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ARTICLE OPEN

Idler-free multi-channel discrimination via multipartite

probe states
Cillian Harney 1✉ and Stefano Pirandola 1✉

The characterisation of Quantum Channel Discrimination (QCD) offers critical insight for future quantum technologies in quantum

metrology, sensing and communications. The task of multi-channel discrimination creates a scenario in which the discrimination of

multiple quantum channels can be equated to the idea of pattern recognition, highly relevant to the tasks of quantum reading,

illumination and more. Although the optimal quantum strategy for many scenarios is an entangled idler-assisted protocol, the

extension to a multi-hypothesis setting invites the exploration of discrimination strategies based on unassisted, multipartite probe

states. In this work, we expand the space of possible quantum-enhanced protocols by formulating general classes of unassisted

multi-channel discrimination protocols which are not assisted by idler modes. Developing a general framework for idler-free

protocols, we perform an explicit investigation in the bosonic setting, studying prominent Gaussian channel discrimination

problems for real-world applications. Our findings uncover the existence of strongly quantum advantageous, idler-free protocols for

the discrimination of bosonic loss and environmental noise. This circumvents the necessity for idler assistance to achieve quantum

advantage in some of the most relevant discrimination settings, significantly loosening practical requirements for prominent

quantum-sensing applications.

npj Quantum Information           (2021) 7:153 ; https://doi.org/10.1038/s41534-021-00488-x

INTRODUCTION

As the development of practical quantum technologies acceler-
ates1–3, the field of quantum sensing is already the most mature
and already obtaining quantum advantage in a variety of
applications4. Critical theoretical underpinnings in quantum
metrology and hypothesis testing5–10 have led to quantum-
enhanced protocols with fundamental applications in quantum
illumination11–24 and quantum reading25–33, with particular
interest in the continuous variable (CV) domain34–36.
The fundamental task of Quantum Channel Discrimination

(QCD) models many of these applications. In QCD, a user is tasked
with classifying an ensemble of quantum channels through the
use of an input quantum state (probe state) and a discriminatory
measurement. Locating an optimal discrimination protocol is very
difficult, as it embodies a double optimisation problem of both the
probe state and the output measurement. Nonetheless, significant
progress has been made in recent years in a variety of
contexts37,38.
Until recently, QCD has been mostly limited to the problem of

binary classification. However, advances in multi-channel discri-
mination and the formulation of channel position finding
(CPF)39,40 have brought with them new insight and opportunities
for more complex multi-hypothesis classification problems. These
multi-channel discrimination problems are highly relevant in a
number of fascinating settings, such as data readout from optical
memories, quantum-enhanced optical/thermal pattern recogni-
tion41,42 and target detection43.
Within these applications (and many more in quantum sensing),

the assistance of idler modes has been a crucial feature in order to
attain quantum-enhanced performance39,44. Idler modes refer to
perfectly preserved, ancillary quantum systems which share
entanglement with input probe states throughout a sensing
protocol. In the bosonic setting, these protocols consist of using
one mode of a two-mode squeezed vacuum (TMSV) state to probe

a target, whereas the remaining mode (the idler) is kept by the
user. Idler-assisted protocols have been shown to be optimal for a
number of important discrimination tasks and offer significant
advantage for many more.
Yet, the necessity for idler modes is problematic, due to the

requirement that they need to be perfectly protected. In practice,
this is not possible, as some decoherence will always be imparted
on the idler while the probe mode is interacting with a target. To
combat this, idlers are either contained in delay lines (e.g., very
low-loss fibre optics) or stored in quantum memories until required
for measurement. This preservation requirement causes serious
practical difficulties due to the challenging nature of creating
stable quantum memories with adequate storage time45–48. In
some settings, it may be much more practical to use unassisted
protocols limited to signal-only probe modes, especially for near-
term quantum technologies.
Research on unassisted protocols has been primarily limited to

single-channel sensing problems, motivating the use of coherent
states to formulate classical benchmarks and even to search for
quantum enhancements beyond entanglement49,50. However the
multi-channel discrimination picture invites us to explore different
unassisted protocols. In particular, it is now possible to construct
protocols that distribute entanglement over multiple quantum
channels using multipartite entangled states. Without additional
idler modes to defend entanglement, input states must be cleverly
designed to preserve quantum correlations in the face of
increased decoherence. Recently, Pereira et al.51 have explored
the use of a block protocol with entangled bosonic states for
discriminating small collections of Gaussian quantum channels,
proving that there do exist idler-free protocols capable of
exceeding the best known classical strategies.
Motivated by this, we arrive at our key research objectives: To

generalise the theory of unassisted protocols for multi-channel
discrimination, and to ask: Can we design unassisted multi-
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channel discrimination protocols that achieve significant quantum
advantage?
Hence, in this work, we construct general classes of unassisted

protocols for multi-channel discrimination. These are block
protocols that utilise (generally entangled) multipartite quantum
states as probe states. Multipartite states (and thus entanglement)
can now be distributed across multiple quantum channels in
many inequivalent ways, leading to two distinct, broad classes of
discrimination protocols. Via multi-mode entanglement and
carefully designed probe distributions, we present unassisted
protocols that are able to attain performances on par with
that of idler assistance. This circumvents the necessity for idler
assistance in some of the most relevant discrimination settings,
loosening practical requirements for quantum-enhanced pattern
recognition.
This study is structured as follows: in ‘Results’, after first

reviewing the model of quantum pattern recognition, we present
our main findings. We introduce the general framework of block
protocols using unassisted multipartite quantum probe states. We
then identify two distinct classes of unassisted protocol that
emerge from this framework, discuss their operational interpreta-
tions and devise a diagrammatic language for describing such
protocols. We corroborate these general findings by demonstrat-
ing the efficacy of idler-free protocols for the discrimination of
multiple bosonic Gaussian quantum channels. In ‘Discussion’, our
results are summarised and we identify future investigative
paths. Finally, the ‘Methods’ section contains a number of useful
theoretical tools and insights used within this research.

RESULTS

Quantum pattern recognition

In this work, we study the discrimination of quantum multi-
channels that we call quantum channel patterns. A binary channel
pattern is defined as an m-length sequence of quantum channels,
such that each channel in the sequence admits the properties of a
target channel ET or background channel EB (identified by the
labels T, B respectively). It is useful to convert this sequence into a
multi-set of binary variables, which represents the channel pattern
i= {i1, i2,…, im}, where ij∈ {B, T} for all j∈ {1,…,m}. We can
then more precisely denote an m-length channel pattern as
tensor product

Ei :¼ E i1 � E i2 � ¼ � E im ¼
Om

j¼1

E ij : (1)

Throughout this work, we refer to a channel pattern simply by its
binary string i, unless E i is formally required. Background and
target channels can be used to encode physical properties of a
multipartite system. For instance, one can associate each pixel of
an m-pixel binary thermal image with a cold (background) or hot
(target) temperature. Quantum mechanically, one may attribute
each pixel to a quantum channel that describes how a quantum
probe may interact with either pixel.
A channel pattern i represents only a single instance of a

possible binary arrangement. More generally, these instances
belong to a larger space of multi-channels we may call an image
space. We label an arbitrary N-element image space as the set
U ¼ fi1; i2; ¼ ; iNg containing N unique channel patterns. As we
are considering binary patterns, the most general image space we
can consider is the set of all m-length binary strings
Um ¼ fi1; i2; ¼ ; i2mg, of which all other binary image spaces are
a subset. Image spaces can be used to specify important, physical
problem settings such as those defined by the task of CPF,
which is concerned with locating target channels hidden
among collections of background channels (see ‘Methods’ for
more details).

The challenge of multi-channel discrimination may now be
presented: consider an m-length pattern of unidentified quantum
channels. Suppose that the sequence of channels belongs to a
pattern from a known image space U . Each pattern in the image
space possesses a unique probability of existing, πi. The task of
discrimination then consists of distinguishing between all the
multi-channels in the statistical ensemble fπi; E igi2U , which
describes an ensemble of multi-channels fEigi2U distributed
according to the classical probability distribution fπigi2U .
The most general multi-channel discrimination protocol is a

general adaptive protocol, P. This is best described by a quantum
comb52–54; a quantum circuit board with an arbitrary number of
registers, with M slots in which channel patterns Ei are placed.
There is no limit to the amount of entanglement that can be used
to construct a quantum comb and a general adaptive protocol can
make use of adaptive operations and feedback-based state
preparation. Due to their generality, these protocols are very
difficult to characterise and optimise. Therefore, it is often much
more beneficial to consider simpler protocols.
Of such, block protocols B represent a very important class of

non-adaptive discrimination strategy. Channel patterns are
probed using M identical and independent copies of some input
probe state, ρ�M ! ρ�M

i
:¼ EiðρÞ�M

. After M pattern interactions,
an optimised POVM fΠigi2U is used to perform the classification.
Given an image space U with the pattern probability distribution
fπigi2U , the average error probability of misclassification is
given by

perrðBÞ :¼
X

i≠i
02U

πiTr Πi
0ρ�M

i

� �
; (2)

where this sum runs over all pairs of unequal channel patterns
throughout the image space. In order to benchmark this
discrimination performance without specifying precise measure-
ments, the following fidelity-based bounds from can be used55,56,

perr � 1

2

X

i≠i
02U

πiπi0F
2Mðρi; ρi0Þ; (3)

perr �
X

i≠i
02U

ffiffiffiffiffiffiffiffiffi
πiπi0

p
FMðρi; ρi0Þ; (4)

where Fðρ; σÞ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp� �
denotes the Bures fidelity. These

bounds are completely general and do not depend on the
channel dimension. Hence, they may be utilised for both finite and
infinite dimensional input states (provided that we use energy-
constrained quantum states).
These non-adaptive block protocols have been shown to offer

high performance in a number of discrimination settings and, in
some cases, are optimal37. If a block protocol makes use of
entangled, ancillary quantum systems (idlers), then it is known as a
block-assisted protocol Ba. Idler-based entanglement can induce
quantum enhancements in many different discrimination set-
tings41,42. Without additional idler modes, we are left with an
unassisted block protocol, Bu. Much less is known about
unassisted protocols in a multi-channel setting, which we rectify
in the following sections.

Fixed unassisted block protocols

Consider an image space i 2 U of m-length multi-channels, each
of which occur with probability πi, generating the channel pattern
ensemble fπi; Eigi2U . Unassisted discrimination involves develop-
ing a strategy for accurately distinguishing patterns from the
image space without utilising entangled idler modes or ancillary
quantum systems. Unlike in an assisted protocol, entanglement is
now only permitted between probe modes. We proceed in this
practical direction by investigating how inter-probe entanglement
can play a role in constructing quantum-enhanced, unassisted
block protocols.
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Consider an m-length channel pattern. An unassisted block
protocol Bu using multipartite states will assign an M-copy, n ≤m
multi-mode state to interact with some region of the channel
pattern, defined by a set of channel labels s= {s1,…, sn} for si∈ {1,
…,m}. This channel region s, which we aptly call a probe domain,
defines a sub-pattern of the total channel pattern over which a
multipartite state σ�M

s
can be irradiated. Hence, a probe domain s

is a subset of channel labels s⊆ {1,…,m}, which designates a
region of the channel pattern over which probe modes are
permitted to be entangled. Input modes that are incident in the
domain s can be entangled but are fully separable with respect to
any modes outside of this region. Furthermore, each M-copy
probe state σ�M

s
can be different for its respective probe domain.

In order to completely interact with all m-channels in the
pattern, it is necessary to define a discrete probe-domain
distribution. This is a collection of distinct channel pattern sub-
regions {s1, s2,…, sN} over which an associated N length collection
M-copy multipartite states fσ�M

s1
; σ�M

s2
; ¼ ; σ�M

sN
g are irradiated.

More precisely, we can define a probe-domain distribution as

S :¼ fs1; s2; ¼ ; sNg ¼
[N

j¼1

fsjg; (5)

9j such that i 2 sj; 8i 2 f1; 2; ¼ ;mg: (6)

In Eq. (6), we demand that every channel index 1,…,m is
accounted for in at least one subset s 2 S, so that no channels are
left unprobed. Using S, we can define a global probe state
irradiated over a channel pattern, constructed as the tensor
product of all the local sub-states.
It is not immediately clear how one should design this probe-

domain distribution. However, the most intuitive way to construct
S is to devise a distribution such that each channel is only
associated with a single probe domain. A probe-domain distribu-
tion disjoint if it satisfies this property. Suppose one constructs an
N-partite probe-domain distribution that is disjoint, Sd. Formally,
we can define this as,

Sd :¼
[N

j¼1

fsjg; such that sj \ sk ¼+; 8j; k; (7)

where disjointedness is demanded on the right-hand side of this
equation, such that no two probe domains sj and sk are permitted
to share the same channel label, for all j,k. Again, we demand that
all channels 1,…,m are accounted for in this distribution, as in Eq.
(6). We may then choose an N-element set of multipartite probe
states in accordance with this disjoint structure fσsjgNj¼1

, where
each σsj

can be unique. Assuming M-copies of each sub-state, we

can define a global probe state

σ�M
Sd

¼ σ�M
s1

� ¼ � σ�M
sN

¼
ON

j¼1

σ�M
sj

: (8)

In this way, each channel in the pattern is probed exactly M times
per total round of discrimination. Furthermore, as all probe
domains are disjoint, there are no overlaps between any multi-
partite states; each channel in the pattern is always probed within
the same probe domain and within the same collection of
channels.
From an operational point of view, the disjointedness of Sd and

lack of probe domain overlaps means that each sub-state σ�M
sj

can
interact simultaneously with the multi-channel. As such, each
probe state can be considered to be static (or fixed) over a sub-
region of the channel pattern throughout the entire discrimination
protocol. For this reason, we describe an unassisted protocol using
a disjoint probe-domain distribution as a fixed block protocol, Bu

fix

(see Fig. 1a for an example).
Fixed block protocols are very intuitive, thanks to their simple,

static format. Indeed, classical block protocols can inherently be
considered to be fixed protocols, where separable collections of
coherent states are irradiated upon a channel pattern. Using our
previous formalism and considering m-length channel patterns,
one may define a trivial probe-domain distribution Sd ¼
ff1g; f2g; ¼ ; fmgg and a corresponding set of single-mode
coherent states fαjgmj¼1, which produces the global state
σ�M
Sd

¼
Nm

j¼1α
�M
j . Larger probe domains invite the potential for

entangled probe states over fixed probe domains and can provide
an easy route for potential quantum enhancements in many
settings. In general, the performance of fixed block protocols can
always be assessed through the average error probability by
substituting σSd

into Eq. (2).

Dynamic unassisted block protocols

Interestingly, we need not restrict ourselves to probe-domain
distributions which are disjoint. Departing the rigidity of disjoint
probe-domain distributions offers a fascinating route for quan-
tum-enhanced, unassisted protocols. Although this path is less
intuitive, it unveils a rich and flexible class of discrimination
protocols with rewarding features.
Consider now a non-disjoint, N-partite probe-domain distribu-

tion Snd ¼
SN

j¼1fsjg, meaning that probe domains are free to
overlap and share similar channel labels, i.e. the overlap of two
probe domains is no longer the empty set sj \ sk≠+. This renders
a much larger and more general space of possible distributions. A
global quantum probe state σSnd

associated with such a
distribution is again found as the tensor product of all local sub-
states; however, its interpretation is less obvious. We begin by

Fig. 1 Unassisted block protocols. a Disjoint vs. b non-disjoint multipartite probe-domain distributions assuming the use of single-copy
probe states, M= 1. In a, there are clearly no overlapping probe domains and it therefore generates a fixed block protocol. Contrarily, the
overlapping probe domains in b gives rise to a dynamic block protocol.
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describing the physical interpretation of a non-disjoint probe-
domain distribution within a discrimination protocol.
Any non-disjoint discrete distribution Snd can be decomposed

into a sequence of r disjoint distributions,

Snd ¼
[r

k¼1

Sk
d ¼

[r

k¼1

[

s2Sk
d

fsg; (9)

where Sk
d is a disjoint sub-collection of probe domains in

accordance with Eq. (7). In this case, each Sk
d need not contain

all the channel labels but all m-channels must be accounted for in
the global distribution Snd. This allows us to rewrite the global,
single-copy probe state in a more meaningful way

σSnd
¼

Or

k¼1

σSk
d
¼

Or

k¼1

½
O

s2Sk
d

σs�: (10)

That is, it is the tensor product of r disjointly distributed
multipartite input states.
Therefore, the utilisation of a non-disjoint probe-domain

distribution corresponds to a block protocol with r rounds of
disjoint pattern interaction. At each round, the user interacts with
the channel pattern by irradiating unassisted multipartite states
and over the course of r rounds the probe-domain distribution
‘moves’ around the channel pattern. For this reason, it can be
intuitively called a dynamic block protocol, Bu

dy. Figure 1b depicts
an m= 4 × 6= 24 channel pattern which is being non-disjointly
probed. The dynamic ‘movement’ of probe domains throughout
its r= 4 rounds of disjoint pattern interaction is visualised in
Fig. 2a.
The number of disjoint rounds r required to construct a

dynamic protocol depends on the number of overlaps that occur
within the decomposition in Eq. (9). An overlap simply refers to an
instance of a channel label that is contained in more than one
probe domain. We can define the number of overlaps mov as the
total number of additional channel labels contained in the non-
disjoint distribution

mov :¼ ½
X

s2Snd

jsj� �m: (11)

If there are many probe-domain overlaps, then r may be very
large; if there are no overlaps, then r= 1 and we return to a fixed
protocol.
In order to fairly compare dynamic and fixed block protocols,

one must also be careful when distributing the number of probe
copies M; a dynamic protocol with r rounds of disjoint pattern
interaction and M-copy input states will clearly use more than M
total probe modes. It is useful to define a resource metric known
as the average channel use,

M :¼ mþmov

m
M; (12)

which describes the average number of probe copies applied per

channel within a dynamic block protocol. When comparing the
performance of fixed/dynamic block protocols, we must ensure
they have the same average channel use.

Dynamic/fixed block protocol transformation

Consider a dynamic block protocol that follows a non-disjoint
probe-domain distribution Snd. Now, any channel E ij within the
global pattern E i may be probed as part of several different
multipartite domains. This more general scenario requires a
mathematical model that allows us to quantitatively investigate
the performance of dynamic protocols.
To achieve this, we find a simple relationship between dynamic

and fixed block protocols, corresponding to an appropriate
transformation on a channel pattern image space, U . When two
probe domains overlap, the overlapping channels are probed
twice, but by independent probe states. Therefore, we attribute a
unique Hilbert space to each independent probe mode and
channel in each disjoint round throughout the protocol, while
retaining the characteristics of the original channels. This can be
done by considering a modified channel pattern which has been
concatenated with copies of the channels that are overlapped.
Figure 2 depicts how this pattern modification takes place.

Given that Snd containsmov overlapping channels, an originally m-
length channel pattern i can be mapped to a (m+mov)-length
pattern, where the additional copies of overlapping channels are
concatenated with the multi-channel. These copy channels
directly obey the behaviour of their originals. In this way, a
dynamic protocol over m-length channel patterns can be
equivalently studied as a fixed block protocol over an appro-
priately modified (m+mov)-length channel pattern space.
Let us more precisely express this transformation. A Snd

dynamic protocol invokes the following transformation on a
generic m-length channel pattern i into an extended channel
pattern νi. As νi contains repeated elements, it is formally treated
as a multi-set rather than a traditional set57. Then, the
transformation can be explicitly written as

i ¼ fi1; i2; ¼ ; img7!νi :¼
]

s2Snd

fikgk2s: (13)

where ⊎ is the multi-set union operator, which concatenates each
subset of channel labels, e.g., if we consider m= 3 length channel
patterns and a probe-domain distribution Snd ¼ ff1; 2g; f2; 3gg
then modified channel patterns take the form νi= {i1, i2}⊎{i2, i3}=
{i1, i2, i2, i3}. From a channel perspective, this transformation can be
equivalently portrayed as

Ei ¼ E i1 � ¼ � E im 7!Eνi
:¼

O

s2Snd

O

k2s
E ik : (14)

By iterating this concatenation process over all patterns in an
image space fνigi2U , one can easily convert a dynamic protocol
into a fixed representation. Furthermore, it is expedient to write
the global output states of these protocols in this format, such

Fig. 2 Dynamic to fixed block protocol transformation. a Non-disjoint probe-domain distributions can be decomposed into multiple rounds
of disjoint pattern interaction, generating a dynamic discrimination protocol. This dynamic protocol can be equivalently represented by a
fixed block protocol on a modified image space, as shown in b. The original (6 × 4)-channel pattern i is transformed into a (8 × 4)-pattern νi,
which has been appropriately modified in accordance with the non-disjoint probe-domain distribution Snd using Eq. (13). Here we have
assumed the use of single-copy probe states, M= 1.
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that

σi 7!σνi
:¼ Eνi

σSnd
ð Þ: (15)

This transformation greatly simplifies the complication of
overlapping probe domains and allows for an investigation of
error probabilities. By abstracting our set of discriminatory POVMs
to the modified image space fΠνi

g
i2U and using an M-copy global

probe state, then the average error probability of classification can
be succinctly given by

perrðBu
dyÞ ¼

X

i≠i
02U

πiTr Πν
i0 σ

�M
νi

h i

: (16)

Without explicit knowledge of these POVMs, we can simply utilise
the fidelity bounds from Eqs. (3) and (4). These fidelity-based
bounds can be readily computed, thanks to this fixed protocol
transformation, by iterating over all unequal channel patterns in
the modified image space (see ‘Methods’ for more details).

Correspondence with error correction

This dynamic to fixed block protocol mapping identifies a
fascinating feature. In essence, a dynamic protocol invokes an
encoding of quantum channel patterns, wherein m-length
patterns from some image space i 2 U are encoded into an
extended counterpart fνigi2U . This modified image space is a
function of the non-disjoint probe-domain distribution Snd. Thus,
we make the crucial observation: Using entangled probe states,
one can design a dynamic block protocol which encodes a
quantum image space into a more distinguishable form.
Consider a single-channel E iov within a larger-channel pattern

which happens to fall within the domain of two entangled sub-
states of a global probe, σSnd

¼ σs � σs0 . Because of this, the probe
states must be applied at different disjoint rounds in a dynamic
protocol. In one round, the probe state σs is being used to
determine the classification of all the channels E i½s� :¼ fE ikgk2s. In
another round, the probe state σs0 is being used to classify the
channels in the region Ei½s0� ¼ fE ikgk2s0 . As these probe sub-states
are entangled over their domains, then the distinguishability of
their output states Ei½s�ðσsÞ and E i½s0�ðσs0Þ are correlated with the
precise collection of quantum channels in each region. Dependent
upon the size of entangled probe domains and the physical
setting of discrimination, some collections of channels are easier
to discriminate than others.
We arrive at the key insight: As E iov is contained in both probe

domains, we are able to gather two potentially unique opinions
on its classification; one from the perspective of σs in the pattern
region s and another from σs0 in its region s

0. On their own, these
states may not be very effective at discriminating the channel E iov ,
i.e., one of the output states may not be very distinguishable from
other potential output states in that region. However, by probing
E iov in conjunction with two different probing domains, it is more
likely that at least one of the sub-regions will be a more
distinguishable collection of channels, thus providing a greater
chance of correct classification.
In this way, dynamic block protocols implicitly possess a form of

error-correcting behaviour. By varying the spatial probe-domain
distributions throughout the protocol, channels are probed from

various perspectives, correlated with different sub-regions of the
channel pattern. Poorly distinguishable channels in one sub-
region may be significantly more distinguishable when probed
within a different sub-region. Over the course of r disjoint rounds
of pattern interaction, each entangled multipartite sub-state can
help to correct errors that would arise if only fixed probe domains
were used. Exploiting this behaviour, dynamic protocols can
indeed encode channel patterns into more easily discriminated
image spaces.
This is a remarkable property of dynamic block protocols, one

that depends strongly on the choice of entangled quantum
probes and the quantum channel patterns. Explicit examples of
this behaviour and physical/mathematical intuition are elucidated
in the ‘Methods’ section.

Designing unassisted block protocols

Given an m-length channel pattern discrimination problem, there
are clearly an enormous number of ways in which one can design
a (generally non-disjoint) a probe-domain distribution. Let us
provide a diagrammatic approach to constructing these protocols.
An m-length channel pattern Ei can be represented by an m-

pixel grid. Each pixel is used to represent an individual channel E ij

and the grid can adopt any preferred height, width and shape. In
order to create a tidy language that allows one to convey probe
domains which contain both local and non-local channels, we
provide two ways to portray a probe domain. First, a probe
domain can be indicated by means of a coloured box, which
covers a number of local channels. The size and position of the
coloured-probing domains indicate the regions of a channel
pattern that are irradiated by a multipartite input state. This is
particularly useful for illustrating fixed block protocols with local
probe domains, as shown in Fig. 3a, which can be intuitively
interpreted.
It is also useful to possess a convention for probe domains

which contain non-local channels, or when are a number of
overlapping domains in close proximity. Hence, we can equiva-
lently illustrate a probe domain via connective lines between
coloured single-pixel boxes. A probe domain is indicated by
means of a continuous (unbroken) connecting line between a
number of pixels. Dashed connective lines through channel boxes
indicate a lack of entanglement, used to bypass certain channels
while illustrating non-local domains. A clear example of this is
shown in Fig. 3b. Here we describe a distribution of probe
domains where each domain is of size ∣s∣= 2, i.e.,
Snd ¼ ff1; 2g; f2; 3g; ¼ ; f8; 9g; f9; 1gg. A dashed connective line
is used to connect the non-local channel labels 1 and 9 so that 5 is
not included in the probe-domain.

Bosonic Gaussian channel patterns

We wish to corroborate the construction of these classes of
unassisted discrimination protocols and demonstrate their effi-
cacy. To do so, we will focus on the discrimination of bosonic
Gaussian Phase Insensitive (GPI) channels. This is a family of very
important channels within the CV quantum communications,
sensing and computation34 and can be used to model a vast array
of physically significant scenarios. Crucially, a GPI channel

Fig. 3 Diagrammatic protocol representation. a Disjoint and b non-disjoint distributions of multipartite probe domains. The example in b is
in fact the nearest-neighbour configuration described in Eq. (21).
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maintains the Gaussianity of its input state. Hence, the transfor-
mation of a Gaussian state (with zero first moments) through
under the action of a GPI channel can be fully characterised using
its covariance matrix (CM) V, assuming zero first moments (see
‘Methods’ for the explicit transformations). The overall quantum
channel can be denoted as Eτ;ν and is defined with respect to a
transmissivity parameter 0 ≤ τ ≤ 1 describing attenuation/amplifi-
cation properties and an induced noise parameter ν ≥ 0. When τ=
1 and ν= 0, we regain the identity channel.
Binary GPI channel patterns then consist of a sequence of m GPI

channels with unique target/background transmissivities τB, τT and
noise properties νB, νT. In general, we may write the channel
pattern

Ei ¼ Eτi1 ;νi1
� ¼ � Eτim ;νim ¼

Om

j¼1

Eτ ij ;νij
: (17)

Let us identify some essential GPI channels: setting τ= η, such
that 0 < η < 1 and ν= (1− η)/2, then we have the single-
parameter bosonic pure-loss channel Eη. This describes the
interaction of bosonic mode with a zero-temperature bath. This
is an essential channel model for the description of optical fibres
and short-range optical target detection known as quantum
reading. The multi-hypothesis setting of discrimination pure-loss
channel patterns has also been equated to the task of optical
imaging, pattern recognition and classical data readout from
optical memories25,41. Hence, the discrimination of bosonic loss
poses a key problem setting for our work.
Alternatively, we may study thermal-loss channels Eτ;ν such that

the transmissivity satisfies 0 < τ < 1 or thermal-amplifier channels
where τ > 1. In both the cases, the induced thermal noise is
connected to the number of thermal photons in the channel
environment Nenv, such that ν ¼ ðNenv þ 1

2
Þj1� τj. In the idealised

absence of loss, we have a Gaussian additive-noise channel Eν ,
where the transmissivity satisfies τ= 1 but we have non-zero noise
ν > 0. The discrimination of thermal multi-channels is known as
environment localisation and has been used to model fascinating
scenarios within target detection and thermal pattern recogni-
tion42,43. In this work, we focus on the discrimination of additive-
noise binary channel patterns, as the performance of this task will
always be an upper bound for multi-channels with non-trivial
transmissivity.

Unassisted Bosonic quantum pattern recognition

In order to devise fixed/dynamic unassisted block protocols for
the discrimination of GPI channel patterns, we must specify a class
of multipartite probe state. Here we make use of the Gaussian
analogue of the entangled Greenberger-Horne-Zeilinger (GHZ)
state known as a the CV-GHZ state, which is designed as the
extension of a TMSV state to many modes. Consider a probe
domain s, which describes a collection of ∣s∣ channels over which
an input probe state is irradiated. A CV-GHZ state defined over this
probe domain is a ∣s∣ mode, fully symmetric state denoted by Φ

μ
s
.

It can be completely characterised by its CM with zero first
moments58,

Φ
μ
s
7!Vμ

s
:¼

μI Γ ¼ Γ

Γ μI ¼ Γ

..

. . .
. . .

. ..
.

Γ Γ ¼ μI

0

B
B
B
B
@

1

C
C
C
C
A

;

μ :¼ NS þ 1
2
;

Γ :¼ diagðc1; c2Þ:
(18)

Here, μ denotes the energy (squeezing) of the state for shot noise
1/2 and mean photon number (or signal energy) NS, and I denotes
the 2 × 2 identity matrix. Therefore, Vμ

s
is a 2∣s∣ × 2∣s∣ real matrix,

which is fully symmetric. In order to capture maximal correlations

at finite squeezing, we set the correlation parameters

c1 ¼ �c2 ¼ cmax :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � 1=4
p

=ðjsj � 1Þ: (19)

See the ‘Methods’ section for more details on this state. Hence, we
may construct unassisted, global quantum probe states from CV-
GHZ sub-states. Given an arbitrary N-partite probe-domain
distribution S, and assuming that all sub-states are of the same
energy μ, the global M-copy input state is given by

σ�M
S ¼ Φ

μ�M
S ¼

ON

j¼1

Φ
μ�M
sj

: (20)

As seen in Eq. (19), the magnitude of the correlations held by
CV-GHZ states cmax has a reciprocal dependence on the number of
modes m in the state. This implies that the quantum correlations
become ‘thinner’ as the number of modes increase, demanding
more energy in order to maintain a high degree of entanglement.
It is therefore beneficial to consider probe-domain distributions of
shorter range CV-GHZ states in order to make the best use of the
enhanced distinguishability that entanglement can provide.
Motivated by this, we can design specific probe-domain distribu-
tions that exclusively use unassisted TMSV entangled states rather
than wider-spread CV-GHZ states with weaker quantum correla-
tions, i.e. the probe domain of each sub-state is simply ∣sj∣= 2, ∀ j.
By employing TMSV states in conjunction with dynamic block
protocols, we can combine the enhanced distinguishability of
entangled input states with the implicit error-correcting behaviour
available through dynamic probing.
To systematically access both of these features, we introduce a

nearest-neighbour probe-domain distribution. This defines a non-
disjoint probe-domain distribution, which probes neighbouring
channels using two-mode probe states (defining neighbouring
channels on a closed one-dimensional lattice). The non-disjoint
partition set takes the form,

Snd ¼
[m

i¼1

ffi; ði þ 1Þmodmgg: (21)

where mod denotes the modulo operation. For example,
if m= 4, the probe-domain distribution is simply
Snd ¼ ff1; 2g; f2; 3g; f3; 4g; f4; 1gg. In this way, each channel in
the global pattern is probed exactly twice per single round of a
dynamic block protocol (the average channel use is simply
M ¼ 2M). Diagrammatically, this distribution is illustrated in Fig.
3b. The nearest-neighbour protocol is conveniently designed, as it
allows us to develop non-disjoint probing structures in a
consistent way and can be applied to channel patterns of any
size (for more detailed arguments and motivations surrounding
this protocol, see the ‘Methods’ section).

Numerical results

In this section, we collect numerical results to benchmark the
performance of both fixed and dynamic unassisted block
protocols for the discrimination of bosonic pure-loss channel
patterns (quantum reading) and Gaussian additive-noise channel
patterns (environment localisation). We investigate a number of
pattern recognition scenarios: CPF, k-CPF and arbitrary binary
pattern classification (or barcode decoding). In each setting, we
consider the worst-case discrimination scenario such that all
patterns within an image space occur with a uniform probability,
i.e. we consider the pattern probability distribution

πi ¼ jUj�1; 8i 2 U: (22)

In all cases, we employ unassisted CV-GHZ states in accordance
with various disjoint/non-disjoint probe-domain distributions. The
average error probability associated with these protocols can be
accurately upper and lower bounded using the fidelity bounds in
Eqs. (3) and (4) for which a variety of numerical and analytical
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techniques can be used for arbitrary multipartite distributions (see
‘Methods’ for details on the numerical computations).
These unassisted protocols can be compared to the best known

classical and quantum-assisted protocols in order to critically
benchmark their efficacy (details can be found in ‘Methods’). A
sufficient condition for quantum advantage occurs when the
upper bound for the average error probability associated with a
quantum-enhanced protocol pq;Uerr is less than a lower bound on
the error probability associated with an optimal classical protocol
pcl;Lerr . Hence, we may qualify guaranteed quantum advantage
when

Δperr ¼ pcl;Lerr � pq;Uerr � 0: (23)

We use this quantity Δperr to identify when an unassisted
quantum protocol can certifiably obtain quantum advantage over
all classical protocols.

Discrimination of Bosonic loss

This can be used to describe a basic imaging setting, in which
pixels are described by pure-loss channels of different transmis-
sivity/reflectivity ηj for j∈ {B, T}. As explored in ref. 41, Banchi et al.
showed that the major quantum advantage can be obtained using
an idler-assisted approach. This advantage is particularly useful in
a low-energy regime, where the number of probe copies required
to achieve high precision is dramatically reduced. Here we report
that quantum advantage can be similarly guaranteed using a
range of unassisted protocols. Moreover, it is possible to achieve
unassisted performances comparable with that of full idler
assistance via dynamic block protocols.
Figure 4a–c depicts error upper and lower bounds for the multi-

channel discrimination of bosonic loss (upper bounds are plotted
as dashed lines, lower bounds are solid). We consider m= 9 binary
channel patterns such that background channel possess trans-
missivity ηB= 0.99, whereas target channels possess ηT= 0.97. In

each panel a–c, we consider a different image space: CPF, (k= 3)-
CPF and barcode pattern recognition respectively. Within each
setting, we construct fixed and dynamic unassisted block
protocols using CV-GHZ sub-states, each with mean photon
energy NS= 20. The precise probe-domain distributions are
identified diagrammatically in the legend.
Figure 4a shows results for CPF. Although one can eventually

confirm quantum advantage using a block protocol with a single
m= 9 mode CV-GHZ state (as studied in ref. 51), this is only
certifiably advantageous using a very large average channel use,
M � 3000, compared to the idler-assisted protocol M � 30.
Furthermore, for the larger image spaces, it quickly becomes too
costly to achieve guaranteed quantum advantage, such as for
3-CPF and barcode discrimination. Instead, one may use a
dynamic protocol to achieve error rates on par with the idler-
assisted performance. Using the nearest-neighbour dynamic
protocol as per the probe-domain distribution in Eq. (21), one
may readily obtain guaranteed quantum advantage regardless of
the image space. This dynamic protocol not only outperforms the
optimal classical protocol, but also quickly provides guaranteed
advantage over the best fixed, unassisted block protocols also,
achieving performance on par with idler assistance.
Figure 5a–c displays the minimum guaranteed quantum

advantage Δperr associated with the use of nearest-neighbour
dynamic protocols. Here we plot the difference between the
quantum upper bound and the optimal classical lower bound for
m= 9 channel pattern discrimination. This is carried out for ηT= 1,
M ¼ 100, a variety of signal energies NS, and background
transmissivities ηB. The difference in advantage achieved by the
idler-assisted protocol and the nearest-neighbour dynamic proto-
col is too small to be displayed, emphasising that we can not only
achieve quantum advantage without idlers but effectively match
the performance of idler assistance.

Fig. 4 Discrimination of Bosonic Gaussian channel patterns. Classification error bounds for CPF/pattern recognition of m= 9 channel
patterns of a–c pure-loss channels with parameters ηT, ηB= 0.97, 0.99 and d–f additive-noise channels with parameters νT, νB= 0.01, 0.02,
using probe states of mean photon energy NS= 20 and variable structures based on CV-GHZ states (and optimal classical states). All solid lines
are lower bounds and all dashed lines are upper bounds, based on Eqs. (3) and (4), respectively. All input state structures are defined
diagrammatically in the respective legends.
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Environment localisation

We now consider environment localisation. Here, the task is to
classify channel patterns in which each channel possesses
background or target noise properties, νB/νT. It is noteworthy that
we focus on additive-noise channels as an idealised scenario for
thermal-loss/amplifier channels, as the inclusion of loss τ ≠ 1 will
only degrade the performance of our unassisted protocols. It has
recently been proven that the ultimate error bounds for this
pattern recognition setting are non-adaptively achieved by idler-
assisted TMSV states42,43.
In Fig. 4d–f, we report the performance of a number of different

fixed/dynamic unassisted protocols for the task of environment
localisation. Again, we consider m= 9 length channel patterns for
a trio of image spaces, CPF, (k= 3)-CPF and barcode pattern
recognition. Each channel is characterised as an additive-noise
channels with νB= 0.02 or νT= 0.01, and our probe states again
have mean photon number NS= 20. It is immediately clear that
unassisted, fixed block protocols in this setting are ineffective, as
shown by the very poor lower bounds in these results. Without
idlers, the output distinguishability of disjointly distributed probe
states is extremely poor and degrades further with increasing
probe domain size.
Yet, performance can be redeemed via dynamic protocols. By

overlapping entangled probe domains over channel patterns, we
increase the opportunity of interacting with distinguishable
channel regions. Indeed, the use of the nearest-neighbour
dynamic protocol allows for guaranteed quantum advantage to
be obtained in a number of discrimination settings where fixed
protocols are unable to even match the classical performance (see
‘Methods’ for more nuanced insight to this result). Interestingly,
alternative non-disjoint probe-domain distributions can be seen to
achieve quantum advantage also, in some cases outperforming

the nearest-neighbour protocol as shown in Fig. 4d. The question
of identifying optimal dynamic protocols is thus highly non-trivial
and very interesting.
Finally, Fig. 5d–f compare the guaranteed quantum advantage

Δperr associated with idler-assisted protocols with that of the
nearest-neighbour dynamic protocol in this discrimination setting,
for νT= 0.01 and a variety of resource/environmental parameters.
The most significant guaranteed advantage is observed for 1-CPF,
as shown in both Fig. 4d and Fig. 5d. Although it is clear that
unassisted protocols are more sensitive to noisy, thermal
environments, quantum advantage is still achievable without the
use of idlers. These results emphasise the achievability of
quantum-enhanced, idler-free protocols for short-range environ-
ment localisation tasks.

DISCUSSION

We have formalised the construction of unassisted, quantum-
enhanced discrimination protocols in a multi-channel setting,
using multipartite quantum states. We identified two distinct
classes of block protocols, fixed and dynamic, which differ in how
they distribute multipartite entanglement across channel patterns.
The operational interpretations of these protocols were discussed,
along with their relationship with one another. Furthermore, we
formulated a logical correspondence between dynamic protocols
and error correction; variable probe domains throughout dis-
crimination help to correct errors that fixed probe domains
cannot.
In order to explicitly study the efficacy of these protocols, we

designed unassisted protocols for the discrimination of bosonic
Gaussian channel patterns. These protocols were based on the use
of entangled, multi-mode CV-GHZ states. Through analytical and

Fig. 5 Guaranteed quantum advantage. As per Eq. (23), for 9-pixel a, d CPF, b, e 3-CPF and c, f full image space (barcode) discrimination using
the nearest-neighbour dynamic protocol compared with full idler assistance. In a–c, the m= 9 pure-loss channels are considered, with target
pixel transmissivity ηT= 1 and various background transmissivities ηB, plotted against signal energy NS. Here the difference in advantage with
the idler-assisted protocol is too small to be plotted. Panels d–f study additive noise m= 9 channel patterns for target noise νT= 0.01 and
various signal energies, plotted against background noise νB.
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numerical investigation, we showed that these unassisted
protocols can provide significant advantage over the optimal
classical strategies for the discrimination of both bosonic loss and
environmental noise. In some cases, idler-free approaches can
achieve performance on par with idler assistance.
These results strongly encourage further investigation of

dynamic block protocols. Motivated by the problem setting and
chosen class of probe states, we were able to engineer high-
performance, quantum-enhanced unassisted protocols. However,
determining the optimal unassisted protocol for specific multi-
channel discrimination tasks is now an open question. It is of
interest to explore more sophisticated versions of these protocols
based on the optimisation of probing configurations over specific
image spaces and adaptive protocols that modify probe-domain
distributions on the fly. Such studies could reveal high-
performance unassisted discrimination strategies tailored to
realistic applications.
As this research was conducted in the CV picture based on

Gaussian entangled states, this makes it particularly relevant to
near-term quantum-sensing applications. The exploration of
alternative entangled probe states is an immediate path of
interest, as the employment of popular non-Gaussian entangled
states could provide further enhancements to these unassisted
protocols. Furthermore, the translation of this research for finite-
dimensional channels is also an important topic, in which similar
unassisted protocols may display strong quantum advantage.
Investigating the space of unassisted discrimination protocols is

of importance for near-term quantum technologies. The insights
and results of this work significantly loosen the resource
constraints on realisable quantum technologies that rely on
pattern recognition, emphasising that idler assistance is not
always a necessity.

METHODS

Quantum barcode decoding

The most general pattern recognition task for binary channel patterns is
quantum barcode decoding41. This is a multi-hypothesis discrimination
task of identifying a channel pattern from the entire space of binary
channel patterns. For m-length quantum multi-channels, this is charac-
terised by an image space Um ¼ fi1; ¼ ; i2mg which contains exactly 2m

possible patterns. For example, if m= 2, the complete binary image space
is explicitly U2 ¼ ffB; Bg; fB; Tg; fT ; Bg; fT ; Tgg.
All other image spaces are necessarily a subset of Um; hence, quantum

barcode decoding embodies the most challenging multi-channel dis-
crimination problem in this setting. It represents a scenario in which we
have no a priori information that can narrow the space of potential
quantum channel patterns and all i 2 Um must be considered within
the ensemble.

Channel position finding

The task of CPF describes the multi-hypothesis discrimination task of
locating a single target channel ET hidden among an array of background
channels EB . An m-channel CPF problem is associated with the image
space UCPF , which is the set of all m-length multi-channels that contain
exactly one target channel.
Let us define a function that constructs an m-length channel pattern

with one target channel in the xth position of the set

emðxÞ ¼ P1:xfT ; B; ¼ ; B
|fflfflfflffl{zfflfflfflffl}

m� 1 times

g:
(24)

Here, P1:x is a permutation operator that swaps the position of the first
label T with the xth element in the set. Then, we can construct the CPF
image space for m-modes,

UCPF ¼ femð1Þ; ¼ ; emðmÞg ¼
[m

x¼1

femðxÞg: (25)

For a m-channel CPF problem, jUCPFj ¼ m. For example, if m= 3, then

UCPF ¼ ffB; B; Tg; fB; T ; Bg; fT ; B; Bgg: (26)

More generally, we may investigate k-CPF, where the number of target
channels that occur within each channel pattern is precisely k <m, hidden
among m− k background channels. We denote this image space Uk

CPF . Let
us define a more general function that generates an m-length channel
pattern with precisely k-target labels in the positions indicated by the
unique indices x1, x2, …,xk,

ekmðx1; ¼ ; xkÞ ¼ P1¼ k:x1 ¼ xkfT ; ¼ ; T
|fflfflfflffl{zfflfflfflffl}

k times

; B; ¼ ; B
|fflfflfflffl{zfflfflfflffl}

m�k times

g:
(27)

Here, each permutation operator P1¼ k:x1 ¼ xk swaps all of the target
channel labels from positions 1, …, k with the channel labels at the
positions x1, …, xk. Then, we can construct any k-CPF image space by
iterating over all unique permutations of the target channel labels,

Uk
CPF ¼

[

1 � x1≠x2≠¼≠xk � m

fekmðx1; ¼ ; xkÞg: (28)

For an m-channel k-CPF problem, Uk
CPF contains exact C

k
m channel patterns,

where Ck
m ¼ m!=ðk!ðm� kÞ!Þ is the binomial coefficient. For example, if m

= 3, k= 2, then the image space is

U2
CPF ¼ ffT ; T ; Bg; fT ; B; Tg; fB; T ; Tgg: (29)

Clearly, when k= 1, we regather the previous single CPF image space.
Both CPF and k-CPF find a number of fundamental settings within target

detection, quantum-enhanced classical data readout and environment
localisation. They provide a valuable platform for studying multi-channel
discrimination; if we can understand how to attain quantum enhance-
ments in the readily analysable CPF framework, then we can learn to
extract and apply these enhancements in more complex settings.

Bosonic Gaussian channel patterns

Under the action of a single-mode GPI quantum channel, an input
Gaussian state described completely via its CM Vin with zero first moments
undergoes the transformation

V in ! Vout ¼ ð
ffiffiffi
τ

p
IÞVð

ffiffiffi
τ

p
IÞT þ νI; (30)

where I is a 2 × 2 identity matrix. The overall quantum channel can be
denoted as Eτ;ν and is defined with respect to a transmissivity parameter
0 ≤ τ ≤ 1 describing attenuation/amplification properties and an induced
noise parameter ν ≥ 0.
Binary GPI channel patterns then consist of a sequence of m-GPI

channels with unique target/background transmissivities τB, τT and noise
properties νB, νT. Consider now an m-mode Gaussian state with CM Vin and
zero first moments. Let the following be a matrix function of a general
variable x, which depends on a position k in a channel pattern i,

I½x�
i

:¼ xi1 I � ¼ � xim I ¼
Mm

k¼1

xik 0

0 xik

� �

: (31)

Then, a multi-mode Gaussian state that is transformed according to a GPI
binary channel pattern ρ7!EiðρÞ undergoes the following transformation
on its CM in phase space

V i ¼ ðI½ ffiffi
τ

p �
i
ÞV inðI½ ffiffi

τ
p �

i
ÞT þ I½ν�

i
: (32)

Therefore, it is easy to study the CMs of multi-mode Gaussian probe states
interacting with GPI channel patterns.

Bosonic CV-GHZ states

As discussed in ‘Results’, a CV-GHZ state can be constructed as the
extension of a TMSV state to many modes. Indeed, consider a CV-GHZ state
defined over an m-length probe domain, Φ

μ

f1;¼ ;mg . This m-mode state can
be completely characterised by its CM (with zero first moments) as given in
Eq. (18). Here we show why maximum correlations are satisfied at
c1 ¼ �c2 ¼ cmax. The symplectic spectrum of the CV-GHZ state takes the
form,

ν� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ� c1Þðμ� c2Þ
p

; (33)

νþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμþ ðm� 1Þc1Þðμþ ðm� 1Þc2Þ
p

; (34)

such that ν+ is (m− 1)-degenerate. In order to capture maximal correlations
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(at finite squeezing), we use the bona fide condition ν ± � 1
2
to state that

jcj �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � 1
4

q

m� 1
:

(35)

Hence, this leads to the notion of maximal symmetric correlations when the

correlation parameters satisfy c1 ¼ �c2 ¼ cmax ¼ ðm� 1Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � 1=4
p

.
CV-GHZ states can then be readily used to construct probe states in

conjunction with a probe-domain distribution, where it can be used as a
building block for more general multipartite states. This construction can
be equivalently represented in phase space, where tensor products over
sub-states become direct sums over sub-CMs. More precisely, given an N-
partite probe-domain distribution S (disjoint or non-disjoint) we can
equivalently express the global CV-GHZ input state Φ

μ
S via its CM,

Φ
μ
S ! V

μ
S ¼

MN

j¼1

Vμ
sj
; (36)

where Vμ
sj
is the CM of a ∣sj∣-mode CV-GHZ state irradiated over the modes

contained in the probe domain sj.

Numerical computation of error bounds

Consider two unique,m-length Gaussian channel patterns Ei and E i
0 , which

are probed by two identical m-mode CV-GHZ states Φ
μ

f1;¼ ;mg . We can
conveniently write the output states from these interactions,

Φ
μ
i
¼ E iðΦμ

f1;¼ ;mgÞ ! V
μ
i
; (37)

Φ
μ

i
0 ¼ Ei

0 ðΦμ

f1;¼ ;mgÞ ! V
μ

i
0 : (38)

Now consider the fidelity between these two output states FðΦμ
i
;Φμ

i
0 Þ.

Thanks to the Gaussianity of CV-GHZ states and GPI multi-channels, the
fidelity between these states can be computed exactly using only their
phase space representations using the formulae from59,

FðΦμ
i
;Φμ

i
0 Þ ¼ FGðVμ

i
; Vμ

i
0 Þ; (39)

where we denote FG as the Gaussian fidelity function.

In summary, we have a way to represent the input probe states of
unassisted block protocols, through V

μ
S ; the ability to describe output

states by transforming input states according to GPI multi-channels Ei as in
Eq. (32),

Φ
μ
S;i ¼ EiðΦμ

SÞ ! V
μ
S;i ; (40)

and the means to compute the fidelity between any two output states.
Given these techniques, and a multi-channel discrimination problem
fπi; Eigi2U , we can readily compute the fidelity-based error probability
lower and upper bounds,

perr � 1

2

X

i≠i
02U

πiπi0F
2M
G ½Vμ

S;i; V
μ

S;i0 ; �; (41)

perr �
X

i≠i
02U

ffiffiffiffiffiffiffiffiffi
πiπi0

p
FMG ½V

μ
S;i ; V

μ

S;i0 ; �: (42)

To study the error bounds of dynamic block protocols, we need only
invoke the dynamic/fixed protocol transformation discussed in the ‘Results’
section. In this way, we modify the channel patterns according to the
probe-domain distribution i→ νi. By computing the fidelity between the
outputs of CV-GHZ states irradiated over the modified patterns

FG½Vμ
S;νi ; V

μ
S;ν

i0
�; (43)

Error bounds can be readily computed for dynamic block protocols. The
numerical methods presented here can always be used for fixed or
dynamic block protocols and more generally using any Gaussian input
states.

Classical performance

Here we collect expressions for the classical fidelities using optimal
coherent states for the multi-channel discrimination settings explicitly
studied in this work. These can then be used to derive exact error bounds
and benchmark quantum advantage.
The best classical protocol for discriminating a single pure-loss channel

is achieved by a block protocol using coherent states. Indeed, the optimal
(energy constrained) M-copy, single-mode coherent state given by41,

α�M
coh ¼ MNSj i MNSh j; (44)

where NS is the mean photon number of the signal state. If a single pure-
loss channel possesses transmissivity ηB or ηT, the fidelity between the two
possible single-copy output states is given by

F losscl ¼ exp �NS

2
ðηB � ηTÞ2

� 	

: (45)

Form-length multi-channels, we simply usem single-mode coherent states
to discriminate each channel independently.
For additive-noise channels, τ= 1 and the task is to discriminate

between background/target noise νB, νT > 0. The optimal classical input
state is just the m-copy vacuum state 0j i�m

, as displacements or phase
shifts have no impact on the output states from the channel. The single
probe copy fidelity between the potential single-mode output states can
be written as43,

Faddcl ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðνT þ 1Þðν þ 1Þ
p

� ffiffiffiffiffiffiffiffiffi
νTνB

p : (46)

Using these fidelity expressions within the error probability bounds from
Eqs. (3) and (4), we can provide effective classical benchmarks for both
multi-channel discrimination settings.

Idler-assisted performance

We can similarly collect expressions for idler-assisted block protocols in the
context of bosonic pure-loss channel patterns and environment
localisation.
For the discrimination of bosonic loss, one can employ an idler-assisted

protocol in which each channel is probed with one mode from an M-copy
TMSV state, Φμ, where μ= NS+ 1/2 is the level squeezing. Consider a
single pure-loss channel E j , which may have transmissivity ηj∈ {ηB, ηT}.
Although one mode interacts with the channel, the other mode is perfectly
protected (in a quantum memory for instance) and thus undergoes the
action of an identity channel. The output state is then simply the finite-
energy Choi state Φ

μ
E j ¼ E j � IðΦμÞ. The fidelity between the output states

Fig. 6 CV-GHZ fidelity degeneracies. Histograms of fidelity
degeneracies for unequal m= 10 pure-loss channel patterns over
the complete image space of binary channel patterns U10 , for a
selection of probe-domain distributions: m-mode CV-GHZ state
(green), disjointly distributed TMSV states (orange) and nearest-
neighbour distributed TMSV states (blue). The fixed block protocols
are using M= 2 probe copies, whereas the dynamic nearest-
neighbour protocol is using M= 1 copies. In this way, the average
channel use of all the protocols is the same, M ¼ 2.
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Φ
μ
EB and Φ

μ
ET is41

F lossidler ¼
1

1þ NSΔ
; (47)

where Δ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� ηBÞð1� ηTÞ
p

� ffiffiffiffiffiffiffiffiffiffi
ηBηT

p
. By extending this to m-

channels using M-copy probes, we can easily bound performance of the
idler-assisted block protocol.
We can perform an identical analysis for environment localisation by

computing the fidelity between possible output states of a pair of additive-
noise channels with target noise or background noise νB/νT. In this case, it
is convenient to utilise the parameter μ= NS+ 1/2, where the output
fidelity reads42

Faddidler ¼
2μ

ffiffiffiffiffiffiffiffiffi
νTνB

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2μνT þ 1Þð2μνB þ 1Þ
p

2μðνT þ νBÞ þ 1
: (48)

Once again extending these fidelities to consider m-channels and using M-
copy probes states, we can easily bound the performance of idler-assisted
block protocols.

Fidelity degeneracies of CV-GHZ states

Consider an arbitrary N-element image space U ¼ fi1; i2; ¼ ; iNg, which
generate m-length quantum channel patterns, and the associated multi-
channel ensemble fπi; E igi2U . Now, consider the use of an unassisted block
protocol using m-mode CV-GHZ states. As we know from ‘Results’, we can
benchmark the performance of this protocol via the fidelity-based error
probability bounds in Eqs. (3) and (4).
Although this can be achieved numerically, it can become inefficient.

The total number of ways that we can choose unequal pairs of channel
patterns is N(N− 1). This means that in general, there exist N(N− 1)
potentially unique, non-unit fidelities that one needs to compute in order
to calculate the error bounds. For large pattern spaces, this can be
enormous, making it difficult to analytically keep track of all possible
output fidelities or numerically perform these sums.
However, thanks to their symmetry, when using CV-GHZ states as

quantum probes the number of unique fidelities that may occur is
dramatically reduced. The CV-GHZ state symmetry causes many of the
unique output fidelities within Eqs. (3) and (4) to be highly degenerate.
Indeed, fidelity degeneracy tells us that if there are exactly gfid unique
output fidelities, typically gfid≪ N(N− 1).
Let us be more precise: consider a pair of image spaces of m-length,

binary channel patterns: one is the k-CPF image space Uk
CPF , such that each

pattern contains precisely k-target channels, and the other is a l-CPF image
space U l

CPF such that each pattern contains precisely (l ≠ k)-target channels.
Take two identical m-mode CV-GHZ states Φ

μ

f1;¼ ;mg , which interact with
the multi-channels Ei and E i

0 , resulting in two unique output states Φ
μ
i
and

Φ
μ

i
0 . Now consider the fidelity,

FðΦμ
i
;Φμ

i
0 Þ; for i 2 Uk

CPF; i
0 2 U l

CPF: (49)

We find that this fidelity is equivalent for all pairs of channel patterns i; i0 ,
which have the same Hamming distance. That is, for all

i 2 Uk
CPF; i

0 2 U l
CPF; s:t Hammingði; i0Þ ¼ d > 0; (50)

the fidelity FðΦμ
i
;Φμ

i
0 Þ is completely degenerate. For a rigorous proof of this,

please see ref. 60. Fidelity degeneracies are extremely useful and can help
to not only improve numerical efficiency, but reveal analytical insights.

In Fig. 6, we have numerically investigated the fidelity degeneracy
properties of a number of different unassisted dynamic/disjoint protocols
for the discrimination of pure-loss channel patterns. Here we observe two
clear points; CV-GHZ states lose distinguishability when we widen their
domain size as expected, due to weakening quantum correlations
(discussed in the ‘Results’). This can be seen by comparing the output
fidelity spectrum of the m= 10 mode CV-GHZ probe state (green)
compared to the other probe-domain distributions.
Furthermore, non-disjoint probe domain distributions are able to ‘spread

out’ the degeneracies involved with disjoint probing protocols. In Fig. 6, we
compare a fixed block protocol using a disjoint, exclusively two-mode
distribution of probe domains (orange). We then use a dynamic nearest-
neighbour protocol with the exact same number of probe modes (blue).
Although the output fidelity distributions possess a similar spread in
values, the variation in probe domains raises many of the degenerate
fidelities. In doing so, it flattens the overall distribution and gives rise to
more distinguishable output fidelities.

Fidelity degeneracies of TMSV states

We will now focus on the case of using m= 2 CV-GHZ states, i.e., TMSV
states. As discussed in ‘Results’, these states maximise their entanglement
content with respect to input energy, as quantum correlations do not need
to be spread across many modes. Furthermore, they offer the simplest test
case for analytically investigating fidelity degeneracies. This will help to
unveil concrete reasons for the discrepancy between fixed and dynamic
protocols.
We wish to identify all the possible, unique output fidelities associated

with TMSV states irradiated over m= 2 length binary channel patterns. We
can summarise this image space easily as it is very small,

U2 ¼ ffB; Bg; fB; Tg; fT ; Bg; fT ; Tgg: (51)

Thanks to the fidelity degeneracy properties discussed in the previous
section it turns out that there are only four unique sub-fidelities that can
occur when one irradiates two-mode binary channel patterns with
unassisted TMSV states. Here we define a sub-fidelity as a single output
fidelity that occurs between specific pairs of channel patterns. These sub-
fidelities are completely determined by the number of the target channels,
k and l, contained within the considered channel pair, i and i

0 , respectively.
Hence, we will denote each sub-fidelity in the form Fk:l where k (l) indicates
the number of target channels in the channel pattern i (i0). Doing so, we
can write all the unique, two-mode sub-fidelities

F0:1ðμÞ; when i ¼ fB; Bg; i0 2 ffT ; Bg; fB; Tgg;
F0:2ðμÞ; when i ¼ fB; Bg; i0 ¼ fT ; Tg;
F1:1ðμÞ; when i ¼ fB; Tg; i0 ¼ fT ; Bg;

F1:2ðμÞ; when i ¼ fT ; Tg; i0 2 ffT ; Bg; fB; Tgg:

(52)

The Bures fidelity is a symmetric function; therefore, the order of i and i
0 is

irrelevant.
These are the only fidelities that can occur when using TMSV states over

pairs of m= 2 length channel patterns. Furthermore, the fidelity is
multiplicative, meaning that

Fðρ� ρ0; σ � σ0Þ ¼ Fðρ; σÞ 	 Fðρ0; σ0Þ: (53)

Hence, when using collections of exclusively two-mode states following
some probe-domain distribution (such as in the nearest-neighbour
protocol), then all of their unique output fidelities will always be a specific
product of these sub-fidelities in Eq. (52). Hence, these sub-fidelities can be
used to completely characterise any unassisted discrimination protocol
using exclusively TMSV states (see ref. 60 for more details).
Although this may seem like an unnecessary level of detail, the

investigation of these sub-fidelities helps to reveal critical features of
dynamic block protocols. Each of the sub-fidelities in Eq. (52) is a unique
function that can be analytically characterised via the Gaussian fidelity
formulae from ref. 59. They each possess a unique behaviour dependent
upon the multi-channel discrimination setting that we are considering. If
one of the sub-fidelities is typically very large, this means that the specific
pair of channel patterns that it refers to are very difficult to discriminate. If
a sub-fidelity is very small, then the pair of channels it refers to are very
easy to discriminate. For example, if F0:2≫ F1:1 in a particular problem
setting, then it is much easier to discriminate the patterns {B, T} from {T, B},
rather than {B, B} from {T, T}.
Most importantly, when utilising unassisted discrimination protocols,

there is an inconsistency of distinguishability between different collections

Fig. 7 TMSV sub-fidelities. Two-mode sub-fidelity behaviour with
respect to increasing signal energy NS for unassisted, single-copy
TMSV states interacting with m= 2 length channel patterns for a
additive-noise channels νT, νB= 0.01, 0.02 and b pure-loss channels
ηT, ηB= 0.97, 0.99.
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of quantum channels. This inconsistency leads to the corrective behaviour
that dynamic protocols can provide. We will convey this inconsistency by
considering the settings studied in the ‘Results’ section.

Analytical insight for dynamic protocols

Let us take the example of environment localisation for m= 2 length
binary channel patterns of additive-noise channels with target noise νT and
background noise νB. When we look closely at the sub-fidelities concerned
with this setting, we notice a glaring inconsistency. Three of these sub-
fidelities (F0:1, F0:2 and F1:2) all assume their minimum in the limit of infinite
squeezing,

min Fk:lðμÞ ¼ lim
μ!1

Fk:lðμÞ: (54)

That is, by increasing the energy of our input states, we can expect to
improve the discrimination of the appropriate pairs of channel patterns.
This sub-fidelity behaviour is displayed in Fig. 7a.
However, this is not the case for the sub-fidelity F1:1(μ), which is

concerned with the discrimination of the pattern {B, T} from {T, B} (and vice
versa). This sub-fidelity explicitly takes the form

F1:1ðμÞ ¼
1

θ�
ffiffiffiffiffiffiffiffiffiffiffi

ξ�ξþ
p ; (55)

where we define the quantities

θ ¼ 2νBνT þ 1þ 2μðνB þ νTÞ; (56)

ξ ± ¼ θ� 1 ± ðνB � νTÞ: (57)

In the limit of infinite squeezing, we find that

lim
μ!1

F1:1ðμÞ ¼ 1; (58)

meaning that in the limit of infinite probe-state energy, the pair of channel
patterns {B, T} and {T, B} become completely indistinguishable. Clearly, this
will have a hugely detrimental effect on discrimination performance, which
cannot be remedied by increasing the input probe energy.
A similar effect can be observed within pure-loss channel patterns. Let

us consider the case of probing m= 2 length binary channel patterns such
that each channel is a pure-loss channel with either a target transmissivity
ηT or background transmissivity ηB. Now, we find that the two-mode sub-
fidelities F0:1, F1:1 and F1:2 tend to zero in the limit of infinite squeezing,

min Fk:lðμÞ ¼ lim
μ!1

Fk:lðμÞ ¼ 0: (59)

This means that in the limit of infinite energy and maximum entanglement,
the channel pairs that characterise each of these sub-fidelities become
perfectly distinguishable.
However, we may focus on the quantity F0:2(μ), which defines the

distinguishability of the patterns {B, B}, {T, T}. This sub-fidelity takes a
relatively compact form given by,

F0:2ðNSÞ ¼
2NS

ffiffiffiffiffi
κ1

p þ ffiffiffiffiffi
κ2

p

1� NSðηB þ ηT � 2ÞðηT þ ηBÞ
: (60)

where we use μ= NS+ 1/2 as before and we define the quantities

κ1 ¼ ηBηTðηT � 1ÞðηB � 1Þ; (61)

κ2 ¼ 1� NSðηB þ ηT � 2ÞðηB þ ηTÞ � 4N2
Sκ1: (62)

In the limit of infinite squeezing, this sub-fidelity F0:2 instead finds the finite
quantity

lim
μ!1

F0:2 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηBηTðηB � 1ÞðηT � 1Þ
ðηB þ ηT � 2Þ2ðηB þ ηTÞ2

s

; (63)

which is non-zero when either ηj ≠ 1. Therefore, even when using infinitely
squeezed input states, the patterns i= {B, B} and i

0 ¼ fT ; Tg are not
perfectly distinguishable via unassisted input states. The behaviour of
these sub-fidelities are displayed in Fig. 7b.
It is now clear why dynamic protocols are so effective at redeeming the

performance of these multi-channel discrimination tasks. When using
unassisted, multipartite entangled probe states, the distinguishability of
the output states can vary considerably, dependent upon the collection of
quantum channels that they interact with. By overlapping probe domains,
channels can be probed in conjunction with different collections of
channels in the pattern. In doing so, we are increasing the likelihood of

probing a more a distinguishable collection. These more distinguishable
channel regions are then able to correct the errors invoked by probes
interacting with poorer regions.
As an example, let us take the discrimination of Gaussian additive-noise

channels with TMSV states according to some probe-domain distribution.
Consider an m= 4 length channel pattern,

i ¼ fi1; i2; i3; i4g ¼ fB; T ; T ; Bg; (64)

that we wish to discriminate. Here, we first consider a fixed block protocol
that follows the probe-domain distribution Sd ¼ ff1; 2g; f3; 4gg. As a
result of this distribution, we will possess the following TMSV states which
irradiate specific channel sub-patterns,

Φ
μ

f1;2g irradiates fi1; i2g ¼ fB; Tg;
Φ

μ

f3;4g irradiates fi3; i4g ¼ fT ; Bg:
(65)

As discussed earlier in this section, the sub-fidelity F1:1 is very poor,
meaning that the sub-patterns {B, T} and {T, B} are very difficult to
distinguish from one another. Therefore, if we irradiate a sub-pattern {B, T}
or {T, B} directly with a TMSV state, our overall discrimination ability will be
very ineffective, as we will struggle to determine which is the true pattern.
It is highly desirable to avoid instances of this kind of pattern interaction,
but obviously we cannot know prior to interaction where these pairs of
channel patterns arise (this would defeat the purpose of discrimination).
This embodies a critical weakness of fixed block protocols. If we
unwittingly choose a probe-domain distribution which irradiates input
states over poorly distinguishable collections of patterns, the ability to
discriminate the overall channel pattern will be compromised.
We now see why varying the probe domains is so effective. Consider a non-

disjoint probe-domain distribution, Snd ¼ ff1; 2g; f2; 3g; f3; 4g; f1; 4gg (this
is in fact the nearest-neighbour protocols discussed in ‘Results’). Consider the
same m= 4 length channel pattern, i= {B, T, T, B}. As a result of this
distribution, we will possess the following TMSV states which irradiate the
specific channel sub-patterns,

Φ
μ

f1;2g irradiates fi1; i2g ¼ fB; Tg;
Φ

μ

f2;3g irradiates fi2; i3g ¼ fT ; Tg;
Φ

μ

f3;4g irradiates fi3; i4g ¼ fT ; Bg;
Φ

μ

f1;4g irradiates fi1; i4g ¼ fB; Bg:

(66)

Although we are still unfortunately irradiating the poorly distinguishable
collections of channels {i1, i2}= {B, T} and {i3, i4}= {T, B} with two of our
input probes, we now also apply probe states to the sub-patterns {i2, i3}=
{T, T} and {i1, i4}= {B, B}. These collections of channels are much more
distinguishable, and invoke the stronger sub-fidelities F0:1, F0:2 and F1:2.
Hence, by varying our probe domains, we are able to gather different,
more distinguishable ‘opinions’ of regions of the channel pattern. The
stronger distinguishability of the regions {i2, i3} and {i1, i4} can help to
correct the contribution of the poorly distinguishable channel collections.
It is important to note that this improved performance is not connected

to an increased number of probe modes. Recall that we can fairly compare
dynamic/fixed block protocols with the same average channel use M. With
equivalent resources, the dynamic protocol will outperform the fixed
version thanks to its variable probe domains.
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