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Abstract: This work introduces a new fault detection method for photovoltaic systems. The method 13 

identifies short-circuited modules and disconnected strings on photovoltaic systems combining two 14 

machine learning techniques. The first algorithm is a multilayer feedforward neural network, which 15 

uses irradiance, ambient temperature, and power at the maximum power point as input variables. 16 

The neural network output enters a Sugeno type fuzzy logic system that precisely determines how 17 

many faulty modules are occurring on the power plant. The proposed method was trained using a 18 

simulated dataset and is validated using experimental data. The obtained results showed 99.28% 19 

accuracy on detecting short-circuited photovoltaic modules and 99.43% on detecting disconnected 20 

strings. 21 

Keywords: Photovoltaic system; Photovoltaic faults; Fault detection; ANN networks; Fuzzy logic 22 

system. 23 

 24 

1. Introduction 25 

Photovoltaic (PV) solar energy has been showing worldwide expansion, reaching an installed 26 

capacity of 627 GW [1]. Following this growth, it is essential to ensure the security and reliability of 27 

solar power plants. In this perspective, some challenging issues are associated with it, such as faults 28 

occurring on PV systems, that may impact the secure operation and the optimal energy harvesting.  29 

The reliability of the PV system can be affected by several factors, such as weather conditions, 30 

partial shading, dust/snow accumulation on the modules, wiring losses, aging or malfunctioning of 31 

any system component [2]. Some faults could remain undetected by the operators for long periods, 32 

and it has the potential to reduce 18.9% of power production [3]. Therefore, it is essential to develop 33 

methods capable of detecting and diagnosis faults occurrence in PV systems.  34 

Faults in PV systems can arise on the DC (Direct Current) or the AC (Alternate Current) side. It 35 

can affect the PV modules, converters, MPPT (Maximum Power Point Tracking), and storage system 36 

on the DC side. PV modules faults are crucial since it is the generation unit of a PV system. Faults 37 

occurring on this device could significantly affect the output power. Besides, it could have destructive 38 

effects on their efficiency and lifetime [2].  39 

There are various PV modules faults sources, such as mismatch, bypass diode, circuit faults, 40 

asymmetrical faults, arc faults, ground faults, and lightning. It can be temporary or permanent, 41 

depending on the cause and the period that affects the PV systems performance [4]. The circuit faults, 42 

which are the subject of this research, can be open-circuit or short-circuit. In both situations, the PV 43 
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module does not contribute to power generation, so it could significantly decrease the system 44 

performance and remain undetected.  45 

Therefore, some monitoring and diagnosis techniques have been developed in recent years. 46 

Diagnosis methods can be classified into two general groups: visual and electric. Visual methods 47 

require constant verification by an operator and some specific types of equipment. On the other hand, 48 

electrical methods use output signals such as voltage, current, and power to identify faults occurrence 49 

[5]. Besides, it is possible to use existing sensors and pieces of equipment, making it more viable for 50 

implementing the fault detection method.  51 

In this context, researchers have been exploring different techniques for detecting and 52 

diagnosing faults on PV systems. Methods which applies machine learning are widely explored since 53 

it offers an alternative way for approaching complex issues. Some of these methods explore detecting 54 

the fault in advance, predictively, avoiding massive power losses and damages on PV systems [6]. 55 

However, the most common methods search for fault diagnosis in real-time.  56 

Syafaruddin et al. [7] developed a diagnosis method using an artificial neural network (ANN). 57 

In this case, one neural net was trained for each PV module in order to identify and locate short-58 

circuited modules. The inputs variables are module temperature, irradiance, and maximum power 59 

point voltage and current. The method showed promising results, although it was tested only for six 60 

modules PV system. 61 

Li et al. [8] also applied ANN for fault detection, using the same inputs as [7]. For training, the 62 

dataset used was extracted from simulations using MATLAB/Simulink®. The faults detected by the 63 

method are degradation, short-circuited modules, and partial shading. However, the method was 64 

not experimentally tested. Jiang and Maskell [9] developed a technique for detection combining ANN 65 

and analytical method. The ANN forecasts the maximum power point (MPP), using module 66 

temperature and irradiance as inputs. The algorithm identifies the fault comparing the provided MPP 67 

to the one measured. The faults approached on this method are open-circuited string/module, short-68 

circuited module, partial shading, and malfunctioning MPPT. However, the authors did not test the 69 

method experimentally.  70 

Akram and Lotfifard [10] trained a PNN (Probabilistic Neural Network) for detecting short-71 

circuited and open-circuited modules on PV systems. The dataset for training the neural network was 72 

assembled by simulation using MATLAB/Simulink® software, and its test showed a maximum error 73 

of 3.5%. Nevertheless, it was not tested experimentally, only with simulation data. Further, Garoudja 74 

et al. [11] also developed a fault detection method using a PNN. Firstly, the PV modules parameters 75 

are extracted in order to simulate the studied PV system. The simulation is performed using 76 

MATLAB/Simulink® and PSIM® and validated with experimental data. They trained the neural 77 

network using the simulated dataset, and the input variables are module temperature, irradiance, 78 

and voltage and current at the MPP. This approach detected short-circuited modules and string 79 

disconnections. The authors tested the method experimentally and compared the performance of an 80 

ANN and a PNN. The results showed an accuracy of 90.3% for the ANN and 100% for the PNN.  81 

Chine et al. [12] created a method that combines two algorithms. The first one compares the 82 

measured output power to the simulated-on MATLAB/Simulink® software. If the difference is more 83 

significant than the stipulated threshold, the algorithm identifies faults presence, and the signal 84 

enters the ANN. The RBF (Radial Basis Function) neural network was trained with a simulated 85 

dataset and diagnosis faults on bypass diodes, short-circuit and open-circuit modules, and partial 86 

shading. This method was experimentally tested by the authors and showed good accuracy.  87 

Dhimish et al. [13,14] developed a fault detection for partial shading and short-circuited modules 88 

using a multilayer algorithm. The firsts layers use LabVIEW® simulations and third-order polynomial 89 

function modelling. The last layer uses a fuzzy classifier to diagnose the fault type occurring on the 90 

PV system. The method was tested using experimental data, and its results showed an accuracy of 91 

95.27% with the fuzzy layer and 98.8% with the fuzzy layer. 92 

Dhimish et al. [15] compared a fuzzy logic system to an ANN for partial shading, short-circuited 93 

module, and malfunctioning MPPT fault detection. The authors trained the RBF neural network 94 

using a voltage and power ratio, and the same variables were used to implement the Mamdani and 95 
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Sugeno fuzzy logic systems. The voltage ratio and power ratio are calculated, considering simulation 96 

results performed using MATLAB/Simulink®. The findings showed a superior accuracy of the ANN, 97 

reaching 92.1%. 98 

Hussain et al. [16] compared two different ANNs for developing a fault detection method. The 99 

neural networks used were RBF and MLP (Multilayer Perceptron) for detecting disconnected PV 100 

modules on a string. The input variables were power and irradiance, and the output indicates how 101 

many faulty modules are on the string. Results showed a maximum accuracy of 97.9% on the RBF 102 

neural network. 103 

Considering the previous discussion, it is essential to develop methods capable of identifying 104 

and diagnosing the PV system's fault. Therefore, this paper proposes a fault detection technique 105 

combining ANN and fuzzy logic to detect short-circuited modules and disconnected strings on a PV 106 

power plant. It is essential to detect this fault type since it can massively decrease power generation, 107 

and identifying it can be time-consuming, especially on large scale power plants.  108 

A notable advantage of this work is that the proposed method is suitable and reliable once it 109 

uses pre-existing sensors, and the training dataset is obtained by simulation, not requiring long data 110 

from an existing PV system. Besides, the method does not need to compare simulated results with 111 

measured data, making it more straightforward. 112 

The paper is briefly structured as follows. Section 2 illustrates the modelling of the PV module, 113 

explains mathematical equations needed for PV system simulation. Then, Section 3 describes the 114 

studied PV systems in this research, also validates the model simulation using experimental data. 115 

Section 4 defines the methodology used to develop the fault detection method. In Section 5, the 116 

proposed method is validated with an experimental dataset of the studied PV systems. Finally, in 117 

Section 6, the overall conclusions are discussed.  118 

2. PV Module Modelling  119 

Several PV cell models are proposed in the literature [17], but for this work, it was employed the 120 

one diode model, considering its simplicity. Figure 1 illustrates the equivalent circuit for the one 121 

diode model.  122 

 123 

Figure 1. PV cell equivalent circuit 124 

The circuit comprises the light-generated current (Iph), parallel with a diode and a shunt 125 

resistance (Rsh). All these elements are series-connected to the series resistance (Rs). Analysing the 126 

circuit in Figure 1, the cell output current I can be expressed by Equation (1). 127 

 I = Iph − Id − IRsh (1) 

The Id and IRsh currents represent the diode current and leakage current, respectively, and are 128 

expressed by Equations (2) and (3). 129 

 Id = I0 [exp (VdqakT) − 1] (2) 
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 IRsh = V + RsIRsh  (3) 

Substituting the Id and IRsh expression on Equation (1), the current I delivered by the PV cell is 130 

represented on Equation (4). 131 

 I = Iph − I0 [exp (VdqakT) − 1] − V + RsIRsh  (4) 

where: 132 

I0 Diode saturation current (A) 133 

Vd Diode voltage (V) 134 

q Electron charge (𝑞 = 1.6 × 10−19C) 135 

a Diode ideality factor  136 

k Boltzmann constant (𝑘 = 1.38 × 10−23J/K) 137 

V Cell output voltage (V) 138 

T Cell operating temperature (K) 139 

Rs Series resistance (Ω) 140 

Rsh Shunt resistance (Ω) 141 

The light generated current Iph of a PV cell depends on the irradiance and the cell operating 142 

temperature expressed by Equations (5) and (6). 143 

 Iph = [Iphn + ki(T − Tn)] GGn (5) 

 Iphn = Rsh + RsRsh Isc (6) 

where: 144 

Iphn Nominal light generated current (A) 145 

Isc Short-circuit current for STC (Standard Test Conditions) (A) 146 

ki Temperature coefficient for Isc (A/K) 147 

Tn Cell temperature for STC (298 K) 148 

G Cell irradiance (W/m²) 149 

Gn Cell irradiance for STC (1000W/m²) 150 

The diode saturation current I0 is related to the cell operating temperature and is expressed by 151 

Equation (7). 152 

 I0 = I0n (TnT )3 exp [qEg0ak ( 1Tn − 1T)] (7) 

Eg0 is the bandgap energy for semiconductor and is 1.2 eV to the polycrystalline siliceous at 25 153 

°C [18], and the I0n is the nominal saturation current, expressed by Equation (8). 154 

 
I0n = Isc + ki(T − Tn)exp {q[Voc + kv(T − Tn)]akTn } − 1 

(8) 

Voc is the cell's open-circuit voltage, and kv temperature coefficient for Voc expressed in V/K. 155 

Finally, analysing the circuit in Figure 1, the diode voltage (Vd) can be represented by Equation (9). 156 

 Vd =  V + RsI (9) 

The one diode model characterized by Figure 1 and Equation (4) represents one single PV cell. 157 

However, in practice, a PV module comprises several connected PV cells, and a PV array comprises 158 

several connected PV modules. Thus, to analyse the I and V output characteristics of an entire PV 159 

module/array are necessary to include the parameters of the number of series-connected cells (Ns) 160 

and parallel-connected cells (Np), as expressed by Equations (10) and (11). 161 I = NPIph − NPI0 [exp (q(V + RsI)NsakT ) − 1] − V + RsIRsh  (10) 
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 I0n = Isc + ki(T − Tn)exp {q[Voc + kv(T − Tn)]NsakTn } − 1 
(11) 

It is essential to highlight that when analysing a PV module/array, Rs and Rsh are the equivalent 162 

resistance. Besides, Voc and Isc value the whole PV module/array for the Standard Test Conditions 163 

(STC). Moreover, the temperature T corresponds to the cell operating temperature, not the ambient 164 

temperature. When it is not available the cell or module temperature (Tc), it is possible to assume that 165 

T is dependent on the ambient temperature (Ta) and the Nominal Operating Cell Temperature 166 

(NOCT), as expressed by Equation (12) [19]. 167 

 Tc = Ta + G800 (NOCT − 20) (12) 

Considering the model and expressions analysed, Subsection 2.1 describes PV system modelling 168 

on MATLAB/Simulink® software. 169 

2.1. MATLAB Simulink® Simulation 170 

The PV module modelling was developed using the one diode model in the MATLAB/Simulink® 171 

environment, as shown in Figure 2.  172 

 173 

Figure 2. MATLAB/Simulink® PV module model 174 

In Figure 2, the grey blocks are input variables, the pink blocks are the outputs of the PV 175 

modules, the yellow blocks are constants, and the blue blocks are masks containing previously 176 

discussed equations. Moreover, to avoid a loop error, it was employed a low pass filter (see the green 177 

block in Figure 2) as a feedback transfer function, and C is the filter time constant. The filter discretizes 178 

the model solution, enabling it to solve the equation and store the correct results. The time constant 179 

C should increase with the number of cells. Thus, there will be enough time for the algorithm to solve 180 

the equation, store the result, and perform the next iteration. 181 

The manufacturers provide most of the PV modules' parameters. Generally, the parameters 182 

available on the panel datasheet are open-circuit voltage (Voc), short-circuit current (Isc), the Maximum 183 

Power Point (MPP) voltage (VMPP), the current ate the MPP (IMPP), and the power at MPP (PMPP). Thus, 184 

according to Equations (10) and (11), the parameters that are not available on the PV module 185 

datasheet are the diode ideality factor (a), the series resistance (Rs), and the shunt resistance (Rsh). 186 

While some authors investigated how to estimate the ideality factor a [20,21], in the context of this 187 

work, it is considered 1 ≤ a ≤ 1.5 [18]. The ideality factor a is chosen to improve the model fitting. 188 

Furthermore, the model resistances Rs and Rsh are calculated according to Villalva's method [18].  189 

After modelling a PV module, it is possible to simulate an entire PV array, working under 190 

healthy or faulty conditions. The simulation enabled the development of the proposed method 191 

applied to the system described. Section 3 discusses the modelling validation.  192 
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3. Model Validation with Experimental Data 193 

For the model validation, a comparison with experimental data is incredibly useful. It is essential 194 

to understand how the model works under different PV module models and different conditions. 195 

Thus, the proposed model will be tested for two different PV systems, named here as System 1 and 196 

System 2. Subsections 3.1 and 3.2 describes the model validation for both systems. 197 

3.1. System 1: One String System 198 

The PV array named System 1 in this research is illustrated in Figure 3. The system is a 2.2 kWp 199 

PV power plant, and it comprises ten series-connected PV modules. The panels model is the 200 

SMT6(60)P from PowerGlaz manufacturer, installed at the Huddersfield University campus, and 201 

Table 1 describes its characteristics. 202 

 203 

Figure 3. Schematic of System 1 204 

Table 1. SMT6(60)P PV modules parameters 

Datasheet parameters 

Parameter Value Parameter Value 

VOC 36.74 V Ns 60 

ISC 8.24 A Np 1 

ki 0.0042 A/K PMPP 220 W 

kV -0.132 V/K IMPP 7.7 A 

NOCT 46 °C VMPP 28.7 V 

Calculated parameters 

Parameter Value Parameter Value 

Rsh (Ω) 1108.3972 Rs (Ω) 0.3930 

We simulated System 1 using the model proposed in section 2. Then, we compared the model 205 

simulation results to measured experimental data. We observed the model results varying the 206 

irradiance G. Figure 4 illustrates the P-V (Power vs. Voltage) curves, comparing to the experimental 207 

data.  208 

 
(a) (b) 
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 209 
(c) (d) 

Figure 4. P-V curves for System 1 (a) G = 88 W/m², (b) G = 110 W/m², (c) G = 224 W/m² and (d) G = 329 W/m² 

Observing Figure 4 is possible to verify that the proposed model shows results consistent with 210 

the measured PMPP for the experimented system. Table 2 summarizes a comparison of measurements 211 

of System 1 and simulation results. 212 

Table 2. System 1 experimental results 

Ta (°C) G (W/m²) 
Measured 

PMPP (W) 

Model Simulation 

PMPP (W) 
Error (%) 

16 88 185.26 186.30 0.56 

16 110 238.15 236.00 -0.90 

16 224 493.00 487.90 -1.03 

16 329 709.11 707.20 -0.27 

After verifying the proposed model accuracy, we performed simulations to build the fault 213 

detection method's training database. A large dataset for the machine learning training is necessary 214 

to simulate faulty scenarios and healthy scenarios, varying the irradiance level and the module 215 

temperature. In system 1, the fault detection method is supposed to diagnose short-circuited PV 216 

modules. Thus, we simulated ten scenarios, disconnecting 1, 2, 3, until 9 modules. In each scenario, 217 

the irradiance is wide-ranging from 100 to 1100 W/m², and the ambient temperature from 10 to 40 °C. 218 

Besides, the PMPP is measured for each case.  219 

3.2. System 2: Four String System 220 

The second PV system studied in this research, called System 2, is illustrated in Figure 5. The PV 221 

system is a 4.16 kWp power plant and comprises 32 PV modules, arranged on four series-connected 222 

strings, with eight series-connected modules on each string. The panels model is the KC130GHT-2 223 

from Kyocera manufacturer, also installed at the Huddersfield University campus, and Table 3 224 

describes its characteristics. 225 
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Figure 5. Schematic of System 2 

Table 3. KC130GHT-2 PV modules parameters 

Datasheet parameters 

Parameter Value Parameter Value 

Voc 21.90 V Ns 36 

Isc 8.02 A Np 1 

ki 0.00318 A/K PMPP 130 W 

kv -0.0821 V/K IMPP 7.39 A 

NOCT 47 °C VMPP 17.6 V 

Calculated parameters 

Parameter Value Parameter Value 

Rp (Ω) 119.232 Rs (Ω) 0.16 

We also simulated System 2 using the model proposed in section 2. Following the same previous 226 

methodology, we compared the model simulation results to measured experimental data. We 227 

observed the model results varying the irradiance G. Figure 6 illustrates the P-V curves for System 2, 228 

comparing it to the experimental data. 229 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6 - P-V curves for System 1 (a) G = 145 W/m², (b) G = 254 W/m², (c) G = 300 W/m² and (d) G = 403 W/m² 

Observing Figure 6 is possible to verify that the proposed model shows results consistent with 230 

the measured PMPP for the experimented system. Table 4 summarizes a comparison of measurements 231 

of System 2 and simulation results. 232 

Table 4. System 1 experimental results 

Ta (°C) G (W/m²) 
Measured 

PMPP (W) 

Model Simulation 

PMPP (W) 
Error (%) 

16 145 588.69 578.93 -1.66 

16 254 1086.8 1080.75 0.56 

16 300 1262.41 1286.00 -1.87 

16 403 1701.63 1727.78 -1.54 

After verifying the proposed model accuracy, we performed simulations to build the fault 233 

detection method's training database. In System 2, the fault detection method is supposed to diagnose 234 

strings disconnection fault. Thus, we modeled four scenarios, disconnecting 1, 2, and 3 strings. In 235 

each scenario, the irradiance is wide-ranging from 100 to 1100 W/m², and the ambient temperature 236 

from 10 to 40 °C. Besides, the PMPP is measured for each case. With the simulated dataset, it is possible 237 

to develop the fault detection method for System 1 and 2, discussed in Section 4. 238 

4. Fault Detection Method 239 

The proposed fault detection method identifies short-circuited modules on System 1 and 240 

disconnected strings on System 2, indicating how many PV modules or strings are under the faulty 241 

condition. The input variables should be the irradiance (G), ambient temperature (Ta), and the 242 

measured power at the MPP (PMPP). The only electrical variable, in this case, is the PMPP, which makes 243 

the fault detection quite tricky. The same output power could represent various situations, including 244 

healthy and faulty conditions. Figure 7 compares two P-V curves of System 1 under different 245 

conditions to exemplify this situation.  246 
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Figure 7. Comparative P-V curves of System 1 between different faulty situations 

Observing Figure 7, we can see that even under entirely different conditions, the measured PMPP 247 

could be quite similar. Therefore, any fault detection method needs to deal with this similarity on the 248 

database, mostly if it uses only the maximum power point (PMPP) as electrical variable. Seeking to deal 249 

with this issue, we proposed combining two algorithms, as illustrated in Figure 8.  250 

 

Figure 8. Fault detection method schematic 

The first algorithm is an ANN using as inputs variables the irradiance G, the module 251 

temperature Tc, and the measured power at the MPP (PMPP). The neural network output enters a fuzzy 252 

logic classifier that detects how many PV modules are under short-circuit fault or strings are 253 

disconnected. It is essential to highlight that the method's objective is to give the operator the exact 254 

number of short-circuited PV modules or disconnected strings on the system. Therefore, using a 255 

fuzzy classifier is essential to enable the method to deal with the similarities in the output power and 256 

still give the correct number of faults occurring on the PV system. Table 5 exemplifies the faults 257 

indicated by the detection method.  258 

Table 5. Faults indicated by the detection method 

 Short-circuited PV modules Fault Output 

S
y

st
em

 1
 

0 F0 0 

1 F1 1 

2 F2 2 

3 F3 3 

…
 

…
 

…
 

9 F9 9 

 Disconnected strings Fault Output 

S
y

st
em

 2
 0 F0 0 

1 F1 1 

2 F2 2 

3 F3 3 
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System 1 comprises ten panels, so if there are ten faulty PV modules, the entire system is 259 

disconnected. Therefore, this faulty condition does not correspond to short-circuited PV modules but 260 

system failure. So, observing Table 5, the proposed method identifies 0 (normal operation) to 9 short-261 

circuited PV modules for System 1. The ANN's and fuzzy logic details for each system are described 262 

in Subsections 4.1 and 4.2. 263 

4.1. Artificial Neural Network 264 

The ANN of the fault detection method applied to the studied system is a Multilayer Perceptron 265 

(MLP) neural network. On an MLP network, each layer has a weight matrix W, a bias vector b, and 266 

an output vector Y, as illustrates in Figure 9, where f(.) is the used activation function. The outputs of 267 

the hidden layer are defined by Equations (13) and (14) [22]. 268 

 𝑌1 = 𝑓( 𝑤 × 𝑋2 + 𝑏1 )1  (13) 

 𝑌2 = 𝑓( 𝑤 × 𝑌 + 𝑏212 )2  (14) 

 

Figure 9. Basic MLP Structure 

In general, MLP networks can be applied to linear or nonlinear models. Usually, it is associated 269 

with sigmoid, tansigmoid, or linear activation functions. They are often used because it provides 270 

nonzero derivatives regarding input signals and exhibits smoothness and asymptotic properties. The 271 

linear activation function is employed to approximate a continuous function in the output layer of 272 

MLP networks. There is no formal rule for choosing the number of hidden layers of neurons on it. 273 

Though, the number of neurons in the hidden layer impacts the network performance. A large 274 

number of neurons in the hidden layers will make the training process slow [22].  275 

We developed the MLP using MATLAB® software. Figure 10 represents the structure of the MLP 276 

applied to the fault detection method, and Table 4 describes its settings.  277 

 

Figure 10. System 1 and 2 MLP structure 
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Table 6. System 1 and 2 MLP training settings 

ANN Setup 

Number of input variables 3 (G, T, PMPP) 

Number of output variables 1 

Number of layers 2 

Number of neurons  (10,1) 

Training Process Supervised 

Training algorithm Levenberg-Marquardt 

Activation function (tansigmoid, linear) 

Training 70% 

Validation 15% 

Test 15% 

Type of division of samples random 

The training process is supervised, meaning that we provided a set of input/output data of 278 

appropriate network behaviour. We divided randomly 70% of the samples for training, 15% for 279 

validation, and 15% for testing. Thus, we enable the validation of the desired topology. The training 280 

algorithm chosen is Levenberg-Marquardt, considering it is a faster algorithm for networks of 281 

moderate sizes. 282 

The training dataset was obtained, as discussed in Sections 3.1 and 3.2. For System 1, it comprises 283 

147 samples for each simulated scenario, a total of 1470 samples. For System 2, the dataset comprises 284 

588 samples and 147 samples for each simulated scenario. We compiled the samples in a crescent 285 

order of output power (PMPP), along with the respective irradiance (G), ambient temperature (Ta). 286 

Hence, it was assumed values varying from 0 to the number of possible faults occurring on the 287 

array for the targets. Therefore, for System 1, the targets assumed ranges from 0 to 9.99, with a step 288 

0.0068 according to the number of samples on each scenario. Thus, in training, the algorithm can 289 

understand that even for the same PMPP, it could represent more than one faulty situation. 290 

For System 2, the targets assumed ranges from 0 to 3.99. For instance, if two faulty PV modules 291 

occur on System 1, the ANN targets vary from 2 to 2.99. It is worthy of highlighting that an ANN 292 

output of 2.9 is not more critical or closer to three faulty PV modules than a 2.4 result. Both output 293 

values mean that there are two short-circuited PV modules in the system (in the case of System 1). 294 

The range on the output values is necessary to avoid incorrect fault detection in those cases of output 295 

power (PMPP) are too similar even in different conditions.  296 

Thus, each fault condition corresponds to a range of outputs values on the ANN. The training 297 

process took six epochs for both ANNs. The regression coefficients are R1 = 0.99996 and R2 = 0.99848 298 

for System 1 and System 2 ANN's, respectively. These coefficients mean that the trained networks' 299 

outputs closely represent the ones used as training data. 300 

The output signal is not an absolute number since each faulty condition corresponds to a range 301 

of output values, so the fuzzy logic system classifies and can determine precisely how many faults 302 

are occurring on the PV system [23]. 303 

4.2. Fuzzy Logic System  304 

In this study, the second algorithm, combined with the ANN, is responsible for giving the 305 

operator the exact number of faulty conditions in a PV system. Considering that each faulty condition 306 

corresponds to a range of the ANN results, it could be simply trunked to the integer value by an 307 

algorithm. However, we observed that due to similarities in the PMPP, as previously discussed in 308 

section 4, the ANN output not always follows the expected linearity. So, in some cases, the ANN 309 

output values are out of the range for the given faulty condition.  310 

Therefore, considering the ANN results, a fuzzy logic system interface can precisely determine 311 

how many faulty PV modules or disconnected strings are on the examined PV system since the 312 

operator can easily set the range of the membership functions.  313 



Electronics 2020, 9, x FOR PEER REVIEW 3 of 4 

 

The implemented fuzzy logic is a Sugeno type, developed on MATLAB®, using the software's 314 

default fuzzy inference rules. . We choose the Takagi-Sugeno-Kang fuzzy inference system 315 

considering the linear relation between the inputs and outputs [24]. Figure 11 and Table 7 shows its 316 

characteristics. 317 
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Figure 11. The developed fuzzy logic system (a) System 1 and (b) System 2 

Table 7. Fuzzy logic classifier settings 

Fuzzy logic system Setup System 1 System 2 

Name Classifier Classifier 

Type Sugeno Sugeno 

Inputs/Outputs [1 1] [1 1] 

Number of Input Membership Functions 10 4 

Number of Output Membership Functions 10 4 

Number of Rules 10 4 

And Method prod prod 

Or Method probor probor 

ImpMethod prod prod 

AggMethod sum sum 

DefuzzMethod wtaver wtaver 

Input Labels ANNoutput ANNoutput 

Output Labels Fault Fault 

Input Range [-1 10] [-1 10] 

Output Range  [0 1] [0 1] 

Input Membership Function Types trimf, trapmf trimf, trapmf 

Output Membership Function Types constant constant 

The ANN output is not an absolute number, and it enters the fuzzy classifier as an input variable. 318 

The fuzzy inference system is responsible for giving the precise number of short-circuited PV 319 

modules for System 1 and disconnected strings for System 2. Therefore, the output membership 320 

functions are constants, and Table 8 describes the input and output Membership Function (MF) 321 

settings.  322 

  323 
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Table 8. Fuzzy classifier input and output membership functions 

 Input MFs Output MFs 

 Labels Parameters Labels Parameters 

S
y

st
em

 1
 

F0 [-1 -1 0 0.5] Fault_0 [0 0 0 0] 

F1 [0.5 1 2] Fault_1 [1 0 0 0] 

F2 [1.5 2 3] Fault_2 [2 0 0 0] 

F3 [2.5 3 3.9] Fault_3 [3 0 0 0] 

F4 [3.5 4 5] Fault_4 [4 0 0 0] 

F5 [4.5 5 6] Fault_5 [5 0 0 0] 

F6 [5.5 6 7] Fault_6 [6 0 0 0] 

F7 [6.5 7 8] Fault_7 [7 0 0 0] 

F8 [7.5 8 9] Fault_8 [8 0 0 0] 

F9 [8.5 9 10 10] Fault_9 [9 0 0 0] 

S
y

st
em

 2
 F0 [-1 -1 0 0.5] Fault_0 [0 0 0 0] 

F1 [0.5 1 2] Fault_1 [1 0 0 0] 

F2 [1.5 2 3] Fault_2 [2 0 0 0] 

F3 [2.5 3 3.9] Fault_3 [3 0 0 0] 

The fuzzy logic system rules are based on IF/THEN statements [25]. For the proposed fuzzy 324 

classifier, the rules are briefly listed in Table 7. 325 

Table 9. Fuzzy classifier rules 

 Fuzzy Rules 

S
y

st
em

 1
 

1. If (ANNoutput is F0) then (Fault is Fault_0) (1) 

2. If (ANNoutput is F1) then (Fault is Fault_1) (1) 

3. If (ANNoutput is F2) then (Fault is Fault_2) (1) 

4. If (ANNoutput is F3) then (Fault is Fault_3) (1) 

5. If (ANNoutput is F4) then (Fault is Fault_4) (1) 

6. If (ANNoutput is F5) then (Fault is Fault_5) (1) 

7. If (ANNoutput is F6) then (Fault is Fault_6) (1) 

8. If (ANNoutput is F7) then (Fault is Fault_7) (1) 

9. If (ANNoutput is F8) then (Fault is Fault_8) (1) 

10. If (ANNoutput is F9) then (Fault is Fault_9) (1) 

S
y

st
em

 2
 1. If (ANNoutput is F0) then (Fault is Fault_0) (1) 

2. If (ANNoutput is F1) then (Fault is Fault_1) (1) 

3. If (ANNoutput is F2) then (Fault is Fault_2) (1) 

4. If (ANNoutput is F3) then (Fault is Fault_3) (1) 

After refining the algorithms, it is attainable to test the proposed method. The following section, 326 

Section 5, discusses the testing results with experimental data.  327 

5. Results and Discussion 328 

In order to evaluate the effectiveness of the proposed fault detection method, the same simulated 329 

scenarios were experimentally tested. Subsections 5.1 and 5.2 describes the experimental setup and 330 

the method validation for both systems.  331 

5.1. System 1 Experimental Setup and Method Validation 332 

As discussed in Section 3, the PV plant comprises ten series-connected modules. The PV modules 333 

were disconnected from the string, creating all ten simulated scenarios, exemplifying the 334 

experimental setup shown in Figure 12. 335 
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Figure 12. Experimental setup 

During the experiments, the PV modules were disconnected for the entire day to collect enough 336 

data for testing the method. Although, in real situations, a faulty condition may occur not necessarily 337 

for the whole day, just for a period. The experimental tests were performed for two weeks. Figure 13 338 

and Figure 14 depict the results. During the experiments, the irradiance (G), ambient temperature 339 

(Ta), and peak power (PMPP) parameters were measured. The ambient temperature was constant, 340 

approximately 16 °C, in all examined days.  341 

 

Figure 13. System 1 experimental results on week 1 for irradiance G and PMPP 
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Figure 14. System 1 experimental results on week 2 for irradiance G and PMPP 

Analyzing Figure 13 and Figure 14 shows that the output power decreases significantly when a 342 

faulty situation occurs. Comparing a day with normal operation (Day 1 in Figure 13) to a faulty day 343 

(Day 7 in Figure 14), we can see that the MPP power does not follow the irradiance increase during 344 

the day, highlighting the faulty situation.  345 

The extracted results enabled testing the proposed fault detection method. Firstly, we tested 346 

combining the ANN with a simple algorithm that truncated the ANN output to an integer value. The 347 

algorithm is responsible for giving the exact number of faulty PV modules. The truncating ranges 348 

follow the training ANN output targets (see section 4.1). Figure 15 shows the measured faulty PV 349 

modules vs. the fault detection results using the ANN combined with a truncating algorithm.  350 

 

Figure 15. System 1 results using the ANN combined with a truncating algorithm 

Observing Figure 15, we can conclude that combining the ANN with a simple truncating 351 

algorithm is not accurate. The critical results are on one and four faulty PV modules. Thus, combining 352 

the proposed ANN to a truncating algorithm is not suitable for fault detection.  353 

Following, we can analyse the results of the proposed method combining the ANN and fuzzy 354 

logic system. Figure 16 shows the measured faulty PV modules vs. the neuro-fuzzy fault detection 355 
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results. There is undoubtedly a significant correlation between the data points. Hence, it proves the 356 

correctness of the developed fuzzy-based system explained earlier in subsection 4.2. 357 

 

Figure 16. System 1 results using the neuro-fuzzy proposed method 

The proposed method was validated using 2779 experimental samples, comprising all faulty 358 

simulated faulty situations. The lower accuracy is 98.27% for the 3 Faulty case. The weather 359 

conditions of intermittent irradiance (see Figure 13) during the experiment can justify this situation. 360 

The higher precision is observed for 0, 1, 8, and 9 Faulty cases, which achieved 100% accuracy. After 361 

all, from the results obtained, all the examined faulty conditions are accurately detected. The 362 

proposed method showed a remarkable accuracy of 99.28% for short-circuited fault detection in the 363 

studied PV system.  364 

5.2. System 2 Experimental Setup and Method Validation 365 

As discussed in Section 3.2, the PV plant comprises 32 PV modules, arranged on four strings. 366 

The strings were disconnected one at a time, using the combiner circuit box, as illustrated in Figure 367 

5. Therefore, the experimental tests evaluated the fault case of one string disconnected. Figure 17 368 

shows the results of 8 days of experimental tests.  369 

 

Figure 17. System 2 experimental results for irradiance G and PMPP 
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During the experiments, the PV strings were disconnected for the entire day to collect enough 370 

data for testing the method, and we the irradiance (G), ambient temperature (Ta), and peak power 371 

(PMPP). The ambient temperature was constant, approximately 16 °C, in all examined days.  372 

Analyzing Figure 17, we can observe that the output power decreases disconnected one string. 373 

Comparing a day with normal operation (Day 1) to a one disconnected string (Day 5), we observe 374 

that the MPP power does not follow the irradiance increase during the day, highlighting the faulty 375 

situation.  376 

The extracted results enabled testing the proposed fault detection method. For System 2, we also 377 

tested combining the ANN with a truncating algorithm. In this case, the algorithm is responsible for 378 

round the ANN output and gives the exact number of disconnected strings on the system. Figure 18 379 

shows the measured faulty PV modules vs. the fault detection results using the ANN combined with 380 

a truncating algorithm. 381 

 

Figure 18. System 2 results using the ANN combined with a truncating algorithm 

Analysing Figure 18, we can conclude that combining the ANN with a simple truncating 382 

algorithm is not accurate for System 2, just like happened to System 1. Thus, combining the proposed 383 

ANN to a truncating algorithm is not suitable for fault detection.  384 

Following, we can analyse the results of the proposed method combining the ANN and fuzzy 385 

logic system. Figure 19 shows the measured faulty PV modules vs. the neuro-fuzzy fault detection 386 

results for System 2. Following System 1 results, there is undoubtedly a significant correlation 387 

between the data points. Hence, the accuracy of the developed fuzzy-based system explained earlier 388 

in subsection 4.2. 389 
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Figure 19. System 2 results using the neuro-fuzzy proposed method 

For System 2, the proposed method was validated using 3927 measured samples, it comprises 390 

regular operation and one string disconnected. The tests with the experimental dataset showed an 391 

accuracy of 99.43% identifying string disconnection. These findings allow us to conclude that the 392 

proposed method is remarkably useful in detecting fault conditions on PV systems. After validating 393 

the proposed model, Section 6 discussed the overall conclusion of this research. 394 

6. Conclusions 395 

This paper proposes a reliable and straightforward method for fault detection on PV systems, 396 

detecting short-circuited PV modules, and string disconnection. The method comprises two machine 397 

learning algorithms. The first one is an ANN, and the second a fuzzy logic inference system. The 398 

ANN is a multilayer feedforward neural network, and the training process used a simulated dataset. 399 

Therefore, it makes the method applicable to any PV plant, also does not require long datasets from 400 

pre-existing systems. The input variables are irradiance, ambient temperature, and power at the 401 

maximum power point. The ANN output enters a Sugeno type fuzzy logic classifier, precisely 402 

determining how many short-circuited PV modules are on the given PV array.  403 

The proposed method was validated using experimental data from two different PV systems 404 

installed on the Huddersfield University campus. The first one, named here as System 1, comprises 405 

a 2.2 kWp PV system. The obtained results for System 1 showed a remarkable accuracy of 99.28%. 406 

The second system, named System 2, is a 4.16 kWp PV system. The obtained results, in this case, 407 

showed an accuracy of 99.43%.  408 

These findings allowed us to conclude that the proposed method, combing ANN, and fuzzy 409 

logic systems, is accurate for detecting short-circuited PV modules and disconnected strings. Besides, 410 

it is worthy of highlighting that the proposed method does not require installing any different sensors 411 

than those that already exist on a large PV power plant, and it possible to apply to any PV system. 412 

Thus, it makes it easier for implementing the proposed method. 413 
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