extending down to around 700 hPa over the

land, below which there is ascent (Figure 4) The effects

of the region's complex topography can be seen near to

the surface, with alternating bands of ascent and descent

suggestive of localized overturning circulations in the

East African Highlands around Lake Victoria (Figure 4).

The strength and extent of the descending limb acts as an

upper limit on deep convection over Kenya to a varying

FIGURE 2 MERRA-2 omega at 400 hPa for each rainy season month, averaged over 1980–2008. The black box indicates the area used

for averaging fields over Kenya, and the green box indicates that used for averaging fields over the Eastern Indian Ocean

FIGURE 3 MERRA-2 velocity potential (filled contours) and divergent wind vectors (arrows) at 200 hPa for each rainy season month,

averaged over 1980–2008

E622 KING ET AL.



degree depending on the month. The wettest months in

the two rainy seasons (April and November) correspond

to the periods when descent over Kenya is weaker and

ascent over the Indian Ocean is stronger. This suggests

that the Walker circulation strength could explain why

April and November are the wettest months within the

Kenyan rainy seasons.

The streamlines in Figure 4 indicate the presence of

an overturning circulation which is more pronounced

during the less wet short rains, particularly in October/

November, but is also active during the long rains. The

circulation is characterized by lower-tropospheric west-

erlies and mid-to-upper-tropospheric easterlies over the

eastern equatorial Indian Ocean.

Statistically significant negative correlations (p < 0.05)

were obtained between Kenya rainfall and 400 hPa omega

averaged over Kenya for all rainy season months in the

period 1981–2005 (Table 2), except October. The correla-

tions were strongest in March during the long rains, and in

November during the short rains. A significant correlation

for October (p < 0.1) was obtained after the anomalously

wet October of 1997 was removed. This suggests an

important role for omega in controlling climatological rain-

fall over Kenya during the rainy seasons. The following

analysis links this to the descending limb of the Indian

Ocean Walker circulation.

Figure 5 reveals the dominant structure of the Indian

Ocean Walker circulation associated with Kenyan rain-

fall. There is a strong negative correlation between

observed rainfall over Kenya and reanalysis omega at

400 hPa, both over the country itself and over the west-

ern Indian Ocean throughout the rainy seasons. This

refers to enhanced Kenyan rainfall when the climatologi-

cal descent over this region is weakened. An exception is

October, where the correlation over Kenya itself is posi-

tive – this explains the lack of a significant correlation in

Table 2 prior to the removal of data from 1997. There is a

significant positive correlation in the eastern Indian

Ocean which is most pronounced during the short rains;

this refers to higher rainfall over Kenya when the ascend-

ing limb of the Indian Ocean Walker circulation over the

western Indian Ocean is weaker. Additionally, we calcu-

lated the interannual Pearson product moment correla-

tion coefficient (for MERRA2 monthly data) between the

FIGURE 4 Longitude-height plots of MERRA-2 reanalysis climatology for MAM (top row) and OND (bottom row), 1980–2008, 15�E–

130�E, averaged over 5�N–5�S. Shading is vertical velocity (Pa�s−1) with red indicating negative (upward) motion and blue indicating positive

(downward) motion. Streamlines are the resultant vectors of u and w × 104. The black line indicates the 400 hPa level. The green line

indicates the box used for averaging over the ascending limb of the Walker circulation

TABLE 2 Pearson product moment correlation coefficients between CHIRPS v2.0 rainfall and MERRA-2 400 hPa omega, averaged over

Kenya (N = 24, Rcrit = 0.388)

March April May October November December

R = −0.769

p = 7.104E−06

R = −0.720

p = 9.37E−06

R = −0.573

p = 0.00274

R = −0.260

p = 0.209

R = −0.847

p = 9.073E−08

R = −0.797

p = 1.846E−06
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400 hPa omega over Kenya and the equatorial zonal

winds at 850 hPa using the box defined in Figure 6a of

Hirons and Turner (2018) (50�E–100�E, 5�N–5�S). For

OND, we obtained a value of r = 0.46, indicating a statis-

tically significant degree of covariance (p = 0.01, n = 30);

when there is more descent over Kenya, the equatorial

westerlies tend to be stronger, indicating a more pro-

nounced overturning circulation. A dynamical link is

hereby demonstrated between Kenyan rainfall and both

the local descent and remote ascent at 400 hPa which

comprise the vertical components of the Indian Ocean

Walker circulation.

The differences between months demonstrate the limi-

tations of considering each rainy season as homogeneous

(Nicholson, 2017). Figures 2 and 4 show the variations in

ascent and descent at the 400 hPa level, which is the core

of both the ascending and descending limbs of the circula-

tion over the Indian Ocean. The climatological descent

over Kenya varies in strength between the months, and

there is ascent over the Lake Victoria basin in all months

(though this is most extensive in April). A more Hadley-

like mode is evident in March, but other months show a

clear zonal structure between the core ascending regions.

There are also differences between the location of the

ascending limb over the African continent in October–

November versus December; this is located further to the

south during December and extends across the Mozam-

bique Channel to Madagascar (Figure 2). Descent at

400 hPa is a consistent feature of the omega climatology

over Kenya during both the long and short rains, although

there is a greater degree of overturning shown by the

streamlines in October–November compared to December.

These differences in structure explain why December is

not considered part of the short rains by some authors

(Nicholson, 2017), despite being a comparatively wet

month. The discontinuity over Kenya of the band of

ascending (and thus convergent) air at the equator demon-

strates that the widely-held assumption of East African

rainfall being primarily controlled by the seasonal migra-

tion of the zonal inter-tropical convergence zone (ITCZ) (e.

g., Camberlin et al., 2009) may no longer be sufficient given

more up-to-date understandings of the tropical rainbelt,

which is not exactly co-located with the zone of maximum

low-level convergence (Nicholson, 2018).

4 | CMIP5 MODELS

4.1 | Zonal overturning circulations

In our analysis of the coupled models listed in Table 1,

we address three questions: are there quantifiable links

between the biases in models' representations of Kenyan

rainfall and omega over Kenya; what might the similari-

ties be in terms of the convective structure between

models that are particularly wet or dry over the country;

and do the models behave differently when SST biases

are controlled using AMIP runs?

We first examine the extent to which the models can

reproduce the observed zonal structure of the Walker cir-

culation with respect to vertical motion. Figure 6 shows

the climatological omega across the equatorial Indian

Ocean for March and November for the CMIP5 models

in Table 1, along with the MERRA-2 reanalysis. The

zonal structure revealed in Figure 6 is interesting because

of the similarity between March and November, given

FIGURE 5 Pearson product moment correlation coefficient between CHIRPS v2.0 rainfall averaged over Kenya and MERRA-2 400 hPa

omega for 1980–2008. Hatching indicates significance at p < 0.1

E624 KING ET AL.



that the canonical overturning circulation is deemed to

be active primarily in OND (e.g., Hastenrath et al., 2002).

Although the pattern is stronger in November, both

months feature ascent over the Maritime Continent and

the Congo Basin, and descent over East Africa. While

there is substantial inter-model variation as suggested by

previous studies on CMIP5 representation of East African

climate, the models are in general agreement with the

reanalysis pattern.

We examine the climatological zonal overturning cir-

culations in the coupled historical runs of the CMIP5

models listed in Table 1 (Figure 7). We plot the climato-

logical omega and streamlines (u, w x 104) for the domain

15E�
–130�E, 5�N–5�S during each month in the rainy

seasons, along with biases relative to MERRA-2 (Fig-

ure 8). Both figures are arranged based on the climatolog-

ical rainfall over Kenya, with the driest models at the top

left and the wettest models at the top right. For March,

the reanalysis data show a clear pattern of ascent over

the Maritime Continent and descent over the Western

Indian Ocean, with descent in the mid-to-upper tropo-

sphere overlying ascent over Kenya (Figure 4). This circu-

lation is represented with varying degrees of accuracy in

the CMIP5 ensemble. Figure 7 indicates that drier models

tend to overstate both the longitudinal extent and the

strength of the descending limb over East Africa. This is

consistent with convective inhibition over East Africa

and consequently a drier Kenya. For instance, the four

FIGURE 6 400 hPa omega averaged between 5�N–5�S, extending from 15�E–130�E, for March (top) and November (bottom). Each

coloured line is a CMIP5 model from Table 1 averaged over 1975–2005 in historical coupled mode. The thick black line is the MERRA-2

reanalysis averaged over 1980–2008. Note different scales
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FIGURE 7 As Figure 4, but for March (top) and November (bottom) in the CMIP5 ensemble (Table 1). Models are arranged in rows

from driest over Kenya in the given month at the top left, to wettest at the bottom right. MERRA-2 data is included at the bottom left for

reference
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FIGURE 8 As Figure 7, but for the AMIP models in Table 1
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driest models extend their descending limbs up to 20�

further east than MERRA-2, and are between 4 and 6

times drier than CHIRPSv2.0 over Kenya during this

month. On the other hand, the wetter models in the

ensemble tend to have much larger regions of ascent

extending across the Indian Ocean, weaker descent over

East Africa, and in the notable case of BCC-CSM1-1-M,

ascent overlying descent across the equatorial IO in a pat-

tern scarcely reminiscent of the canonical zonal over-

turning circulation. A representative wet model,

INMCM4 is 54.9% wetter than CHIRPSv2.0 for this

month, has a descending limb which is over 3 times wea-

ker than MERRA-2, and while the strength of its ascend-

ing limb is similar to MERRA-2, the model extends the

ascent westward by around 25� of longitude. For the

AMIP models (Figure 8), some improvements relative to

the coupled models are noticeable. In March, the des-

cending limb is more longitudinally constrained across

the ensemble, with troposphere-wide descent overlying

East Africa and the western Indian Ocean to around

55�E, a comparable extent to MERRA-2. Some models,

such as ACCESS1-3, display less realistic motion over the

Indian Ocean in AMIP mode than CMIP. Of the four dri-

est (wettest) models in AMIP, 2 (3) were also among the

four driest (wettest) models in CMIP.

Simplification of model topography may also be

influencing the surface patterns of omega over East

Africa, with the localized overturning circulations over

land largely absent, and the characteristic vertical struc-

ture of surface ascent up to 800 hPa capped by upper-

level descent extending throughout the troposphere miss-

ing from a number of models. The streamlines indicate

that an overturning circulation over the equatorial Indian

Ocean is present in a majority of models, but its location

is variable. The streamlines at the surface are also indica-

tive of zonal wind biases in a number of models – this

has been identified as a key source of model precipitation

error in the short rains season by Hirons and

Turner (2018), whereby the observed surface westerlies

become easterly in some coupled models, leading to erro-

neous patterns of moisture flux. In terms of the broader

zonal structure of ascent across the Walker circulation in

the Western Hemisphere (averaged at the equator from

0� to 200�E), the CMIP5 ensemble mean shows more des-

cending air than reanalysis during the dry-biased long

rains months (Table 3), and there is also a significant cor-

relation obtained between the proportion of Western

Hemisphere ascending tropospheric air in each model

and that model's rainfall over Kenya for November

(R = .409, n = 25, α = .05). This implies that models have

Walker circulation biases extending beyond the Indian

Ocean Basin.

For November, the impact of the Walker circulation

is clear (Figure 7). The CMIP5 models generally have wet

biases in this month, meaning that the driest models are

closest to observed rainfall amounts. These models are

close to the reanalysis in terms of their Walker circula-

tion representation, with a broad band of ascent exten-

ding throughout the troposphere east of 55�E balanced

by descent over Kenya. Even in these models, the core of

this descent is narrower by around 10� of longitude and

in the driest models extends down to the surface over

Kenya. This may lead to increased dry biases over land,

and again highlights the impact of model topography on

precipitation modelling in this region. The wettest

models, by contrast, either feature a greatly reduced

zonal overturning circulation, or exhibit a band of ascent

extending across the equatorial Indian Ocean and into

East Africa in which the Walker circulation is mostly

absent. In ACCESS1-3, the region of descent over Kenya

found in reanalysis is absent and ascent is found instead;

the model's average rainfall for Kenya in November is

5.39 mm�day−1 compared to 3.06 mm�day−1 in

CHIRPSv2.0. Interestingly, the 3 IPSL models all extend

the descending limb to the surface over East Africa – the

two configurations of IPSL-CM5A are both substantially

drier than observations in November (1.47 mm�day−1 for

IPSL-CM5A-LR and 1.70 mm�day−1 for IPSL-CM5A-MR)

and across OND.

In the AMIP models, some differences in the struc-

ture of the overturning circulation are observed for

November (Figure 8). There is an increase in the

TABLE 3 Proportion of ascending versus descending air in the region 0�–200�E, 5�N–5�S, between the surface and 200 hPa

MERRA2 CMIP5 ensemble (n = 25)

% ascent % descent % ascent % descent

March 84.74 15.26 73.67 26.33

April 85.91 14.09 76.14 23.86

May 81.32 18.68 77.29 22.71

October 80.20 19.80 77.34 22.66

November 79.26 20.74 80.05 19.95

December 85.70 14.30 79.74 20.26
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longitudinal extent of the descending limb of the Walker

circulation and a corresponding decrease in the extent of

the ascending limb, bringing the models closer to the cir-

culation seen in MERRA-2. Notably, the equatorial west-

erlies in some models (such as the three IPSL models) are

better represented with respect to MERRA-2 than they

are in the coupled runs. However, rainfall biases remain,

in some cases of opposite signs compared to the coupled

versions. For example, CSIRO-MK3-6-0 running in

coupled mode has a descending limb which extends

around 20� of longitude less than in MERRA-22, and a

positive precipitation bias relative to CHIRPS

(+0.29 mm�day−1). In AMIP mode it exhibits an omega

structure which is much closer to MERRA-2, but a nega-

tive precipitation bias (−0.62 mm�day−1). Of the four dri-

est (wettest) models in AMIP, 3 (3) were also among the

four driest (wettest) models in CMIP.

We next considered the structure of CMIP5 vertical

motion over the Congo Basin (10�E–30�E, 5�N–5�S). This

is a key zone of convection driving the Walker circulation

and an important moisture source for East Africa. Fig-

ure 9 shows a characteristic zone of descending air over-

lying the Congo Basin below 700 hPa, which is present in

all East African rainy season months in reanalysis. This

is either underestimated or does not appear in the

models. There is also disagreement on the direction of

the zonal winds among the models, with some showing

surface easterlies and others westerlies. Given that the

moisture flux into East Africa from the Congo basin is

projected to be of increasing importance in future

(Giannini et al., 2018), the realism of these low-level

winds warrants further study (though beyond the scope

of this article). Related to this is the question of whether

or not the low-level subsidence observed in MERRA-2 is

realistic. Neupane (2016) did not find this feature in pre-

vious generations of reanalysis, but Kuete et al. (2019)

link vertical velocity at this location to variability in the

southern branch of the African Easterly Jet.

The CMIP5 biases in the vertical structure of omega

relative to MERRA2 (Figure 10) indicate that models gen-

erally underestimate the strength of the zonal over-

turning circulation in November, with positive biases in

the eastern Indian Ocean and negative biases over the

west showing that the climatological regions of ascent

and descent are both too weak during this month. In

March, dry models such as IPSL-CM5B-LR and MRI-

CGCM3 are more likely to have descending biases across

the Indian Ocean, inhibiting convective potential,

whereas wetter models such as BCC-CSM1-1-M and

INMCM4 are more likely to have ascending biases. In dry

models, the orientation of the streamlines at the 300–

400 hPa level in the central Indian Ocean suggests the

upper-level easterlies in these models may be too strong,

potentially resulting in a drying mechanism analogous to

that described by Williams and Funk (2011).

There is less differentiation between the model biases

for November (Figure 10). The models generally have

strong omega biases and ascending streamlines over the

western and central Indian Ocean throughout the tropo-

sphere, indicative of excessive ascent and a weak or

absent overturning circulation. The ascent over the Mari-

time Continent is generally too weak, suggesting that the

mechanisms which cause excessive ascent over the Equa-

torial Indian Ocean are associated with reduced ascent in

this region.

The correlations between model rainfall and 400 hPa

omega (Figure 11) do, however, suggest that some models

are able to capture the spatial structure of the link

between the Walker circulation and rainfall (though

these should be treated with caution given the biases in

both fields). In both March and November, the negative

correlation between omega over Kenya and rainfall is

observed in all models apart from FGOALS-g2. However,

in March models tend to include a narrower than

observed band of negative omega/rainfall correlation

centred on the equator, which implies a more Hadley-like

circulation is acting as a control on rainfall. The existence

of this negative correlation extending as far east as the

Maritime continent in some of the wetter models (e.g.,

CanESM2 and MIROC5) supports this implication. For

November, the models are less successful at simulating

the large region of positive correlation associated with

ascent over the Maritime Continent – this is generally

less meridionally extensive than in the observations/

reanalysis, and is not statistically significant in a number

of models.

The CMIP minus AMIP differences (Figure 12) indi-

cate that the strength of the overturning circulation in

the coupled models differs between coupled and atmo-

sphere-only configurations. For March, all models in the

ensemble show greater descent over East Africa and the

western Indian Ocean in CMIP than AMIP, and varying

amounts of increased ascent over the Maritime Conti-

nent. This indicates a stronger overturning in coupled

models than in atmosphere-only models. The reverse is

the case for November, where the models exhibit

increased ascent across the western Indian Ocean in

CMIP relative to AMIP.

Figures 13, 14, and 15 summarize the biases of the

CMIP5 models for each rainy season month in precipita-

tion over Kenya (vs. CHIRPS v2.0), 400 hPa omega over

Kenya (vs. MERRA-2), and 850 hPa zonal wind over the

equatorial Indian Ocean (vs. MERRA-2), respectively.

Figure 13 demonstrates the well-known precipitation

biases of CMIP5 models over East Africa (e.g., Tierney

et al., 2015), namely that MAM rainfall is generally
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FIGURE 9 As Figure 4, but for the Congo Basin (10�–30�E, 5�N–5�S) in March (top) and November (bottom)
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FIGURE 10 As Figure 4, but for model biases relative to MERRA-2 data
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underestimated while OND rainfall is generally over-

estimated. Figure 14 supports our contention that these

precipitation biases can be understood on climatological

timescales as a function of the models' representations of

vertical motion associated with the Indian Ocean Walker

circulation. In MAM, a majority of models are biased

towards stronger descent over Kenya (positive omega

bias), whereas in OND they are biased towards weaker

descent or ascent (negative omega bias). Finally, Figure 15

suggests a potential link between the Indian Ocean

Walker circulation and MAM rainfall biases as well as

OND. As well as extending the findings of Hirons and

FIGURE 11 Pearson product moment correlation coefficients between CMIP5 model rainfall averaged over Kenya and model 400 hPa

omega for March (upper) and November (lower), 1975–2005. Hatching indicates significance at p < 0.1. Models are arranged in rows from

driest over Kenya in the given month at the top left, to wettest at the bottom right
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FIGURE 12 Differences between CMIP and AMIP models (CMIP minus AMIP) for March (top) and November (bottom), 1975–2008
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Turner (2018) that CMIP5 model zonal winds associated

with this circulation have easterly biases in OND

resulting in anomalously high moisture flux into East

Africa, this plot suggests that the reverse is the case in

MAM where models tend towards anomalously strong

westerlies. The vertical motion and zonal wind biases

have a common direction with respect to East African

rainfall, implying that they are part of the same over-

turning cell. We suggest that further analysis of these

wind biases may help resolve the ambiguity in the

FIGURE 13 CMIP5 model

precipitation biases over Kenya for

each rainy season month relative to

CHIRPSv2.0, 1975–2005

FIGURE 14 CMIP5 model

400 hPa omega biases over Kenya

for each rainy season month relative

to MERRA-2 reanalysis, 1980–2005
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FIGURE 15 CMIP5 model

850 hPa zonal wind biases over the

equatorial Indian Ocean (50�E–

100�E, 5�N–5�S) for each rainy

season month relative to MERRA-2

reanalysis, 1980–2005

FIGURE 16 Relationship between model biases (left column) and model RMSE (right column) in rainfall and 400 hPa omega over

Kenya for CMIP5 March (top row) and CMIP5 November (bottom row). Note different scales

KING ET AL. E635



literature on the role of the Indian Ocean Walker circula-

tion during the long rains.

We next plot the model biases in precipitation over

Kenya (relative to CHIRPS v2.0) against the model biases

in omega (relative to MERRA-2) for each month over the

period 1981–2005. We also plot RMSE (Equation 1) in pre-

cipitation against RMSE in omega for the same period.

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT
t=1 x1,t−x2,tð Þ2

T

s

Figure 16 indicates that there is a relationship between

model biases in the descending limb of the Walker circula-

tion over Kenya and rainfall over Kenya. Models with

stronger descent (positive omega bias) over Kenya are also

generally drier (negative rainfall bias), dependent on the

rainy season month. During the long rains, the relation-

ship holds for March (R2
= .243, p = .01), April (R2

= .201,

p = .02), and May (R2
= .341, p = .002). During the short

rains, there is a strong relationship in October (R2
= .728,

p = 6 x 10−8) and November (R2
= .506, p = 7 x 10−5) but

not December (R2
= .025, p = .45). This relationship is also

present in the AMIP models (Figure 17) in both March

(R2
= .369, p = .003) and November (R2

= .475,

p = −.0005). In AMIP, models in March tend towards wet

biases, in opposition to CMIP. In November, there is an

equal spread of dry and wet biased models in AMIP,

whereas CMIP models tend towards wet biases.

The RMSE plots in Figure 16 give a more general

indication of the links between model biases by removing

the directionality of the relationship shown in the bias

plots, in order to assess whether low error in omega is

associated with low error in rainfall relative to the refer-

ence datasets. In this case, the relationship is not

significant in any of the long rains months, but is both

significant and positive in the short rains. This indicates

that models with greater biases in Kenya omega during

OND also have greater biases in Kenya rainfall. In the

long rains months, several models have low RMSE in

precipitation but also high RMSE in omega. This suggests

that although these models are successful at reproducing

observed rainfall statistics, their dynamics are potentially

less realistic. These models include: BCC-CSM1-1-M,

GISS-E2-R, INMCM4, and MIROC5 (March); BCC-

CSM1-1-M, CSIRO-Mk3-6-0, FGOALS-g2, MIROC5, and

MPI-ESM-LR (April); and CNRM-CM5 and NorESM1-M

(May). In the short rains months, the link between RMSE

in precipitation and in omega is stronger. With the excep-

tion of CNRM-CM5 during November/December and

GFDL-CM3 in December, there are no models exhibiting

low RMSE in precipitation with high RMSE in omega;

rather, models tend to have correspondingly high or low

error values in both variables. It is noteworthy that sev-

eral of the models which have ‘good’ rainfall but ‘bad’

omega during the long rains are ‘bad’ in both variables

during short rains months (including INMCM4 and

FGOALS-g2). These models generally exhibit strong wet

biases in OND. They are also among the wettest models

in the ensemble for MAM, but since the ensemble as a

whole is drier than observations during this season, these

models return a low RMSE score. This suggests a link

between the underlying model processes causing wet

biases in both rainy seasons.

4.2 | Wet versus dry models

The composites of the four driest CMIP5 models in

monthly averages for each rainy season month (Fig-

ure 18 middle panel) further suggest a role for the

FIGURE 17 Relationship between model biases in rainfall and 400 hPa omega over Kenya for March (left) and November (right) in

AMIP models. Note different scales
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Walker circulation. The models are generally too dry in

the long rains and too wet in the short rains, with 75%

of models being too dry during MAM and 65% of

models being too wet in OND. The composites show

much more extensive descent and more pronounced

overturning circulations over the western Indian

FIGURE 18 As Figure 4,

but for composite averages of

the wettest four CMIP5 models

in each month (top); the driest

four models (middle); and the

wet composites minus the dry

composites (bottom)
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Ocean and East Africa in March and April relative to

OND. In the short rains dry model composite, the over-

turning circulations are weaker and shallower –

though these dry models are closer to observed values

of rainfall, the structures by which the rainfall is pro-

duced can thus be called into question.

For the wet composites, a similar picture emerges.

The wet models in MAM show markedly less descent

FIGURE 19 Differences between the wettest CMIP and AMIP models for the rainy season months (top) and between the driest CMIP

and AMIP models (bottom)
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over East Africa and less ascent over the Maritime Conti-

nent, with an additional band of ascent between 40�E–

45�E (Figure 18, top panel). During the short rains (espe-

cially October and November), there is little evidence of

an overturning circulation in the wet composites, with

the easterly orientation of the streamlines at the surface

indicative of zonal wind biases over the equatorial Indian

Ocean. The wet minus dry composites indicate a role for

the Walker circulation over the Indian Ocean, with

wet models characterized by a weaker descent over

East Africa, weaker ascent over the Maritime

Continent, and erroneous zonal winds in the lower tropo-

sphere (Figure 18, bottom panel). This picture is

supported by the differences between composites of the

driest and wettest CMIP and AMIP models (Figure 19).

In MAM, when CMIP5 exhibits a dry bias, the coupled

model dry composites have more descent over the

domain than the atmosphere-only dry composites. The

reverse is true for the wet composites in OND, when

CMIP wet models have increased ascent over the domain

compared to AMIP.

5 | SUMMARY AND CONCLUSION

5.1 | Summary of Walker circulation
impacts on Kenyan rainfall

CMIP5 models exhibit well-known biases over Kenya,

and East Africa more generally. They underestimate the

magnitude of rainfall during the long rains (MAM), some

by over half, and overestimate rainfall during the short

rains (OND), some by over 100%. There is also a general

spring wetting trend in CMIP5 projections which has

been questioned given the observed multi-decadal drying

trend in the region. In this study, we show that the

models' representations of the zonal Walker circulation

over the equatorial Indian Ocean are unrealistic. Most

models simulate the descending limb of the Walker cell

over the western Indian Ocean and East Africa during

the long rains months in a too strong and too

extensive manner compared to the MERRA-2 reanalysis

(Figure 10), inhibiting convective potential over East

Africa and potentially leading to positive low-to-mid tro-

pospheric pressure anomalies which may inhibit the

advection of warm moist air from the eastern Indian

Ocean. This behaviour is apparent in the dry/wet com-

posites (Figure 18), in which the dry models for MAM

have stronger and more extensive descent over East

Africa, and a more clearly defined zonal overturning cir-

culation, than the wet models in the same months. This

picture is consistent with a dry bias over Kenya during

the long rains season, although the circulation is less well

defined during this season (Liebmann et al., 2017). How-

ever, Figure 6 indicates that the zonal structure of vertical

motion over the equatorial Indian Ocean is similar in

both rainy seasons, with ascent over the Maritime Conti-

nent and the Congo Basin balanced by descent over East

Africa. This descent acts to dampen deep convection over

East Africa, and may contribute towards the relative arid-

ity of Kenya compared to other regions on the equator.

We encourage further research to develop a more precise

definition of the seasonal cycle of the Indian Ocean

Walker circulation.

During the short rains season, 19/25 models either

underestimate the overturning cell or miss it out entirely

(Figure 7). In November, four models feature a Hadley

Cell-like band of almost uniform convection extending

throughout the troposphere, rather than the characteris-

tic pattern of ascent in the east and descent in the west

seen in reanalysis. This broad convection over the equa-

torial Indian Ocean, when combined with warming SSTs

in the Indian Ocean, could increase moisture availability

for East African rainfall – when combined with the

mean-state zonal wind biases found in coupled models

by Hirons and Turner (2018), in which models produce

surface easterlies rather than the observed westerlies, this

would increase moisture flux into East Africa and result

in a substantially wetter short rains season. Models are

known to have biases in the Indian Ocean Dipole during

OND (Cai and Cowan, 2013), and this has been shown to

be connected to their representations of the Walker circu-

lation (Hirons and Turner, 2018). More work is needed to

further disentangle the relationship between omega,

wind, and SST biases, and their respective controls on

East African rainfall in CMIP5 models. Given that CMIP5

rainfall biases over the Congo Basin are associated with

differences in moisture flux (Washington et al., 2013), the

representations of omega and zonal wind over the region

shown in Figure 6 warrant further investigation. Models

with divergent moisture flux over the Congo Basin are

dry in that region (Washington et al., 2013), but may also

transport more of that moisture to East Africa. For exam-

ple, the model identified by Washington et al. (2013) as

the driest over the Congo in SON (CNRM-CM5) is the

fifth-wettest over East Africa in October. The location of

the boundary between Congo ascending air and East

African descending air may be one of the key factors

determining whether a climate model, and indeed an

observed rainy season, is particularly wet or dry over East

Africa. On a global scale, Table 3 suggests that further

investigation into CMIP5 equatorial vertical motion may

reveal biases towards descending air in MAM, with impli-

cations for rainfall elsewhere in the Tropics.

The comparison between AMIP and CMIP models

suggests that the Walker circulation biases in coupled
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models are at least partially attributable to the SST biases

known to be an issue in CMIP5. When SST is controlled,

models have less strong descent over the Western Indian

Ocean during the long rains, and less strong ascent over

the same region during the short rains. An improvement

in the representation of equatorial westerlies over the

Indian Ocean during November is a notable feature of the

AMIP models (Figure 8). This is consistent with a correc-

tion to the positive IOD-like SST bias exhibited by CMIP5

models, though it should also be noted that AMIP models

cannot represent the nature of the IOD and its associated

westerlies as a coupled ocean–atmosphere system.

5.2 | Implications for future model
projections

Models have biases in the mean state of the Walker circu-

lation over the Indian Ocean, with consequent impacts

on their representation of rainfall over Kenya. While this

study focusses on the historical coupled simulations of

CMIP5, its findings are relevant to the interpretation of

these models' projections of future rainfall in the region

under anthropogenic climate change (Yang et al., 2014).

It is not sufficient to base assessments of the reliability of

models' future rainfall projections on their rainfall output

alone (James et al., 2015). Models which have unrealistic

dynamics related to a projected variable of interest in his-

torical coupled simulations (for which they can be

assessed against observations) cannot be considered reli-

able sources of climate projections. Conversely, those

models which do have accurate dynamics can be consid-

ered more reliable in their future projections. This pro-

cess-based approach to climate model evaluation is

useful both for selecting projections from specific models

in the absence of a physically plausible signal in the

ensemble mean (Creese and Washington, 2016), and for

assessing which global climate models are most suitable

for use in regional downscaling experiments (McSweeney

et al., 2015). While this article does not explicitly address

the effect of model resolution, this might also provide

some insights into the reasons behind the differences in

model circulations; preliminary analysis indicated a weak

but significant relationship between model resolution

and the strength of ascent over the Maritime Continent

in November (not shown), and this could be linked to the

broader circulation. Recent experiments using a high-

resolution convection-permitting regional model over

East Africa have yielded improvements in the representa-

tion of rainfall in the area (Finney et al., 2019); driving

such a model with more realistic large-scale flow at the

boundaries of the regional simulation could lead to addi-

tional such improvements. Additionally, the strong

correlations obtained between omega and rainfall in all

rainy season months could benefit seasonal forecasting of

rainfall in East Africa, which historically has been more

difficult for the long rains owing to a lack of reliable

teleconnections (MacLeod, 2018; Walker et al., 2019).

The improvements yielded by AMIP in simulating the

current Walker circulation structure over the Indian

Ocean suggest that coupled models may not yield reliable

projections of future climate in the region. It follows that

projections made by applying a ∆SST function to

observed data (i.e., adding a warming factor to provide

forcing rather than simulating the ocean explicitly) may

have value in this region – especially when combined

with the high-resolution regional models now available

such as that of Stratton et a. (2018). However, care should

be taken in the interpretation of such experiments, since

the IOD and ENSO are coupled ocean–atmosphere sys-

tems and future changes in their behaviour, which are

unlikely to simply be a linear warming of their current

states, would affect East African rainfall.

In this article, we have addressed three questions.

First, we quantified the relationship between the Indian

Ocean Walker circulation and Kenyan rainfall using

reanalysis and gridded rainfall. Next, the representation

of the zonal Walker circulation over the equatorial

Indian Ocean in CMIP5 models was investigated, and

found to differ substantially from the MERRA-2

reanalysis. Finally, we examined the models' Walker cir-

culation/rainfall relationships in the context of known

CMIP5 rainfall biases. These models have rainfall biases

over East Africa which can be accounted for as a result of

the Walker circulation biases – in particular, the wet bias

during the short rains is associated with a significantly

reduced overturning circulation in most models, and the

dry bias during the long rains with excessive subsidence

over East Africa. The mean state of the Walker circula-

tion in the models is therefore not that which is seen in

reanalysis. Consequently, projections of Kenyan rainfall

made using these models are derived from forcings

applied to an erroneous baseline. This means that their

future projections may not be plausible. Future work will

consider whether models with distinctly realistic or unre-

alistic Walker circulations in the historical coupled runs

project distinctly different future rainfall signals. Addi-

tionally, the influence of model topography on East Afri-

can rainfall requires further study, particularly with

regard to low-level convection, moisture flux (conver-

gence), and the influence of the Turkana low-level jet.

More work is needed to further disentangle the relation-

ship between omega, wind, and SST biases, and their

respective controls on East African rainfall, as well as the

impact of the Walker circulation in observations and

models in other parts of the Tropics.
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