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Abstract
Deep learning is a powerful tool in computational pathology: it can be used for tumor detection and for predicting
genetic alterations based on histopathology images alone. Conventionally, tumor detection and prediction of genetic
alterations are two separate workflows. Newer methods have combined them, but require complex, manually engi-
neered computational pipelines, restricting reproducibility and robustness. To address these issues, we present a
new method for simultaneous tumor detection and prediction of genetic alterations: The Slide-Level Assessment
Model (SLAM) uses a single off-the-shelf neural network to predict molecular alterations directly from routine
pathology slides without any manual annotations, improving upon previous methods by automatically excluding
normal and non-informative tissue regions. SLAM requires only standard programming libraries and is conceptually
simpler than previous approaches. We have extensively validated SLAM for clinically relevant tasks using two large
multicentric cohorts of colorectal cancer patients, Darmkrebs: Chancen der Verhütung durch Screening (DACHS)
from Germany and Yorkshire Cancer Research Bowel Cancer Improvement Programme (YCR-BCIP) from the
UK. We show that SLAM yields reliable slide-level classification of tumor presence with an area under the receiver
operating curve (AUROC) of 0.980 (confidence interval 0.975, 0.984; n = 2,297 tumor and n = 1,281 normal
slides). In addition, SLAM can detect microsatellite instability (MSI)/mismatch repair deficiency (dMMR) or microsat-
ellite stability/mismatch repair proficiency with an AUROC of 0.909 (0.888, 0.929; n = 2,039 patients) and BRAF
mutational status with an AUROC of 0.821 (0.786, 0.852; n = 2,075 patients). The improvement with respect to
previous methods was validated in a large external testing cohort in which MSI/dMMR status was detected with
an AUROC of 0.900 (0.864, 0.931; n= 805 patients). In addition, SLAM provides human-interpretable visualization
maps, enabling the analysis of multiplexed network predictions by human experts. In summary, SLAM is a new simple
and powerful method for computational pathology that could be applied to multiple disease contexts.
© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Colorectal cancer (CRC) is one of the most common types
of cancer and one of the top causes of cancer mortality [1].
In routine clinical workflows, CRC is diagnosed by histo-
pathologic evaluation of H&E-stained tissue slides. In
addition, all patients with metastatic or unresectable CRC
are recommended to undergo testing for microsatellite
instability (MSI) or mismatch repair deficiency (dMMR)
and should be tested for mutations of the KRAS and BRAF
genes [2]. In the UK, all patients with CRC, irrespective of
tumor stage, are recommended to undergo MSI or dMMR
testing [3].MetastaticMSI/dMMRCRCare directly target-
able by cancer immunotherapy, which is currently
approved as a first-line therapeutic approach to this disease
subtype [4]. MSI, as determined by polymerase chain reac-
tion (PCR), and dMMR, as determined by immunohisto-
chemistry (IHC), are used interchangeably in most
clinical situations, although the results of these different
tests are not always concordant [3,5]. Another type of clin-
ically relevant genetic alteration in CRC is amutatedBRAF
gene in metastatic CRC, which is directly targetable in a
second-line therapeutic setting [6]. Currently, diagnosis of
cancer on histopathology images and genetic testing on
tumor tissue form two distinct laboratory workflows:
although they are both coordinated by the pathologist as a
central coordinator, they are performed using different lab-
oratory methods. However, increasing efforts to digitize
routine histopathology workflows [7,8] will potentially
make digitized whole-slide images (WSI) routinely avail-
able in the future. Recent studies have shown that a wide
range of molecular features, including MSI/dMMR status
and BRAF mutational status, can be predicted from
digitized slides of CRC using deep learning, an artificial
intelligence technology [9–14]. The application of such
methods is not limited to CRC but has been demonstrated
in bladder cancer [15], breast cancer [16,17], sarcoma
[18], head and neck cancer [19], hepatocellular carcinoma
[20], and several other types of solid tumor [8,12]. There-
fore, in the future, deep learning could supplement current
molecular testing strategies in solid tumors and could be
used as a tool for translational research [21].
Multiple different technical pipelines have been pro-

posed to infer molecular alterations from WSI and each
of them has limitations [8]. The first scientific publica-
tions in deep learning-based molecular subtyping in
2018 and 2019 applied a simple tumor annotation-based
‘majority vote’, i.e. they were based on a two-step pro-
cess: first, they located tumor tissue in the tissue
section based on manual [22] or automatic segmenta-
tions and, subsequently, the tumor tissue was processed
by another neural network [10]. Further studies showed
that a manual annotation-based approach could yield
very high performance for tumor detection on large

datasets [23]. More recent studies used deep learning to
predict genotypes directly from the whole slide, includ-
ing tumor and non-tumor tissue. These so-called weakly
supervised approaches do not require any explicit tumor
detection, applying a simple whole-slide majority vote
[9,12]. Such approaches have achieved a high perfor-
mance for the prediction of molecular alterations, but
they sacrifice interpretability. Using thewhole tissue to pre-
dict molecular features in the tumor tissue imposes predic-
tions of molecular changes on non-tumor regions such as
normal mucosa, which may not be useful or desirable.
More recent studies have addressed this issue by using a
new technology based on multiple-instance learning: in
the context of prostate cancer detection, a weakly super-
vised approach yielded a clinical grade performance [24]
and is currently being marketed as a commercial product
[25]. Other attention-based approaches were recently
applied to tumor detection in various cancer types. For
example, clustering-constrained attention multiple instance
learning has been proposed as a powerful methods pipeline
for tumor detection and determining histopathologic sub-
types [26,27]. However, attention-based multiple learning
is not widely used for predictingmolecular alterations from
image data, possibly because these models are complex
and data-hungry [24].

A general observation is that methods pipelines in com-
putational pathology becomemore andmore intricate: they
require hand-crafted network models, loss functions, and
intricate pre-/post-processing pipelines, which cannot be
easily implemented using standard programming libraries
[24,28–30]. In particular, the custom architectures and data
loader required for these methods are not available out-of-
the-box in popular machine learning environments, such as
PyTorch, TensorFlow, Keras, or Fastai. This is in stark
contrast to initial publications, which were easily re-
implementable in standard programming environments in
a few lines of code [10,22]. As complex workflows limit
widespread reproduction and adoption, there is a need for
powerful, adaptable, easily implementable, end-to-end
methods for molecular testing of cancer.

Therefore, in this study, we sought to combine the ease-
of-use of off-the-shelf models with one-stop-shop conve-
nience and improved interpretability. At the same time, we
strived to deliver the first application of deep learning for
one-shot tumor localization and genetic subtyping in CRC.
In other words, we aimed to unify the workflows of tumor
diagnosis and subtyping in a single-pass neural network.

Materials and methods

Ethics statement and patient cohorts
For this study we used anonymized H&E-stained slides
of colorectal adenocarcinoma of two large cohorts.
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To train the neural network we used digitized tumor-
bearing tissue slides from the Darmkrebs: Chancen
der Verhütung durch Screening (DACHS) study
(n= 2,448 patients), a large population-based case–con-
trol and patient cohort study on CRC, including samples
of patients with stages I–IV from different laboratories
in southwestern Germany.We received and used exactly
one tumor-bearing tissue slide per patient. For n= 1,281
of these patients, an additional non-tumor slide was
available, i.e. a tissue slide extracted from the same sur-
gical specimen but containing only normal colon
mucosa, submucosa, and smooth muscle tissue. This
‘normal’ tissue slide was used as an additional input
for the deep learning model, as explained below. Use
of the DACHS tissue samples for scientific purposes
was approved by the ethics committees of Heidelberg
University and the medical boards of Rhineland-
Palatinate and Baden-Württemberg, with the written
informed consent of all participants [31]. The digitized
tissue slides were provided by the Tissue Bank of the
National Center for Tumor Diseases (Heidelberg,
Germany) in accordance with the regulations of the tis-
sue bank. Some tissue slides in the DACHS cohort had
blue and/or black pen marks circling tumor tissue and/or
normal tissue on the slide. MSI status in the DACHS
cohort was investigated using a three-plex PCR panel,
as described previously [32]. For external validation
we applied the deep learning system on H&E-stained
slides derived from the population-based Yorkshire
Cancer Research Bowel Cancer Improvement Pro-
gramme (YCR-BCIP) [33], comprising 889 patients
who had surgical resection. dMMR or mismatch repair
proficiency (pMMR) was determined with a standard
four-plex IHC assay on whole slides. No penmarks were
present on the slides in the YCR-BCIP dataset. The
clinicopathologic characteristics of all patients are sum-
marized in Table 1. Glass slides in DACHS and YCR-
BCIP were digitized with Leica Aperio scanners (Leica
Biosystems, Wetzlar, Germany) using a 20� objective
and were saved as SVS files with JPEG compression.
We received and used exactly one digitized tumor slide
from each patient in the DACHS cohort and the YCR-
BCIP cohorts. Only patients with an available H&E slide
and clinicopathologic features were used for the analy-
sis. Some samples were excluded due to missing clinico-
pathologic data or missing WSI. Sample flowcharts for
all experiments are provided in supplementary material,
Figure S1.

Image preprocessing pipeline
Non-overlapping image tiles with a size of 512 � 512
pixels with a resolution of 0.5 μm per pixel were
extracted from the WSIs. Tiles with background (more
than 50% white area on the tile), blurry artifacts, and
pen marks were removed during the tessellation process.
The standard deviation of each color channel in a tile and
the average detected edges using canny edge detection of
OpenCV package in Python 3.8 were used to detect
these tiles. To remove the bias of different staining

procedures, all tiles were normalized based on one refer-
ence image using the Macenko normalization method
using a reference image that is publicly available at:
https://raw.githubusercontent.com/jnkather/
DeepHistology/master/subroutines_normalization/Ref.
png [34]. After this step, tiles were used as an input for
the neural network. Whenever a slide contributed more
than 1,000 tiles, only 1,000 randomly chosen tiles were
used. The source code for data preprocessing is available
under an open-source license at: https://github.com/
KatherLab/preProcessing. For all experiments, only
patient-level labels were used and all tiles in the training
sets were assumed to inherit the label of their parent
patient. To mitigate class imbalance in the patient labels
during training, tiles from the more abundant class were
randomly undersampled. This means that for training
neural networks, equal numbers of tiles from the positive
and negative classes were used and classifiers were
trained on tile-level-balanced image sets. For deploy-
ment of classifiers to the test partition in cross-validation
or to the external validation set, no such class balancing
procedure was applied.

Algorithm
Here, we propose a newmethod, the Slide-Level Assess-
ment Model (SLAM). We assume that colorectal tumors
can carry a feature of interest, the ‘target’, which is
defined on the level of patients. The aim is to determine
the presence of the target directly from a digitized glass
slide (WSI). In the present study we explored the follow-
ing targets: BRAF status (mutated or non-mutated),
MSI/MMR status (MSI/dMMR or microsatellite stabil-
ity [MSS]/pMMR), and grade of differentiation (high
grade, comprising poorly differentiated and undifferen-
tiated [grade 3–4] and low grade, comprising well and
moderately differentiated [grade 1–2]). For all targets,
only slide-level labels, not tile labels, are available. We
assume that only the tumor tissue carries information
related to these labels, but tumor-bearing slides usually
contain some non-tumor tissue adjacent to the tumor.
The state of the art (SOTA) model is to train end-to-
end deep learning systems on all tiles generated from
these WSIs, tumor and non-tumor [9,12]. This is poten-
tially suboptimal as it dilutes the information of interest
and assigns a prediction score for non-tumor tiles.
Although some studies solve this problem with manual
annotations [23] or adding a separate network for tumor
detection [10], SLAM solves this in a single step: SLAM
uses an end-to-end neural network based on ShuffleNet,
a lightweight off-the-shelf model [35]. The output layer
has beenmodified to have three output classes: tumor tis-
sue belonging to the positive class (mutated,
MSI/dMMR, high grade, etc.), tumor tissue belonging
to the negative class (non-mutated, MSS/pMMR, low
grade, etc.), and non-tumor tissue, which is assumed to
be non-informative regarding the presence of the target
class (label). This procedure can be extended to an arbi-
trary number of target classes. We used WSI with slide-
level labels for training. Based on the ground truth
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labels, each slide was assigned to one of these three clas-
ses: ‘positive’ tumor slides (containing tumor tissue in
the positive class as well as some non-tumor/non-
informative tissue), ‘negative’ tumor slides (containing

tumor tissue in the negative class as well as some non-
tumor/non-informative tissue), and non-tumor slides
(containing only non-tumor/non-informative tissue).
All image tiles generated from the slides inherited the

Table 1. Clinicopathologic features of the patient cohorts. Only samples with matched histopathology images and clinical data were
included. For all cohorts and all targets, sample flowcharts are available in supplementary material, Figure S1.

DACHS tumor YCR-BCIP

Number of patients 2,448 889
Region Southwest Germany Yorkshire, UK
MSI or dMMR PCR 3-plex IHC 4-plex
Male 1,436 (58.7%) 494 (55.6%)
Female 1,012 (41.3%) 395 (44.4%)
Gender data unavailable 0 (0.0%) 0 (0.0%)
Gender data available 2,448 (100%) 889 (100%)
Samples included 2,297 (93.8% of 2,448) -
Males in included patients 1,345 -
Females in included patients 952 -
Age < 40 years 24 (1.0%) -
Age 40–50 years 99 (4.0%) -
Age 50–60 years 359 (14.7%) 157 (17.7%)
Age 60–70 years 780 (31.9%) 241 (27.1%)
Age 70–80 years 801 (32.7%) 316 (35.5%)
Age 80+ years 385 (15.7%) 175 (19.7%
Colon cancer 1,488 (60.8%) 669 (75.3%)
Rectal cancer 960 (39.2%) 216 (24.3%)
Stage I 485 (19.8%) 169 (19.0%)
Stage II 801 (32.7%) 317 (35.7%)
Stage III 822 (33.6%) 370 (42.6%)
Stage IV 337 (13.8%) 0 (0.0%)
Adjuvant chemotherapy 1,043 (42.6%) Unknown
No adjuvant chemotherapy 1,389 (56.7%) Unknown
Adjuvant radiotherapy 2,250 (91.9%) Unknown
After recurrence 2 (0.1%) Unknown
No adjuvant radiotherapy 187 (7.6%) Unknown
Neoadjuvant therapy 281 (11.5%) Unknown
No neoadjuvant therapy 2,159 (88.2%) Unknown
Low grade (grade 1–2) 1,587 (64.8%) Unknown
High grade (grade 3–4) 561 (22.9%) Unknown
Grade unavailable 300 (12.3%) -
Grade available 2,148 (87.7%) -
Samples included 2,066 (84.4% of 2,448) -
Low grade in included patients 1,518 -
High grade in included patients 548 -
BRAF mutation 151 (6.2%) 75 (8.4%)
BRAF wild type 1,930 (78.8%) 32 (3.6%)
BRAF status unavailable 367 (14.9%) 782 (88.0%)
BRAF available 2,081 (85.0%) 107 (12.0%)
Samples included 2,075 (84.8% of 2,448) -
BRAF mutation in included patients 151 -
BRAF wild type in included patients 1,924 -
KRAS mutation 677 (27.6%) Unknown
KRAS wild type 1,397 (57.1%) Unknown
KRAS status unavailable 374 (15.3%) -
KRAS status available 2,074 (84.7%) -
Samples included 2,068 (84.5% of 2,448) -
KRAS mutation in included patients 674 -
KRAS wild type in included patients 1,394 -
MSI/dMMR 210 (8.6%) 117 (14.39%)
MSS/pMMR 1,836 (75.0%) 772 (86.8%)
MSI/dMMR status unavailable 402 (16.4%) 0 (0.0%)
MSI/dMMR status available 2,046 (83.5%) 889 (100.0%)
Samples included 2,039 (83.3% of 2,448) 805 (90.6% of 889)
MSI/dMMR in included patients 210 112
MSS/pMMR in included patients 1,829 693
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slide-level label (positive, negative, or non-tumor/non-
informative) and were used to train the network. Thus,
even though the training sets were contaminated with
non-tumor/non-informative tissue, the SLAM network
can learn to distinguish tumor tissue from non-tumor/
non-informative tissue because the non-tumor tissue is
introduced as an explicit third class. When deployed to
an image in the test set, each tile is assigned a probability
value (tile-level soft prediction). The class with the high-
est probability value for each tile is used for all further
steps (tile-level hard prediction). Thus, each tile is
assigned a single prediction category by the deep learn-
ing SOTA (positive or negative) model or SLAM (posi-
tive, negative, or non-informative). SOTAmethods have
also been applied to multiclass problems [9], in which
the performance for each target class is obtained by a
one-versus-rest procedure. Like SOTA, SLAM is able
to handle such multiclass problems. For simplicity, we
only refer to the (much more common) binary classifica-
tion problem from now on. For N_pos being the number
of mutated tiles and N_tot being the total number of tiles,
the patient prediction scores (PPS) in SOTA [9] are
defined as follows: PPS = N_pos/N_tot. However, it is
known that N_tot is contaminated by non-informative
tiles corresponding to normal tissue. Therefore, N_tot
is artificially inflated if there is a relevant amount of
non-tumor tissue on the slide. This is solved by SLAM,
which predicts positive tumor tiles (N_pos), negative
tumor tiles (N_neg), and non-tumor or non-informative
tiles (N_nt). PPS in SLAM are calculated as
PPS = N_pos/(N_tot � N_nt). Technical details are
listed in supplementary material, Table S1 and an addi-
tional description of SLAM is provided in supplemen-
tary material, Figure S2. In this study, we compared
the performance of SLAM to the SOTA algorithm.

Experimental design and statistics
First, we tested whether tumor slides and non-tumor
slides could be distinguished with a high accuracy.
Then, we trained SLAM on five binary classification
tasks in a within-cohort approach by using patient-level
three-fold cross-validation in the DACHS cohort. The
classification targets were grade (low/high), gender
(female/male), KRAS mutation (mutated/wild type),
BRAF status (mutated/wild type), and MSI/MMR status
(MSI/MSS or dMMR/pMMR). Gender was included as
a negative control. Although MSI and dMMR are mea-
sured by different laboratory methods (PCR and IHC,
respectively) and are not 100% overlapping, they are
widely regarded as synonymous for clinical decision
making. Therefore, here we refer to ‘MSI/dMMR sta-
tus’. Finally, we validated the model trained on DACHS
on an external cohort, YCR-BCIP, for prediction of
MSI/dMMR status. The primary statistical endpoint
was the area under the receiver operating curve
(AUROC) with 100-fold bootstrapped confidence inter-
vals. This means that the confidence intervals were
obtained by a procedure in which a list of PPSs was gen-
erated 100 times, AUROCs were re-calculated, and the

95% confidence interval on this distribution is given.
Each time the list of prediction scores was generated,
n patients were randomly chosen from the list of
N patients with replacement. This procedure was per-
formed by the Matlab function ‘perfcurve’, which is
documented at https://www.mathworks.com/help/stats/
perfcurve.html. Secondary statistical endpoints were
accuracy, sensitivity, specificity, and F1 score of the
SOTA model and SLAM. To generate a cut-off value
for these statistics, an identical automatic procedure
was applied to the patient-level prediction scores in each
experiment. Using the ROC curve, the closest threshold
value corresponding to a sensitivity of 80% was identi-
fied and rounded to three decimal places. Subsequently,
using this threshold value, a confusion matrix and statis-
tics were calculated. Because ROC curves are not con-
tinuously defined, the final sensitivity could differ from
80% (see supplementary material, Table S2).

Visualization
To visualize three classes in a single visualization, we
employed multiplexed heat maps using three base color
vectors to achieve close to perceptually optimized color
maps, as described previously [36]. Based on each tile
prediction value z for MSI (zMSI), MSS (zMSS), and nor-
mal (znormal), the color C was generated with three red,
green, blue (RGB) color vectors c (cMSI = [0.8,0,0],
cMSS = [1,1,0], cnormal = [0,0,1]) as follows: C = zMSI

* cMSI + zMSS + cMSS + znormal * cnormal. To generate
smooth maps from sparse predictions, we interpolated
between the z values on a regular two-dimensional grid.
In addition, we selected the highest scoring tiles (based
on tile-level soft predictions) for the highest-scoring
patients (based on patient predictions) and reviewed
these tiles with a pathologist to identify human-
interpretable morphologic patterns of interest.

Results

Automatic slide-level tumor detection and grading
Here we present SLAM (Figure 1A–C). First, we
assessed the ability of SLAM to automatically detect
tumor-bearing slides on a slide level using weak (slide-
level) labels with a three-fold cross-validation approach,
using WSIs containing both tumor and non-tumor tissue
as well as normal tissue (non-tumor colorectal tissue)
slide images without any tumor tissue. In DACHS
(n = 2,448 patients, Table 1), this achieved a high
slide-level AUROC of 0.980 (0.975, 0.984). This dem-
onstrates that tumor-bearing and non-tumor-bearing tis-
sue slides can be well distinguished by a neural
network trained on slide-level labels. Next, we moved
from two classes to three classes and explored SLAM’s
accuracy in tumor grading. Ground truth labels were
the predominant histopathologic grades of differentia-
tion in each slide measured according to local standard
procedures, binarized into low grade (grades 1–2) and
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high grade (grades 3–4). Applying the SOTA model
on the grading target resulted in an AUROC of
0.722 (0.699, 0.744; see supplementary material,
Figure S3A), which was improved by SLAM to an
AUROC of 0.751 (0.727, 0.774; see supplementary
material, Table S2). As a negative control, i.e. a target
feature that should not be detectable, we included gen-
der. Indeed, neither the baseline model nor SLAM could
reliably infer gender from raw histopathology slides,
reflected by AUROCs close to 0.50 (see supplementary
material, Table S2).

SLAM outperforms classical deep learning models for
prediction of genetic alterations
Next, we applied SLAM to the detection of two clini-
cally targetable molecular alterations in CRC:
MSI/dMMR status and BRAF mutational status. For
MSI/dMMR detection, SLAM achieved an AUROC of
0.909 (0.888, 0.929, Figure 2A, supplementary material,
Table S2), being more accurate than the deep learning-
based SOTA model with an AUROC of 0.879 (0.855,
0.902). Compared with the previous deep learning

SOTA, SLAM increased the F1 score from 0.477 to
0.559 and also increased the accuracy, sensitivity, and
specificity of the predictions (see supplementary mate-
rial, Table S2 and confusion matrices in supplementary
material, Figure S4). Similarly, for inference of BRAF
mutational status based on slide-level labels, SOTA
achieved an AUROC of 0.782 (0.736, 0.813), which
was improved to 0.821 (0.786, 0.852) by SLAM (see
supplementary material, Figure S3B and Table S2).
Again, accuracy, sensitivity, specificity and F1 score
were also improved. Taken together, these data show
that SLAM improves detection performance of molecu-
lar subtypes compared with SOTA. Importantly, we
found that performance for prediction of MSI/dMMR
status and BRAFmutational status particularly increased
from SOTA to SLAM in the high-sensitivity region of
the classification model, i.e. the upper region of the
ROC curve (Figure 2A and supplementary material,
Figure S3B). In addition, we evaluated whether KRAS
mutational status was predictable from tissue slides. Pre-
vious studies have shown only a low predictability of
KRAS status from slides by previous approaches [9],
which in our experiments was reflected by a poor

Figure 1. SLAM. (A) Previous studies used positive and negative tumors with slide-level labels, whereas SLAM includes normal tissue slides in
the training. (B) Histologic routine images of tumor (yellow, MSS; red, MSI) and normal tissue (H&E) from DACHS (n= 2,039 for MSI status)
were collected, tessellated, and normalized. SLAM was used to provide patient-level predictions and multiplexed spatial prediction maps.
(C) External validation of SLAM on YCR-BCIP (N = 805 for MSI status).
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Figure 2. SLAM outperforms the SOTA model. (A) Patient-level accuracy shown as a ROC curve comparing SLAM (red) with SOTA (black).
SLAM outperforms SOTA in the training cohort (DACHS, assessed via cross-validation) and in the external validation cohort (YCR-BCIP).
The enlarged detail shows a performance gain in the high-sensitivity region of the ROC space. (B) Top predictive tiles from the top five
patients in each group. For classification of MSI, MSS tumors, and normal tissue, as well as for high-grade (grade 3–4), low-grade (grade
1–2) tumors, and normal tissue, SLAM identifies histologically plausible image patches.

Figure 3. Visualizing multiplexed predictions. (A) Trivariate visualization of multiplexed spatially resolved predictions for tumor detection and
subtyping. Based on tile-level predictions, three channels for each slide (MSI/dMMR, MSS/pMMR, and normal tissue) were created. These
channels were merged to a single heatmap that contains each information. (B) Sample heatmaps of MSI/dMMR and MSS/pMMR tumors
and normal tissue. In particular, the sample in the bottom right corner of MSS tumors shows that in some cases, a large area of non-tumor
tissue is present on tumor slides.
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baseline detection accuracy of the SOTA model with an
AUROC of 0.590 (0.567, 0.623). SLAM achieved an
AUROC of 0.609 (0.579, 0.623), showing just a slight
improvement (see supplementary material, Figure S3B
and Table S2). To assess the histopathologic plausibility
of the proposed approach, we manually reviewed the
25 highest predictive tiles from the 25 highest predictive
patients for all targets. We found that for prediction of
MSI/dMMR status (Figure 2B), SLAM identified poorly
differentiated and lymphocyte-rich image tiles as being
the most predictive for MSI, whereas well-differentiated
tumor glands with dirty necrosis were the most predic-
tive for MSS. In the patches representative for normal
tissue, i.e. non-informative tissue for the prediction of
MSI/dMMR status, normal colon mucosa and smooth
muscle tissue were the most prevalent tissue types. Sim-
ilarly, for the model trained to predict tumor grading,
high-grade and low-grade image tiles represented plausi-
ble tissue patterns (Figure 2B). Again, the highest scor-
ing normal tissue tiles showed normal colon mucosa.
Together, these results show SLAM’s capabilities of
improving prediction of genetic alterations in tumors
by automatically detecting and excluding non-tumor
tissue.

Multivariable visualization improves interpretability
Previous deep learning studies in digital pathology have
provided univariate prediction heatmaps to make model
predictions understandable to human observers. How-
ever, SLAM by design outputs multiplexed predictions,
which require multivariate visualization. To achieve
this, we developed a trivariate visualization method that
allowed us to display tumor detection and predict genetic
alterations in a single heat map (Figure 3A). Representa-
tive prediction maps for patients in each class are shown
in Figure 3B. These heat maps provide assistance in a
dissecting analysis of individual tumors as they display
tumor heterogeneity in one glance. When reviewing
the multiplexed visualization maps with expert
observers, we found that tumor tissue in MSS/pMMR
tumors and MSI/dMMR tumors (Figure 4A,B) could
be localized by a human observer. In addition, trivariate
visualization maps highlighted tumor heterogeneity. In
true MSS/pMMR tumors, although the tumor tissue
was overall visualized as ‘yellow’ (MSS/pMMR), the
tumor invasive margin was occasionally (mis-)classified
as MSI/dMMR (Figures 3B, 4A). Analysis of the under-
lying tissue slide revealed that these regions represented

Figure 4. SLAM detects and excludes non-informative tissue and improves tumor subtyping. (A) Original WSIs and corresponding heatmap
are shown for two representative cases. This is an MSS/pMMR tumor with surrounding healthy tissue. Although the patient was correctly
assigned a high score for being MSS/pMMR, the trivariate visualization demonstrates only a slight heterogeneity of deep learning based
within this patient. (�) denotes areas predicted to be negative (MSS/pMMR), (+) denotes areas predicted to be positive (MSI/dMMR), and
(N) denotes normal tissue, as predicted by the model. (B) A representative patient for the MSI/dMMR class. In this case, the tumor tissue
was homogeneously predicted to be MSI/dMMR.
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the lymphocyte-rich tumor invasive margin, a well-
known feature in CRC.

SLAM generalizes well to a large external cohort
As deep learning systems are prone to overfitting on the
training dataset, external validation is an absolute
requirement for assessing prediction performance. We
externally validated the prediction performance for
MSI/dMMR, training on all 2,448 DACHS cases and
testing on 889 YCR-BCIP cases. For detection of
MSI/dMMR status in YCR-BCIP, SLAM achieved an
AUROC of 0.900 (0.864, 0.931) compared with a base-
line achieved by the SOTA model of 0.865 (0.824,
0.904; Figure 1A). Correspondingly, accuracy, specific-
ity, and F1 score were improved by SLAM compared
with SOTA (supplementary material, Table S2). This
demonstrates the generalizability of SLAM despite dif-
ferences between the training set and the test set (e.g. a
different method of determining theMSI/dMMR ground
truth and the presence of pen marks in the training slides,
but not in the slides in the validation set). In addition, a
manual review of trivariate prediction maps showed that
also in this cohort, tumor detection and subtyping was
generally achieved in a spatially correct way.

Discussion

Tumor detection in digitizedWSIs is a classical problem
in computational pathology. A number of technical
approaches to this problem were proposed even before
the advent of deep learning methods [37]. Nowadays,
deep learning approaches outperform hand-crafted pipe-
lines for this problem [8]. However, in recent years a dif-
ferent type of problem has been increasingly addressed
in computational pathology research. Beyond simple
tasks, such as the detection of tumor tissue, it has been
shown that deep learning is able to extract subtle visual
features from histology images, making it possible to
predict the presence of molecular alterations from rou-
tine pathology slides [21]. The central hypothesis to this
approach is that the genotype gives rise to the phenotype,
therefore genetic changes cause phenotypic changes and
deep learning can infer the genotype of tumors just by
observing tissue phenotype [22].

Here, we propose a simple workflow that improves
prediction of genetic changes by simultaneously
detecting tumor tissue in digitized pathology slides.
Our approach only relies on slide-level labels, i.e. weak
labels that are much cheaper and easier to generate than
region-specific labels such as tile-level labels [24]. No
manual tumor annotations whatsoever are required dur-
ing training. We only trained on approximately 3,000
weakly labeled tissue slides, whereas previous studies
have used much larger cohorts of up to 10,000 patients
for training [23,24]. Although the tile-level labels in this
approach are very noisy, we achieved a high perfor-
mance for slide-level tumor detection (AUROC 0.980)
and for molecular subtyping (AUROC 0.909 for MSI

in the test cohort, 0.900 for MSI in the external valida-
tion cohort). In addition to accurate tumor detection on
a slide level, our approach provides visualization maps
for human readers that help in localizing tumor regions
in heterogeneous tissue slides. These multiplexed visual-
ization maps are generated with a new trivariate visuali-
zation method, which has previously only been applied
for visualization of radiology image data [36]. This
method allows expert observers to simultaneously check
tumor localization capabilities and the predictions of
molecular alterations of a deep learning model. We
applied SLAM to multiple clinically relevant target fea-
tures in CRC: MSI/dMMR status (which qualifies
patients for immunotherapy [4]), BRAF mutational sta-
tus (which qualifies patients for targeted therapy [6]),
and grade of differentiation (an established histopathol-
ogy feature defined on a case level). The cohort we used
to investigate this was derived from a range of different
pathology laboratories in southwest Germany, maximiz-
ing diversity of sample processing procedures. Finally,
because all computational pathology methods should
be validated in external cohorts in order to ensure gener-
alizability [38], we evaluated classification performance
on the YCR-BCIP cohort from 12 different institutions
across the Yorkshire region of the UK. In this external
cohort, we achieved a high performance with an
AUROC 0.900 (0.864, 0.931) for MSI detection in addi-
tion to interpretable tumor localization. This demon-
strates the robustness and generalizability of SLAM.
Importantly, the idea behind SLAM is not to provide
an automatic tool for perfect tumor segmentation in tis-
sue slides, but to use detection of normal tissue as a tool
to improve classification performance for the prediction
of molecular alterations.
In an ecosystem of ever-increasing complexity of

computational pathology workflows, the new approach
provides a simple yet highly effective method for tumor
localization and genotype prediction based on patho-
logic images. This simple method can be implemented
using off-the-shelf models with transfer learning using
standard deep learning libraries. Like any computational
pathology method, before use in clinical routine, our
method needs to undergo additional quality control and
regulatory approval. A key limitation of our study was
that it was only applied to a single tumor type, in which
tumor tissue can be well distinguished from normal tis-
sue. Future studies are needed to determine the perfor-
mance of SLAM in other tumor types with more
complex histopathologic patterns, such as pancreatic
cancer or gastric cancer. We provide all of our source
codes under an open-source license, allowing other
groups to test SLAM in other disease contexts.
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