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A B S T R A C T   

Photovoltaic (PV) hot-spots is a reliability problem in PV modules, where a cell or group of cells 
heats up significantly, dissipating rather than producing power, and resulting in a loss and further 
degradation for the PV modules’ performance. Therefore, in this article, we present the devel-
opment of a novel machine learning-based (ML) tool to diagnose early-stage PV hot-spots. To 
achieve the best-fit ML structure, we compared four distinct machine learning classifiers, 
including decision tree (DT), support vector machine (SVM), K-nearest neighbour (KNN), and the 
discriminant classifiers (DC). Results confirm that the DC classifiers attain the best detection 
accuracy of 98%, while the least detection accuracy of 84% was observed for the decision tree. 
Furthermore, the examined four classifiers were also compared in terms of their performance 
using the confusion matrix and the receiver operating characteristics (ROC).   

1. Introduction 

Nowadays, photovoltaic (PV) module’s reliability and durability became a vital determinant to utilize the leading cause of PV 
degradation, failure-rates, and mismatching conditions. PV installations often experience partial shading conditions [1], while this 
would typically create an uneven increase in the cells’ temperature, causing what is known by “PV hot-spots” [2]. The rising in the 
hot-spotted cells’ temperature is caused by the reversed biasing of the output current. As proven by Ref. [3], hot-spotted cells will 
dissipate rather than generate power, while the total loss in the PV system’s yield energy is expected to drop by up to15%. Not only 
shading creates PV hot-spots, but also, it was evident by Ref. [4] that there is a correlation between the existence of PV cracks 
“snail-trail or micro-cracks” and the presence of the hot-spots. 

Most reliable PV technologies in today’s market are equipped with bypass diodes, as explained in early 1986 [5]. Unfortunately, 
multiple studies, including [6,7], prove that bypass diodes do not overcome the PV hot-spotting events. 

Current studies such as [8–10] show assuring techniques to avoid hot-spots in the PV modules. Those techniques rely on the 
switching mechanism of the MOSFETS that are integrated into parallel with the PV modules. They show robust results; however, they 
do not detect hot-spots in the PV modules; all are dependent on thermal imaging as a pre-stage functionality. 

In practice, thermal imaging cameras are not available for nearly all PV user’s, domestic-wise. In comparison, commercial PV 
operators in today’s market intend to use thermal drones to detect the hot-spots; this procedure is expensive to operate and requires 
legal authorisation to do so. Furthermore, a limited number of robust methods can diagnose hot-spots in PV modules, particularly 
early-stage hot-spots, where the PV module is only affected by either one, two, or at most five hot-spotted solar cells. Therefore, in our 
study, we present the development of a machine learning-based tool to diagnose early-stage hot-spots. Before moving ahead to the 
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methodology, the following section presents current hot-spots detection algorithms and their main limitations. 

1.1. Literature review: existing hot-spots detection algorithms and their limitations 

Thermal imaging cameras most frequently inspect the detection of hot-spots in PV modules. However, in the last couple of years, 
promising yet not entirely accurate techniques have been developed to diagnose PV hot-spots. H. Chen et al. [11] proposed a 
data-driven feature extracting method to analyse PV hot-spots. The main limitations of this technique, including that all results were 
obtained using shaded PV cells, while in theory, this is a fair experiment, while in practice, many studies show that only applying shade 
does not necessarily correlate with the amount of voltage and current loss compared with actual hot-spotted PV modules. Besides, this 
technique depends on adding an extra capacitive load to the PV module; hence, the method’s physical application is challenging. 

J. Gosumbonggot & G. Fujita [12] introduced a method to detect PV hot-spots adopting the characteristics of the power-voltage 
(P–V) curve of the PV modules. This method can only be employed with stand-alone PV modules. It only defines whether the PV 
modules have hot-spots, but it inevitably fails to identify the nature “type” of the hot-spots. 

M. Dhimsih et al. [13] suggested a suitable algorithm for detecting PV hot-spots based on the analysis of 2580 PV modules. To 
detect the hot-spots accurately, this algorithm uses the cumulative density function analysis (CDF). The maximum attained detection 
accuracy is equal to 80%, while this algorithm is only appropriate if an extensive data set of hot-spotted PV modules are accessible. 

Other methods use artificial intelligence (AI) algorithms to identify hot-spots in PV systems. A very recent study by K. Niazi et al. 
[14] revealed a machine learning-based algorithm to diagnose PV hot-spots. The proposed algorithm requires the thermal images of 
the tested PV modules to aid the texture and histogram of gradient features of each thermal image. Naive Bayes (nBayes) classifier is 
then used to classify the type of hot-spots with a maximum recognition rate of 94.1%; experimented on 375 different samples. This 
algorithm still needs the thermal imaging procedure (as a pre-stage action), and the detection accuracy significantly diminishes as the 
resolution of the thermal camera is dropped. 

A similar study recommended by G. Ngo et al. [15] used K-means colour quantisation for pre-processing and density-based spatial 
clustering of applications with noise for processing in the images captured by an infrared camera. The same technique was further 
applied by Ref. [16], although the infrared images’ transformation was done using a Faster-RCNN machine learning algorithm. The 
detection accuracy of both [15,16] is limited to 90%. 

A photovoltaic hot-spots fault detection method using a fuzzy-inference system developed by Ref. [17] shows another promising 
solution to detect hot-spots without thermal imaging cameras. This method uses a Mamdani-type fuzzy controller, which entails three 
different parameters, including the output voltage, current and power. The maximum attained detection accuracy was equal to 96.7%. 
This method’s principal drawback is that the fuzzy controller requires a large set of hot-spotted PV data for training and validation 
purposes. Also, the type of hot-spots can be accurately detected; however, PV modules affected by one or two hot-spots are challenging 
to distinguish, making this method unsuitable for early-stage PV hot-spots detection. Comparatively, a deep learning-based process 
presented in Ref. [18] can identify hot-spots and micro-cracks in PV modules. This technique requires electroluminescence (EL) im-
aging cameras to pre-process the information “images” into a deep learning algorithm. Practically speaking, this tool is quite chal-
lenging to operate as outdoor EL imaging systems are expensive and requires a suitable outdoor space which is not the case in most 
residential roof-topped PV installations. 

1.2. Contribution to knowledge and article organization 

As discussed in the previous section, a limited number of methods are used to diagnose PV hot-spots without using the pre- 
processing procedure that requires the input of either thermal, infrared or EL images of the examined PV system. Furthermore, 
most recent algorithms, including [11–18], achieve a low detection accuracy of the PV hot-spots, mainly when utilised for early-stage 
hot-spotting scenarios. 

Our main contributions are (i) the development of a machine learning tool that can detect hot-spots in PV modules; consequently, 
avoid using thermal imaging systems for early hot-spots detection, (ii) the machine learning tool is implemented and assessed using 
three different data setups. Hence, comparing different methodologies and, ultimately, finding the excellent data requirement for PV 
hot-spots detection, and last (iii) use four different classification algorithms to train and validate the machine learning tool, algorithms 
include decision tree (DT), support vector machine (SVM), K-nearest neighbour (KNN), and the discriminant classifier. These algo-
rithms will be compared in terms of their performance using the confusion matrix and the receiver operating characteristics (ROC). 

The following sections of the article are organised as follows: Section II introduces the examined PV installation and the data 
normalization process, whereas Sections III and IV explain the analysis of different machine learning classifiers and the overall results. 
Finally, Section V includes the discussion details, whereas Section VI illustrates this work’s innovative conclusions. 

2. Overall examined PV installation 

This paper has implemented a machine learning tool that could be used to diagnose early-stage PV hot-spots. Practically, not all 
types of hot-spots are categorised as early-stage hot-spots; therefore, we have categorised the hot-posts conditions as follows:  

1) PV module affected by one hot-spotted solar cell  
2) PV module affected by two hot-spotted solar cells  
3) PV module affected by ≥ three hot-spotted solar cells 
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To analyse PV modules’ performance affected by these hot-spotting categories, we have examined a PV system shown in Fig. 1(a). 
Each PV module’s peak output power is 220W, Isc and Voc are equal to 8.18A and 36.7V, respectively. 

Before the machine learning tool’s employment to diagnose PV hot-spots, it is essential to define the data setup(s), which will be 
used later by the classification algorithms. Therefore, three different data setups were identified; these setups are presented as S1 to S3 
in Fig. 1(b). Each setup consists of an additional input parameter, resulting in a generic overview of the minimum data requirement, as 
a system point-of-view, to implement a robust hot-spotting detection algorithm, including an accurate detecting accuracy. 

Another reason for selecting different data setups, as some PV installations are fitted with MPPT units that only have the acquisition 
of the output power at maximum power point (Pmpp), while some other advanced MPPT units, widely available in todays’ market, offer 
a wide range of data assets including Pmpp, Isc and Voc. 

Therefore, the first setup (S1) only contains the data of the Pmpp, while S2 consists of two parameters, Pmpp and Isc. The last setup, 
S3, comprises three inputs, Pmpp, Isc, and Voc. Hence, S3 would necessitate additional computational time to process the classification 
model compared with the previous two setups according to another input parameter requirement. 

Before the implementation of the machine learning tool, the data of each examined PV module was normalized. Without the 
normalization process, and as the PV modules’ acquired data are of different scale, it is therefore required to normalize the dataset 
using (1) [19]. 

Xnew =
X − Xmin

Xmax − Xmin

(1)  

where Xnew is the new normalized data point, X is the actual measured data point from the PV module, Xmin and Xmax are the minimum 
and maximum observed values, respectively. 

The normalization of the data samples plays a strong impact, especially when it comes to validating the machine learning model. 

Fig. 1. (a) Examined PV installation, (b) Schematic of the parameters used to test the effectiveness of the machine learning algorithms.  

Fig. 2. List of examined classification algorithms.  
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Consequently, models without normalized data (when the data samples are with different ranges) habitually fail to attain a high 
detection accuracy rate. 

3. Machine learning tool 

This section presents all classification algorithms, shown in Fig. 2, that were used to validate the proposed PV hot-spots detection 
tool’s accuracy. For each classifier, three different data setups were testified. 

3.1. Decision tree 

DTs are a type of supervised machine learning where the data is continuously split according to a specific parameter [20]. There are 
two types of DTs, classification, and regression. The main difference between both types that the regression gives an output as a 
number, while the classification indicates the output according to the input used for training and validation process. 

Three different DTs algorithms were tested. The fine tree uses many leaves (categories) that makes many refined distinctions 
between the observed classes; max distinctions of the observations could go up to 100. While the only difference from other types of 
DTs, including the Medium Tree and Coarse Tree, is that these DTs utilize fewer distinctions between the observations. The medium 
tree typically uses up to 40, and Coarse Tree is limited to 4. The data classification is strongly dependent on the observations in terms of 
the quality of the data (noiseless or noisy) and the data setup. 

3.2. Support vector machine 

SVM is a supervised machine learning algorithm that can be used for classification data sets. In this algorithm, we plot each 
observation as a point in n-dimensional space, where n is defined as the number of features. Therefore, according to our data, n is equal 
to 4, representing four different features including, a healthy PV module, a PV module affected by one hot spotted solar cell, a PV 
module affected two hot spotted solar cells, and a PV module affected by ≥ three hot spotted solar cells. 

We have examined the performance of three different SVM algorithms, including Linear, Quadratic and Cubic. Linear SVM makes a 
linear separation between the observations, and it makes it the easiest SVM to develop. Quadratic and Cubic SVMs use a second and 
third-order polynomial kernel [21], calculated using (2) for two-classes x→ and z→. 

k( x→, z→)=( z→
T

x→+ c)n (2)  

where n is the “order” of the kernel, and c is a constant that allows to trade off the influence of the higher-order and lower order terms. 
When the solar irradiance increase, the output power increases; therefore, it is highly expected that the ideal classification would be 

Fig. 3. Results of the SVM algorithms using datapoints of solar irradiance vs output power from 500 to 525 W/m2. (a) Linear SVM, (b) Quadratic 
SVM, (c) Cubic SVM. 
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the Linear SVM. To understand whether this is true, we have plotted the data (solar irradiance ranges from 500 to 525 W/m2) of a 
healthy PV module against a PV module affected by one hot-spotted solar cell; results of the SVM classification is shown in Fig. 3. As 
expected, the linear SVM attains the highest classification accuracy of 98.3% compared with the Quadratic and Cubic SVMs that have 
95.6% and 97.9%, respectively. 

The Cubic SVM algorithm is typically not suitable to use along with large data sets and would not perform well in overlapping 
classes [22], such as for PV hot-spotting scenarios. Although, the Cubic SVM algorithm is well suited for extreme case binary classi-
fication. On the other hand, the Quadratic SVM algorithm performs similarly to the Linear SVM. In contrast, this algorithm’s main 
limitation is that it requires a significant amount of time to process the classification, typically twice the time of the linear SVM 
algorithm. 

In today’s deployed machine learning models, practically speaking, data with overlapped classes are usually classified using KNN 
algorithms. The performance of six different KNN algorithms will be discussed in the next sub-section. 

3.3. K-nearest neighbour 

KNN algorithms are easy to implement, fast and reliable, predominantly with small to medium-sized data sets. In practice, 
implementing a KNN algorithm takes less computational time compared with DT and SVM algorithms [23]. 

In this article, we have evaluated the performance of six different KNN algorithms, described as follows:  

1) Fine KNN classifier makes exquisitely clear distinctions between the classes, with the number of neighbors set to 1.  
2) Medium KNN classifier makes fewer number of distinctions between the classes, with the number of neighbors set to 10.  
3) Coarse KNN classifier makes coarse distinctions between the classes, with several neighbors set to 100.  
4) Cosine KNN classifier uses the cosine distance metric between the classes. The cosine distance between two n-dimensional vectors u 

and v is defined using (3). 

Cosine Distance= 1 −
u . v

|u| . |v|
(3)    

5) Cubic KNN classifier uses the cubic distance metric between the classes. The cosine distance between two n-dimensional vectors u 
and v is defined using (4). 

Cubic Distance=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

i=1

|ui − vi|
33

√

(4)    

6) Weighted KNN classifier uses the weights of the distances between the classes. The weighted distance between two n-dimensional 
vectors u and v is defined using (5); where wi is the actual weights of the complete classification process, where ∑

n

i=1
wi = 1. 

Weighted Distance=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

n

i=1

wi(ui − vi)
2

√

(5) 

To visualize the classification of a KNN-based algorithm, we have used data of healthy vs PV module affected by one hot-spotted 
solar cell, as presented in Fig. 4. The classification algorithm set to Fine KNN. It is evident that the KNN algorithm divided the data set 
into two classes; in this case, the number of neighbors set to 1; hence, inaccurate overall classification of the dataset is resolute. 

Nevertheless, according to the PV modules data set, it is well suited to use either the cubic or the weighted KNN algorithm to classify 
the classes because both of these algorithms define each class’s distance (hot-spotting scenarios) against their overall number of 

Fig. 4. KNN algorithm class boundaries for class1 and class2; data of class 1 corresponds to a PV module affected by one hot-spotted solar cell, while 
data of class 2 corresponds to a healthy PV module. 
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observations, rather than only selecting a specific number of neighboring (i.e., using fine, medium, and coarse KNN) to adjust the 
classification of the data set. 

3.4. Discriminant classifiers 

In theory, there are two discriminant classifiers, Linear and Quadratic. The primary purpose of a discriminant classifier is to map 
the data of different classes into a new dimensional axis. For example, if data contains two different PV hot-spotting scenarios, it is only 
required for one new dimensional axis. In comparison, three new dimensional axes will be required to have four different strategies 
[24]. 

The first criteria are to maximize the distance between the means m of the data sets. The second criteria are to minimize the 
variation, which the linear discriminant classifier calls ‘scatter’ and represented by s2 with each data set. In contrast with the above 
criteria, the discriminant classifier’s distance is defined using (6). There is only one axis that will be generated using the linear 
discriminant classifier. However, two axes are created using the quadratic discriminant. 

Disriminant Classifier Distance=
(μ

1
− μ

2
)2

s2
1 + s2

2

(6) 

Results of the discriminant classifiers are shown in Fig. 5. As shown in Fig. 5(a), the linear discriminant classifier generates a single 
x-axis that consists of a scatter (histogram) of each data set. As there is no significant difference between both identified classes 
(μ1and ​ μ2), the results of the classifier for both new classes are overlapping; hence, the accuracy of this classifier would be improved 
using the quadratic classification. 

According to the quadratic discriminant classifier results, presented in Fig. 5(b), the data set was classified into two distinct classes. 
In contrast, the distances between the data points were measured using a singular scatter, but two different scatter plots were identified 
for each data set. They were resulting in improved separation of the acknowledged classes. 

Fig. 5. Output results obtained using discriminant classifier. (a) Linear discriminant, (b) Quadratic discriminant.  

Table 1 
Results of the accuracy determined using all machine learning classification algorithms.  

Classifier Classification Algorithm Accuracy (%) using data setup 1 Accuracy (%) using data setup 2 Accuracy (%) using data setup 3 
DT Fine 25 83 86 

Medium 27 87 88 
Coarse 26 80 84 

SVM Linear 44 79 93 
Quadratic 42 77 94 
Cubic 42 77 92 

KNN Fine 51 85 93 
Medium 54 86 94 
Coarse 43 86 94 
Cosine 49 77 86 
Cubic 56 87 97 
Weighted 52 86 96 

Discriminant Linear 49 87 95 
Quadratic 52 90 98  
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Fig. 6. Output confusion matrix of the best and the worst classifier. (a) Fine decision tree using data setup 1, (b) Quadratic discriminant using data 
setup 3. 

Fig. 7. Examined PV modules for further validation. (a) Thermal image of PV module #1, (b) Thermal image of PV module #2, (c) Measured output 
power for both PV modules over 7 days. 
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4. Results 

In this section, the analysis and the performance of all examined classification algorithms will be compared using real-time long- 
term PV data measurements. In addition, to validate the machine learning tool, two PV modules affected by different hot-spots will be 
assessed. 

4.1. Training and validation performance 

To ensure that the implemented detection tool can also be used with PV modules under normal conditions, a data set of a healthy PV 
module has also been interposed in the training and validation process. In addition, as discussed earlier in the previous section, three 
different data setups were compared during the training and validation phase. To analyse the output of each ML algorithm, MATLAB 
software was used for this purpose. 

Obtained results using all classification algorithms are presented in Table 1. Using data setup 1, all algorithms attain low detection 
accuracy, where the maximum is equal to 56% achieved by cubic KNN. The second and third data setups show an accurate hot-spots 
classification in 77%–98%. 

The overall minimum accuracy of 25% is determined for the fine decision tree using data setup 1, while the maximum of 98% is 
observed for the quadratic discriminant classifier using data setup 3. The confusion matrices of both classifiers are shown in Fig. 6. 
Classes 1 to 4 are healthy PV module, one hot-spotted solar cell, two hot-spotted solar cells, and three or more hot-spotted solar cells, 
respectively. 

According to Fig. 6(a), the fine tree decision can precisely classify 52% of all class 1 samples (obtained using the healthy PV 
module). In contrast, in all other classes, the classifier fails to categorize the hot-spot conditions accurately. However, according to the 
quadratic discriminant classifier’s output confusion matrix presented in Fig. 6(b), an accurate classification of the hot-spots was 
achieved. The minimum classification of 94% for class 2 (PV module affected by one hot-spotted solar cell) is determined because the 
classification in this class is highly overlapping with class 1 and class 2. The measured data of Isc and Voc show a high degree of 
similarity in both cases. 

4.2. Further validation of the accuracy of the proposed machine-learning tool 

To further validate the best-fit machine learning model, using data setup three input for a quadratic discriminant classifier, we have 
tested two different PV modules, presented as PV module #1 and #2 as in Fig. 7(a) and (b), respectively. 

PV module #1 is affected by one hot-spotted solar cell, while PV module #2 is suffering from ≥3 hot-spotted solar cells. The 
measured output power of both PV modules for a period of 1-week has been recorded and presented in Fig. 7(c). As PV module #2 is 
affected by a larger number of hot-spots compared with the PV module #1, it is evident that its actual output power loss is higher. 

After reprocessing both PV modules’ data, the output predicted class, shown in Fig. 8, of the quadratic discriminant classifier, 
shows a significant prediction accuracy for the hot-spot stirring type in the PV modules. 

According to PV module #1, 97.8% was predicted that this PV module is affected by one hot-spotted solar cell, as the predicted class 
is unvarying at 2. In comparison, PV module #2 is predicted to have ≥3 hot-spotted solar cells since the predicted class is 4, with a 
prediction accuracy of 97.3%. 

As labelled in Fig. 8, for both predicted classes, there are several misclassified data points, this is due to several reasons, including, 
(i) the imperfection of the classification algorithms and their deployment, (ii) The variations of the temperature, shading, and solar 
irradiance can reduce the type of hot-spot type, and (iii) dataset used to train and validate the classification algorithms indubitably has 
some imprecise data points. In contrast with the above results, this experiment shows the importance, significance, and accuracy of the 
machine learning tool proposed using the quadratic classifier for predicting early-stage hot-spots in PV modules. 

Fig. 8. Output results obtained using discriminant classifier on two hot-spotted PV modules.  
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5. Discussion 

In our work, we have presented the development and the analysis of multi-ML algorithms that can be used to detect hot-spots in PV 
modules. We found that the discriminant classifier has the highest detection accuracy of all other testified ML algorithms. This result 
has also been suggested in a different scientifical field of study, such as in water level classification (ocean engineering) [25] or even in 
power machines (power engineering) [26]. The advantage to detect early hot-spots can lead to a significant contribution to our pri-
mary mission of “zero-carbon” cities. This detection would improve the quality and reliability of the PV systems and increase their 
yield annual energy. 

We have profound solid work that can lead to a significant understanding of hot-spots’ behavior and detection. Our progressive 
approach can be further embedded with suitable maximum power point tracking units or dc-ac inverters, of course, with the inte-
gration of other sophisticated microcontrollers such as FPGAs suggested by D. T. Nguyen et al. [27] that can process the data samples 
within micro-to-milliseconds. 

The advantage to detect early hot-spots can lead to a significant contribution to our primary mission of “zero-carbon” cities. This 
detection would improve the quality and reliability of the PV systems and increase their yield annual energy. Early diagnosis of hot- 
spots can also be helpful to reduce the impact of micro-cracks in solar cells. For example [28], suggests that micro-cracks can lead to 
hot-spots, and the annual energy loss of the impacted PV modules could be as low as 25%. The most popular micro-crack detection 
system is electroluminescence (EL); in contrast, these systems are expensive (>£10,000) and must follow a specific experimentation 
procedure, including running the PV module at it is short-circuit current to obtain good quality EL images. However, in our proposed 
model, we can detect such events in PV modules without any additional equipment. It could simply function simultaneously while 
connecting the PV system into the load or, in-case off-grid scenario, to the battery storage. 

A comparative study of our presented work vs recent work published by Refs. [14,29–31] is demonstrated in Table 2. As can be 
noticed, that different classifiers have been widely stated, while the best-fit has not been yet fully identified. Our proposed model has 
only three input parameters; whistle all other work has at least four inputs to perform the ML algorithm. 

In our work, we have checked against 15 different ML classifiers, and we have found that the quadratic discriminant scores the best- 
fit classification for hot-spots PV modules with an average detection accuracy of 98%; way above all recent studies such as the 
maximum 95.27% up-to-date published by Ref. [26]. We have also confirmed no requirement to use complex algorithms for data 
processing, such as using fuzzy logic-based classifiers as performed by Refs. [30,31]. 

6. Conclusion 

In this article, we have experimented with 15 different machine learning classifiers to detect and classify early hot-spots in PV 
modules. We have found that the quadratic discriminant classifier is the best-fit machine learning to early diagnose PV hot-spots with 
an average detection accuracy of 98% when using appropriate data samples, including the short circuit current, the open-circuit 
voltage, and the maximum output power. It is also understood that the decision tree classifiers are not suitable to apply as they 
depend on the ratio of the samples’ average; when used with PV hot-spots detection and classification, their detection accuracy is 
consistently below 90%. It was also concluded that KNN classifiers, particularly Cubic-KNN, is appropriate for PV hot-spots classifi-
cation as they resemble detection accuracy in the range of 86%–97%. 
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