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Idler-Free Multi-Channel Discrimination via Multipartite Probe States

Cillian Harney and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, United Kingdom

The characterisation of Quantum Channel Discrimination (QCD) offers critical insight for future
quantum technologies in quantum metrology, sensing and communications. The task of multi-
channel discrimination creates a scenario in which the discrimination of multiple quantum channels
can be equated to the idea of pattern recognition, highly relevant to the tasks of quantum reading,
illumination and more. Whilst the optimal quantum strategy for many scenarios is an entangled
idler-assisted protocol, the extension to a multi-hypothesis setting invites the exploration of discrim-
ination strategies based on unassisted, multipartite probe states. In this work, we expand the space
of possible quantum enhanced protocols by formulating general classes of unassisted multi-channel
discrimination protocols which are not assisted by idler modes. Developing a general framework for
idler-free protocols, we perform an explicit investigation in the bosonic setting, studying prominent
Gaussian channel discrimination problems for real world applications. Our findings uncover the
existence of strongly quantum advantageous, idler-free protocols for the discrimination of bosonic
loss and environmental noise. This circumvents the necessity for idler assistance to achieve quan-
tum advantage in some of the most relevant discrimination settings, significantly loosening practical
requirements for prominent quantum sensing applications.

INTRODUCTION

As the development of practical quantum technologies
accelerates [1–3], the field of quantum sensing is already
the most mature, and already obtaining quantum advan-
tage in a variety of applications [4]. Critical theoreti-
cal underpinnings in quantum metrology and hypothesis
testing [5–10] have led to quantum enhanced protocols
with fundamental applications in quantum illumination
[11–24] and quantum reading [25–33], with particular in-
terest in the Continuous Variable (CV) domain [34–36].
The fundamental task of Quantum Channel Discrim-

ination (QCD) models many of these applications. In
QCD, a user is tasked with classifying an ensemble of
quantum channels through the use of an input quan-
tum state (probe state) and a discriminatory measure-
ment. Locating an optimal discrimination protocol is
very difficult, as it embodies a double optimisation prob-
lem of both the probe state and the output measurement.
Nonetheless, significant progress has been made in recent
years in a variety of contexts [37, 38].
Until recently, QCD has been mostly limited to the

problem of binary classification. However, advances
in multi-channel discrimination and the formulation of
Channel Position Finding (CPF) [39, 40] have brought
with them new insight and opportunities for more com-
plex multi-hypothesis classification problems. These
multi-channel discrimination problems are highly rele-
vant in a number of fascinating settings, such as data-
readout from optical memories, quantum enhanced opti-
cal/thermal pattern recognition [41, 42], and target de-
tection [43].
Within these applications (and many more in quantum

sensing) the assistance of idler modes has been a crucial
feature in order to attain quantum enhanced performance
[39, 44]. Idler-modes refer to perfectly preserved, ancil-
lary quantum systems which share entanglement with in-
put probe states throughout a sensing protocol. In the

bosonic setting, these protocols consist of using one mode
of a Two Mode Squeezed Vacuum (TMSV) state to probe
a target, whilst the remaining mode (the idler) is kept by
the user. Idler-assisted protocols have been shown to be
optimal for a number of important discrimination tasks,
and offer significant advantage for many more.

Yet, the necessity for idler-modes is problematic, due
to the requirement that they need to be perfectly pro-
tected. In practice this is not possible, as some decoher-
ence will always be imparted on the idler while the probe
mode is interacting with a target. To combat this, idlers
are either contained in delay lines (e.g. very low-loss fibre
optics) or stored in quantum memories until required for
measurement. This preservation requirement causes se-
rious practical difficulties due to the challenging nature
of creating stable quantum memories with adequate stor-
age time [45–48]. In some settings, it may be much more
practical to use unassisted protocols limited to signal-
only probe modes, especially for near term quantum tech-
nologies.

Research on unassisted protocols has been primarily
limited to single channel sensing problems, motivating
the use of coherent states to formulate classical bench-
marks, and even to search for quantum enhancements be-
yond entanglement [49, 50]. However the multi-channel
discrimination picture invites us to explore new unas-
sisted protocols. In particular, it is now possible to
construct protocols that distribute entanglement over
multiple quantum channels using multipartite entangled
states. Without additional idler modes to defend en-
tanglement, input states must be cleverly designed to
preserve quantum correlations in the face of increased
decoherence. Recently, Pereira et al. [51] have explored
the use of a block protocol with entangled bosonic states
for discriminating small collections of Gaussian quantum
channels, proving that there do exist idler-free protocols
capable of exceeding the best known classical strategies.

Motivated by this, we arrive at our key research objec-
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tives: To generalise the theory of unassisted protocols
for multi-channel discrimination, and to ask: Can we
design unassisted multi-channel discrimination protocols
that achieve significant quantum advantage?
Hence, in this work, we construct new, general classes

of unassisted protocols for multi-channel discrimination.
These are block protocols which utilise (generally entan-
gled) multipartite quantum states as probe states. Mul-
tipartite states (and thus entanglement) can now be dis-
tributed across multiple quantum channels in many in-
equivalent ways, leading to two distinct, broad classes of
discrimination protocols. Via multi-mode entanglement
and carefully designed probe distributions, we present
unassisted protocols that are able to attain performances
on par with that of idler-assistance. This circumvents the
necessity for idler-assistance in some of the most relevant
discrimination settings, loosening practical requirements
for quantum-enhanced pattern recognition.
This paper is structured as follows: In Results, after

first reviewing the model of quantum pattern recogni-
tion, we present our main findings. We introduce the
general framework of block protocols using unassisted
multipartite quantum probe states. We then identify
two distinct classes of unassisted protocol which emerge
from this framework, discuss their operational interpreta-
tions, and devise a diagrammatic language for describing
such protocols. We corroborate these general findings
by demonstrating the efficacy of idler-free protocols for
the discrimination of multiple bosonic Gaussian quantum
channels. In Discussion, our results are summarised and
we identify future investigative paths. Finally, the Meth-
ods section contains a number of useful theoretical tools
and insights used within this research (which can also be
found in the Supplementary Notes).

RESULTS

Quantum Pattern Recognition

In this work, we study the discrimination of binary
quantum multi-channels which we call quantum chan-

nel patterns. A binary channel pattern is defined as an
m-length separable sequence of quantum channels, such
that each channel in the sequence admits the proper-
ties of a target channel ET or background channel EB
(identified by the labels T,B respectively). This se-
quence can then be described by a binary string (or
pattern) i = {i1, i2, . . . , im} where ij ∈ {B, T} for all
j ∈ {1, . . . ,m}. More precisely, we may denote an m-
length channel pattern as

Ei := Ei1 ⊗ Ei2 ⊗ . . .⊗ Eim =

m⊗

j=1

Eij . (1)

Throughout this work, we refer to a channel pattern sim-
ply by its binary string i, unless Ei is formally required.
Background and target channels can be used to encode

physical properties of a multipartite system. For in-
stance, one can associate each pixel of an m-pixel binary
thermal image with a cold (background) or hot (target)
temperature. Quantum mechanically, one may attribute
each pixel to a quantum channel that describes how a
quantum probe may interact with either pixel.

A channel pattern i represents only a single instance
of a possible binary arrangement. More generally, these
instances belong to a larger space of multi-channels we
may call an image space. We label an arbitrary N -
element image space as the set U = {i1, i2, . . . , iN} con-
taining N unique channel patterns. Since we are con-
sidering binary patterns, the most general image space
we can consider is the set of all m-length binary strings
Um = {i1, i2, . . . , i2m}, of which all other binary image
spaces are a subset. Image spaces can be used to spec-
ify important, physical problem settings such as those
defined by the task of Channel Position Finding (CPF),
which is concerned with locating target channels hidden
amongst collections of background channels (see Methods
for more details).

The challenge of multi-channel discrimination may now
be presented: Consider an m-length pattern of uniden-
tified quantum channels. Suppose that the sequence
of channels belongs to a pattern from a known image
space U . Each pattern in the image space possesses
a unique probability of existing, πi. The task of dis-
crimination then consists of distinguishing between all
the multi-channels in the statistical ensemble {πi; Ei}i∈U ,
which describes an ensemble of multi-channels {Ei}i∈U
distributed according to the classical probability distri-
bution {πi}i∈U .

The most general multi-channel discrimination proto-
col is a general adaptive protocol, P. This is best de-
scribed by a quantum comb [52–54]; a quantum circuit
board with an arbitrary number of registers, with M
slots in which channel patterns Ei are placed. Quantum
combs have access to unlimited entanglement, adaptive
operations and feedback based state preparation. Due to
their generality, these protocols are very difficult to char-
acterise and optimise. Therefore it is often much more
beneficial to consider simpler protocols.

Of such, block protocols B represent a very im-
portant class of non-adaptive discrimination strat-
egy. Channel patterns are probed using M identi-
cal and independent copies of some input probe state,
ρ⊗M → ρ⊗M

i
:= Ei(ρ)⊗M . After M pattern interactions,

an optimised POVM {Πi}i∈U is used to perform the clas-
sification. Given an image space U with the pattern prob-
ability distribution {πi}i∈U , the error probability of mis-
classification is given by

perr(B) :=
∑

i 6=i′∈U
πiTr

î

Πi′ρ
⊗M
i

ó

. (2)

In order to benchmark this discrimination performance
without specifying precise measurements, the following
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fidelity based bounds from can be used [55, 56],

perr ≥
1

2

∑

i 6=i′∈U
πiπi′F

2M (ρi, ρi′), (3)

perr ≤
∑

i 6=i′∈U

√
πiπi′F

M (ρi, ρi′), (4)

where F (ρ, σ) = Tr
[√√

ρ σ
√
ρ
]
denotes the Bures fi-

delity. These bounds are completely general, and do
not depend on the channel dimension. Hence, they may
be utilised for both finite and infinite dimensional input
states (provided that we use energy-constrained quantum
states).

These non-adaptive block protocols have been shown
to offer high performance in a number of discrimination
settings, and in some cases are optimal [37]. If a block
protocol makes use of entangled, ancillary quantum sys-
tems (idlers) then it is known as a block-assisted proto-
col Ba. Idler-based entanglement can induce quantum-
enhancements in many different discrimination settings
[41, 42]. Without additional idler modes, we are left with
an unassisted block protocol, Bu. Much less is known
about unassisted protocols in a multi-channel setting,
which we rectify in the following sections.

General Unassisted Block Protocol

Consider an image space i ∈ U of m-length multi-
channels each of which occur with probability πi, gen-
erating the channel pattern ensemble {πi; Ei}i∈U . Unas-
sisted discrimination consists of developing a strategy for
accurately distinguishing patterns from the image space
without utilising entangled idler-modes or ancillary quan-
tum systems. Unlike in an assisted protocol, entangle-
ment is now only permitted between probe modes. We
proceed in this practical direction by investigating how
inter-probe entanglement can play a role in constructing
quantum enhanced, unassisted block protocols.

Consider an m-length channel pattern. An unassisted
block protocol Bu using multipartite states will assign an
M -copy, n ≤ m multi-mode state to interact with some
region of the channel pattern, defined by a set of channel
labels s = {s1, . . . , sn} for si ∈ {1, . . . ,m}. This channel
region s, which we aptly call a probe-domain, defines a
sub-pattern of the total channel pattern over which a
multipartite state σ⊗M

s
can be irradiated. Furthermore,

it designates a region of the channel pattern over which
probe modes are permitted to be entangled. That is,
input modes which are incident in the channel region s

can be entangled, but are fully separable with respect to
any modes that are not within this region.

In order to completely interact with all m-channels in
the pattern we can define a discrete distribution of N
multipartite states which are irradiated over distinct sub-

regions of the channel pattern

S = {s1, s2, . . . , sN} =

N⋃

j=1

sj , (5)

∃ j such that i ∈ sj , ∀i ∈ {1, 2, . . . ,m}. (6)

In Eq. (6), we demand that each channel index 1, . . . ,m
is accounted for in at least one subset s ∈ S. Let this
set S be known as the probe-domain distribution. Using
S we can define a global probe state irradiated over a
channel pattern, constructed as the tensor product of all
the local sub-states

σS = σs1
⊗ . . .⊗ σsN

=

N⊗

j=1

σsj
. (7)

Employing a block protocol using M copies of the global
unassisted probe state, in conjunction with a set of dis-
criminatory POVMs {Πi}i∈U , the error probability of
classification is given as,

perr(Bu) =
∑

i 6=i′∈U
πiTr

î

Πi′Ei
(
σ⊗M
S

)ó

. (8)

This is a very general form of quantum input probe,
since we have not specified any specific features of the
local sub-states or probe-domain distribution. However,
this analysis is already sufficient to identify two distinct
regimes of unassisted discrimination protocol. These
regimes are related to the set-theoretic property of dis-
jointedness.

Fixed Block Protocols

Suppose one constructs a N -partite probe-domain dis-
tribution Sd that is disjoint. This means that no two
probe-domains within the distribution share the same
channel,

Sd =

N⊔

j=1

sj , such that sj ∩ sk = ∅, ∀j, k. (9)

Here we employ ⊔ as the disjoint union operator which
implicitly asserts the pairwise disjointedness of all the
subsets in S. For example, the set {{1, 2}, {3, 4}} =
{1, 2}⊔{3, 4} implicitly satisfies disjointedness. However,
the set {{1, 2}, {2, 3}} = {1, 2} ∪ {2, 3} 6= {1, 2} ⊔ {2, 3}.
Again, we demand that all channels 1, . . . ,m are ac-
counted for in this distribution as in Eq. (6).
We may then choose an N -element set of (potentially

unique) multipartite probe states in accordance with this
disjoint structure {σsj

}Nj=1. Assuming M copies of each
sub-state, we can define a global probe state

σ⊗M
Sd

=

N⊗

j=1

σ⊗M
sj

. (10)
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In this way, each channel in the pattern is probed exactly
M times per total round of discrimination. Furthermore,
since all probe-domains are disjoint, there are no overlaps
between any multipartite states; each channel in the pat-
tern is always probed within the same probe-domain, and
thus the same collection of channels.
From an operational point of view, the disjointedness

of Sd and lack of probe-domain overlaps means that
each sub-state σ⊗M

sj
can interact simultaneously with the

multi-channel. As such, each probe state can be consid-
ered to be static (or fixed) over a sub-region of the chan-
nel pattern throughout the entire discrimination proto-
col. For this reason, we describe an unassisted protocol
using a disjoint probe-domain distribution as a fixed block

protocol, Bu
fix (see Fig. 1(a) for an example).

Fixed block protocols are very intuitive thanks to
their simple, static format. Indeed, classical block pro-
tocols can inherently be considered to be fixed proto-
cols, where separable collections of coherent states are
irradiated upon a channel pattern. Using our previ-
ous formalism and considering m-length channel pat-
terns, one may define a trivial probe-domain distribu-
tion Sd = {{1}, {2}, . . . , {m}} and a corresponding set of
single-mode coherent states {αj}mj=1 which produces the

global state σ⊗M
Sd

=
⊗m

j=1 α
⊗M
j . Larger probe-domains

invite the potential for entangled probe states over fixed
probe-domains, and can provide an easy route for poten-
tial quantum enhancements in many settings. In general,
the performance of fixed block protocols can always be
assessed through the average error probability by substi-
tuting σSd

into Eq. (2).

Dynamic Block Protocols

Departing the rigidity of disjoint probe-domain distri-
butions offers a fascinating route for quantum-enhanced,
unassisted protocols. While this path is less intu-
itive, it unveils a rich and flexible class of discrim-
ination protocols with rewarding features. Consider
now a non-disjoint, N -partite probe-domain distribution

Snd =
⋃N

j=1 sj , meaning that probe-domains are free to
overlap and share similar channel labels, i.e. the over-
lap of two probe-domains is no longer the empty set
sj ∩ sk 6= ∅. This renders a much larger, and more
general space of possible distributions. A global quan-
tum probe state σSnd

associated with such a distribution
is again found via Eq. (7), however its interpretation is
much less obvious. We begin by describing the physical
interpretation of a non-disjoint probe-domain distribu-
tion within a discrimination protocol.
Any non-disjoint discrete distribution Snd can be de-

composed into a sequence of r disjoint distributions,

Snd =
r⋃

k=1

Sk
d =

r⋃

k=1

⊔

s∈Sk
d

s, (11)

where Sk
d is a disjoint sub-collection of probe-domains in

(a) Disjoint Sd, (b) Non-Disjoint Snd.

Figure 1. Unassisted Block Protocols: (a) Disjoint vs. (b)
non-disjoint multipartite probe-domain distributions. In (a)
there are clearly no overlapping probe-domains, and it there-
fore generates a fixed block protocol. Contrarily, the over-
lapping probe-domains in (b) gives rise to a dynamic block
protocol.

accordance with Eq. (9). In this case, each Sk
d need not

contain all the channel labels, but all m channels must be
accounted for in the global distribution Snd. This allows
us to rewrite the global, single-copy probe state in a more
meaningful way

σSnd
=

r⊗

k=1

σSk
d

=

r⊗

k=1

ï

⊗

s∈Sk
d

σs

ò

. (12)

That is, it is the tensor product of r disjointly distributed
multipartite input states.
Therefore, the utilisation of a non-disjoint probe-

domain distribution corresponds to a block protocol with
r rounds of disjoint pattern interaction. At each round,
the user interacts with the channel pattern by irradiat-
ing unassisted multipartite states, and over the course of
r rounds the probe-domain distribution “moves” around
the channel pattern. For this reason, it can be intu-
itively called a dynamic block protocol, Bu

dy. Fig. 1(b)
depicts an m = 4 × 6 = 24 channel pattern which is be-
ing non-disjointly probed. The dynamic “movement” of
probe-domains throughout its r = 4 rounds of disjoint
pattern interaction is visualised in Fig. 2(a).
The number of disjoint rounds r required to construct

a dynamic protocol depends on the number of overlaps
that occur within the decomposition in Eq. (11). An
overlap simply refers to an instance of a channel label
that is contained in more than one probe-domain. We can
define the number of overlaps mov as the total number
of additional channel labels contained in the non-disjoint
distribution

mov :=
[ ∑

s∈Snd

|s|
]
−m. (13)

If there are many probe-domain overlaps then r may be
very large; if there are no overlaps, then r = 1 and we
return to a fixed protocol.
In order to fairly compare dynamic and fixed block

protocols, one must also be careful when distributing the
number of probe copies M ; a dynamic protocol with r
rounds of disjoint pattern interaction and M -copy input
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states will clearly use more than M total probe modes.
It is useful to define a new resource metric known as the
average channel use,

M̄ := movM/m, (14)

which describes average number of probe copies applied
per channel within a dynamic block protocol. When com-
paring the performance of fixed/dynamic block protocols,
we must ensure they have the same average channel use.

Dynamic/Fixed Block Protocol Transformation

Consider a dynamic block protocol which follows a
non-disjoint probe-domain distribution Snd. Now, any
channel Eij within the global pattern Ei may be probed as
part of several different multipartite domains. This more
general scenario requires a mathematical model that al-
lows us to quantitatively investigate the performance of
dynamic protocols.
To achieve this, we find a simple relationship between

dynamic and fixed block protocols, corresponding to an
appropriate transformation on a channel pattern image
space, U . When two probe-domains overlap, the over-
lapping channels are probed twice, but by independent
probe states. Therefore, we attribute a unique Hilbert
space to each independent probe mode and channel in
each disjoint round throughout the protocol, whilst re-
taining the characteristics of the original channels. This
can be done by considering a modified channel pattern
which has been concatenated with copies of the channels
that are overlapped.
Fig. 2 depicts how this pattern modification takes

place. Given that Snd contains mov overlapping chan-
nels, an originally m-length channel pattern i can be
mapped to a (m + mov)-length pattern, where the ad-
ditional copies of overlapping channels are concatenated
with the multi-channel. These copy channels directly
obey the behaviour of their originals. In this way, a dy-
namic protocol over m-length channel patterns can be
equivalently studied as a fixed block protocol over an ap-
propriately modified (m + mov)-length channel pattern
space.
Let us more precisely express this transformation. A

Snd dynamic protocol invokes the following transforma-
tion on a generic m-length channel pattern,

i = {i1, i2, . . . , im} 7→ νi :=
⋃

s∈Snd

{ik}k∈s. (15)

where νi is used to denote the extended channel pattern,
and is clearly a function of i and Snd. From a chan-
nel perspective, this transformation can be equivalently
portrayed as

Ei = Ei1 ⊗ . . .⊗ Eim 7→ Eνi
:=

⊗

s∈Snd

⊗

k∈s

Eik . (16)

By iterating this concatenation process over all patterns
in an image space {νi}i∈U , one can easily convert a dy-
namic protocol into a fixed representation. Furthermore,
it is expedient to write the global output states of these
protocols in this format, such that

σi 7→ σνi
:= Eνi

(σSnd
) . (17)

This transformation greatly simplifies the complication
of overlapping probe-domains, and allows for an inves-
tigation of error probabilities. By abstracting our set
of discriminatory POVMs to the modified image space
{Πνi

}i∈U , and using an M -copy global probe state, then
the average error probability of classification can be suc-
cinctly given by

perr(Bu
dy) =

∑

i 6=i′∈U
πiTr

[
Πν

i′
σ⊗M
νi

]
. (18)

Without explicit knowledge of these POVMs, we can sim-
ply utilise the fidelity bounds from Eqs. (51) and (52).
These fidelity-based bounds can be readily computed
thanks to this fixed protocol transformation, by iterating
over all unequal channel patterns in the modified image
space (see Methods for more details).
It is important to note that this transformation is only

useful when using generally entangled probe states. A
dynamic protocol using separable states can always be
reduced to a fixed protocol distributed over an m-length
channel pattern [57]. When we use potentially entangled
states, such a reduction is not possible, and the transfor-
mation above is necessary.

Correspondence with Error Correction

This dynamic to fixed block protocol mapping iden-
tifies a fascinating feature. In essence, a dynamic pro-
tocol invokes an encoding of quantum channel patterns,
wherein m-length patterns from some image space i ∈ U
are encoded into an extended counterpart {νi}i∈U . This
modified image space is a functional of the non-disjoint
probe-domain distribution Snd. Thus, we make the cru-
cial observation: Using entangled probe states, one can
design a dynamic block protocol which encodes a quan-
tum image space into a more distinguishable form.
Consider a single channel Eiov within a larger-channel

pattern, which happens to fall within the domain of two
entangled sub-states of a global probe, σSnd

= σs ⊗ σs′ .
Because of this, the probe states must be applied at dif-
ferent disjoint rounds in a dynamic protocol. In one
round, the probe state σs is being used to determine
the classification of all the channels Ei[s] = {Eik}k∈s. In
another round, the probe state σs′ is being used to clas-
sify the channels in the region Ei[s′] = {Eik}k∈s′ . Because
these probe sub-states are entangled over their domains,
then the distinguishability of their output states Ei[s](σs)
and Ei[s′](σs′) are correlated with the precise collection
of quantum channels in each region. Dependent upon the
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(a) Dynamic Block Protocol, (b) Fixed Representation.

7→
Original channel pattern i, Modified pattern νi.

Figure 2. Dynamic to Fixed Block Protocol Transformation: (a) Non-disjoint probe-domain distributions can be
decomposed into multiple rounds of disjoint pattern interaction, generating a dynamic discrimination protocol. This dynamic
protocol can be equivalently represented by a fixed block protocol on a modified image space. The original (6 × 4)-channel
pattern i is transformed into a (8 × 4)-pattern νi which has been appropriately modified in accordance with the non-disjoint
probe-domain distribution Snd using Eq. (15).

size of entangled probe domains and the physical setting
of discrimination, some collections of channels are easier
to discriminate than others.

We arrive at the key insight: Since Eiov is contained
in both probe-domains, we are able to gather two poten-
tially unique opinions on its classification; one from the
perspective of σs in the pattern region s, and another
from σs′ in its region s

′. On their own, these states
may not be very effective at discriminating the channel
Eiov , i.e. one of the output states may not be very dis-
tinguishable from from other potential output states in
that region. But by probing Eiov in conjunction with two
different probing domains, it is more likely that at least

one of the sub-regions will be a more distinguishable col-
lection of channels; thus providing a greater chance of
correct classification.

In this way, dynamic block protocols implicitly pos-
sess a form of error-correcting behaviour. By varying
the spatial probe-domain distributions throughout the
protocol, channels are probed from various perspectives,
correlated with different sub-regions of the channel pat-
tern. Poorly distinguishably channels in one sub-region
may be significantly more distinguishable when probed
within a different sub-region. Over the course of r dis-
joint rounds of pattern interaction, each entangled mul-
tipartite sub-state can help to correct errors that would
arise if only fixed probe-domains were used. Exploit-
ing this behaviour, dynamic protocols can indeed encode
channel patterns into more easily discriminated image
spaces.

This is a remarkable property of dynamic block proto-
cols, one that depends strongly on the choice of entan-
gled quantum probes and the quantum channel patterns.
For explicit examples of this behaviour, and the physi-
cal/mathematical intuition behind it, we point the reader
towards the Supplementary Notes.

Designing Unassisted Block Protocols

Given an m-length channel pattern discrimination
problem, there are clearly an enormous number of ways
in which one can design a (generally non-disjoint) probe-
domain distribution. Let us provide a diagrammatic ap-
proach to constructing these protocols. An m-length
channel pattern can be represented by an m-pixel grid.
This grid can then be covered by coloured probing re-
gions that describe the distribution of multipartite probe-
domains. The size and position of the coloured-probing
domains indicate the regions of a channel pattern that
are irradiated by a multipartite input state.
We also need to account for non-disjoint distributions,

in which channels may be accessed multiple times, and
shared between numerous probe-domains. To achieve
this we make use of connected coloured boxes; each con-
tinuous (unbroken) connecting line represents shared en-
tanglement between probes irradiated over the connected
channels. Dashed connective lines through channel boxes
indicate a lack of entanglement (used to bypass certain
channels). Examples are shown in Fig. (3) for (a) disjoint
and (b) non-disjoint distributions.

Unassisted Bosonic Quantum Pattern Recognition

Bosonic Gaussian Channel Patterns

We wish to corroborate the construction of these new
classes of unassisted discrimination protocols and demon-
strate their efficacy. To do so, we will focus on the dis-
crimination of bosonic Gaussian Phase Insensitive (GPI)
channels. This is a family of very important channels
within CV quantum communications, sensing and com-
putation [34], and can be used to model a vast array of
physically significant scenarios. Crucially, a GPI chan-
nel maintains the Gaussianity of its input state. Hence,
the transformation of a Gaussian state (with zero first
moments) through under the action of a GPI channel
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Disjoint Distribution Sd

1 2 3

6 5 4

7 8 9

= {1, 2, 5, 6} ⊔ {7, 8} ⊔ {3, 4, 9}.

(a)

(b)

Non-Disjoint Distribution Snd

1 2 3

6 5 4

7 8 9

= {1, 9}⋃8
i=1{i, i+ 1}

Figure 3. Diagrammatic Protocol Representation: (a)
Disjoint and (b) non-disjoint distributions of multipartite
probe-domains. The example in (b) is in fact the nearest-
neighbour configuration described in Eq. (23).

can be fully characterised using its covariance matrix V ,
assuming zero first moments (see Methods for the ex-
plicit transformations). The overall quantum channel
can be denoted as Eτ,ν and is defined with respect to
a transmissivity parameter 0 ≤ τ ≤ 1 describing attenu-
ation/amplification properties and an induced noise pa-
rameter ν ≥ 0. When τ = 1 and ν = 0 we regain the
identity channel.
Binary GPI channel patterns then consist of a sequence

of m GPI channels with unique target/background trans-
missivities τB , τT and noise properties νB , νT . Generally,
we may write the channel pattern

Ei = Eτi1 ,νi1
⊗ . . .⊗ Eτim ,νim

=

m⊗

j=1

Eτij ,νij
. (19)

Let us identify some essential GPI channels: Setting
τ = η, such that 0 < η < 1 and ν = (1− η)/2 then
we have the single parameter bosonic pure-loss channel
Eη. This describes the interaction of bosonic mode with
a zero-temperature bath. This is an essential channel
model for the description of optical fibres, and short-
range optical target detection known as quantum read-
ing. The multi-hypothesis setting of discrimination pure-
loss channel patterns has also be equated to the task of
optical imaging, pattern recognition and classical data-
readout from optical memories [25, 41]. Hence, the dis-
crimination of bosonic loss poses a key problem setting
for our work.
Alternatively, we may study thermal-loss (thermal-

amplifier) channels Eτ,ν such that the transmissivity sat-
isfies 0 < τ < 1 (τ > 1) and the induced thermal noise is
connected to the number of thermal photons in the chan-
nel environment Nenv, such that ν = (Nenv+

1
2 )|1−τ |. In

the idealised absence of loss, we have a Gaussian additive-
noise channel Eν , where the transmissivity satisfies τ = 1
but we have non-zero noise ν ≥ 0. The discrimination of
thermal multi-channels is known as environment locali-
sation, and has been used to model fascinating scenarios
within target detection and thermal pattern recognition

[42, 43]. In this work, we focus on the discrimination
of additive-noise binary channel patterns, since the per-
formance of this task will always be an upper bound for
multi-channels with non-trivial transmissivity.

Unassisted Bosonic Block Protocols

In order to devise fixed/dynamic unassisted block pro-
tocols for the discrimination of GPI channel patterns, we
must specify a class of multipartite probe state. Here, we
make use of the Gaussian analogue of the entangled GHZ
state known as a CV-GHZ state Φµ

m which is designed as
the extension of a TMSV state to many modes. This is
an m-mode, fully symmetric state that can be completely
characterised by its CM (with zero first moments) [58],

V µ
m =

á

µI Γ . . . Γ
Γ µI . . . Γ
...

. . .
. . .

...
Γ Γ . . . µI

ë

,
µ := NS + 1

2 ,

Γ := diag(c1, c2).
(20)

Here, µ denotes the energy (squeezing) of the state for
shot noise 1/2 and mean photon number (or signal en-
ergy) NS . In order to capture maximal correlations at
finite squeezing, we set the correlation parameters

c1 = −c2 = cmax :=
»

µ2 − 1/4/(m− 1). (21)

See the Methods section for more details on this state.
Hence, we may construct unassisted, global quantum
probe states from CV-GHZ sub-states. Given an arbi-
trary N -partite probe-domain distribution S, and assum-
ing that all sub-states are of the same energy µ, the global
M -copy input state is given by

σ⊗M
S = Φµ⊗M

S =

N⊗

j=1

Φµ⊗M
sj

, (22)

where Φµ
sj

is a single-copy CV-GHZ state irradiated over

the channels in the jth probe-domain sj .
As seen in Eq. (21), the magnitude of the correlations

held by CV-GHZ states cmax has a reciprocal depen-
dence on the number of modes m in the state. This
implies that the quantum correlations become “thinner”
as the number of modes increase, demanding more en-
ergy in order to maintain a high degree of entangle-
ment. It is therefore beneficial to consider probe-domain
distributions of shorter range CV-GHZ states in order
to make the best use of the enhanced distinguishability
that entanglement can provide. Motivated by this, we
can design specific probe-domain distributions that ex-
clusively use unassisted TMSV entangled states, rather
than wider-spread CV-GHZ states with weaker quantum
correlations, i.e. the probe-domain of each sub-state is
simply |sj | = 2, ∀j. By employing TMSV states in
conjunction with dynamic block protocols, we can com-
bine the enhanced distinguishability of entangled input
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states with the implicit error-correcting behaviour avail-
able through dynamic probing.
To systematically access both of these features, we

introduce a nearest-neighbour probe-domain distribu-
tion. This defines a non-disjoint probe-domain distri-
bution which probes neighbouring channels using two-
mode probe states (defining neighbouring channels on a
closed 1-dimensional lattice). The non-disjoint partition
set takes the form,

Snd = {1,m}
m−1⋃

i=1

{i, i+ 1}. (23)

For example, if m = 4, the probe-domain distribution
is simply Snd = {1, 2} ∪ {2, 3} ∪ {3, 4} ∪ {4, 1}. In this
way, each channel in the global pattern is probed exactly
twice per single round of a dynamic block protocol (the
average channel use is simply M̄ = 2M). Diagrammat-
ically, this distribution is illustrated in Fig. 3(b). The
nearest-neighbour protocol is conveniently designed, as
it allows us to develop non-disjoint probing structures in
a consistent way, and can be applied to channel patterns
of any size (for more detailed arguments and motivations
surrounding this protocol, see the Supplementary Notes).

Numerical Results

In this section, we collect numerical results to bench-
mark the performance of both fixed and dynamic unas-
sisted block protocols for the discrimination of bosonic
pure-loss channel patterns (quantum reading) and Gaus-
sian additive-noise channel patterns (environment local-
isation). We investigate a number of pattern recogni-
tion scenarios: CPF, k-CPF, and arbitrary binary pat-
tern classification (or barcode decoding). In each setting,
we consider the worst-case discrimination scenario such
that all patterns within an image space occur with a uni-
form probability, i.e. we consider the pattern probability
distribution

πi = |U|−1
, ∀i ∈ U . (24)

In all cases we employ unassisted CV-GHZ states
in accordance with various disjoint/non-disjoint probe-
domain distributions. The average error probability as-
sociated with these protocols can be accurately upper
and lower bounded using the fidelity bounds in Eqs. (51)
and (52) for which a variety of numerical and analytical
techniques can be used for arbitrary multipartite distri-
butions (see Methods for details on the numerical com-
putations).
These unassisted protocols can be compared to the

best known classical and quantum assisted protocols in
order to critically benchmark their efficacy (details can
be found in Methods). A sufficient condition for quan-
tum advantage occurs when the upper bound for the error
probability associated with a quantum enhanced protocol

pq,Uerr is less than a lower bound on the error probability as-
sociated with an optimal classical protocol pcl,Lerr . Hence,
we may qualify guaranteed quantum advantage when

∆perr = pcl,Lerr − pq,Uerr ≥ 0. (25)

We use this quantity ∆perr to identify when an unas-
sisted quantum protocol can certifiably obtain quantum
advantage over all classical protocols.

Discrimination of Bosonic Loss

This can be used to describe a basic imaging setting, in
which pixels are described by pure-loss channels of dif-
ferent transmissivity/reflectivity ηj for j ∈ {B, T}. As
explored in [41], Banchi et al. showed that major quan-
tum advantage can be obtained using an idler-assisted
approach. This advantage is particularly useful in a low
energy regime, where the number of probe copies required
to achieve high precision is dramatically reduced. Here
we report that quantum advantage can be similarly guar-
anteed using a range of unassisted protocols. Moreover,
it is possible to achieve unassisted performances compa-
rable with that of full idler-assistance via dynamic block
protocols.
Figs. 4 (a)-(c) depicts error upper and lower bounds

for the multi-channel discrimination of bosonic loss (up-
per bounds are plotted as dashed lines, lower bounds
are solid). We consider m = 9 binary channel pat-
terns such that background channel possess transmissiv-
ity ηB = 0.99, while target channels possess ηT = 0.97.
In each panel (a)-(c) we consider a different image space:
CPF, (k = 3)-CPF and barcode pattern recognition re-
spectively. Within each setting, we construct fixed and
dynamic unassisted block protocols using CV-GHZ sub-
states, each with mean photon energy NS = 20. The pre-
cise probe-domain distributions are identified diagram-
matically in the legend.
Fig. 4(a) shows results for CPF. While one can eventu-

ally confirm quantum advantage using a block protocol
with a single m = 9 mode CV-GHZ state (as studied
in Ref. [51]), this is only certifiably advantageous using
a very large average channel use, M̄ ≈ 3000, compared
to the idler-assisted protocol M̄ ≈ 30. Furthermore, for
the larger image spaces it quickly becomes too costly to
achieve guaranteed quantum advantage, such as for 3-
CPF and barcode discrimination. Instead, one may use
a dynamic protocol to achieve error rates on par with the
idler-assisted performance. Using the nearest-neighbour
dynamic protocol as per the probe-domain distribution in
Eq. (23), one may readily obtain guaranteed quantum ad-
vantage regardless of the image space. This dynamic pro-
tocol not only outperforms the optimal classical protocol,
but also quickly provides guaranteed advantage over the
best fixed unassisted block protocols also, achieving per-
formance on par with idler-assistance.
Fig. 5(a)-(c) displays the minimum guaranteed quan-

tum advantage ∆perr associated with the use of nearest-
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Figure 4. Discrimination of Bosonic Gaussian Channel Patterns: Classification error bounds for CPF/Pattern recog-
nition of m = 9 channel patterns of (a)-(c) Pure Loss Channels with parameters ηT , ηB = 0.97, 0.99 and (d)-(f) Additive Noise
Channels with parameters νT , νB = 0.01, 0.02, using probe states of mean photon energy NS = 20 and variable structures based
on CV-GHZ states (and optimal classical states). All solid lines are lower bounds and all dashed lines are upper bounds, based
on Eqs. (51) and (52) respectively. All input state structures are defined diagrammatically in the respective legends.

neighbour dynamic protocols. Here we plot the difference
between the quantum upper bound and the optimal clas-
sical lower bound for m = 9 channel pattern discrimina-
tion. This is carried out for ηT = 1, M̄ = 100, a variety of
signal energies NS , and background transmissivities ηB .
The difference in advantage achieved by the idler-assisted
protocol and the nearest-neighbour dynamic protocol is
too small to be displayed; emphasising that we can not
only achieve quantum advantage without idlers, but ef-
fectively match the performance of idler-assistance.

Environment Localisation

We now consider environment localisation. Here the
task is to classify channel patterns in which each channel
possesses background or target noise properties, νB/νT .
Note that we focus on additive noise channels as an ide-
alised scenario for thermal-loss/amplifier channels since
the inclusion of loss τ 6= 1 will only degrade the perfor-
mance of our unassisted protocols. It has recently been
proven that the ultimate error bounds for this pattern
recognition setting are non-adaptively achieved by idler-
assisted TMSV states [42, 43].

In Figs. 4(d)-(c) we report the performance of a num-
ber of different fixed/dynamic unassisted protocols for

the task of environment localisation. Again, we con-
sider m = 9 length channel patterns for a trio of image
spaces, CPF, (k = 3)-CPF and barcode pattern recogni-
tion. Each channel is characterised as an additive noise
channels with νB = 0.02 or νT = 0.01, and our probe
states again have mean photon number NS = 20. It
is immediately clear that unassisted, fixed block proto-
cols in this setting are ineffective, as shown by the very
poor lower bounds in these results. Without idlers, the
output distinguishability of disjointly distributed probe-
states is extremely poor, and degrades further with in-
creasing probe-domain size.

Remarkably, performance can be redeemed via dy-
namic protocols. By overlapping entangled probe-
domains over channel patterns, we increase the oppor-
tunity of interacting with distinguishable channel re-
gions. Indeed, the use of the nearest-neighbour dy-
namic protocol allows for guaranteed quantum advan-
tage to be obtained in a number of discrimination set-
tings where fixed protocols are unable to even match the
classical performance (see Supplementary Notes for more
nuanced insight to this result). Interestingly, alterna-
tive non-disjoint probe-domain distributions can be seen
to achieve quantum advantage also, in some cases out-
performing the nearest-neighbour protocol as shown in
Fig. 4(d). The question of identifying optimal dynamic
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(a) 1-CPF, M̄ = 100 (b) 3-CPF, M̄ = 100 (c) Barcode, M̄ = 200
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Figure 5. Guaranteed Quantum Advantage: as per Eq. (25), for 9-pixel (a),(d) CPF, (b),(e) 3-CPF, and (c),(f) full
image space (barcode) discrimination using the nearest-neighbour dynamic protocol compared with full idler-assistance. In
panels (a)-(c) the m = 9 pure-loss channels are considered, with target pixel transmissivity ηT = 1 and various background
transmissivities ηB , plotted against signal energy NS . Here the difference in advantage with the idler-assisted protocol is too
small to be plotted. Panels (d)-(f) study additive noise m = 9 channel patterns for target noise νT = 0.01 and various signal
energies, plotted against background noise νB .

protocols is thus highly non-trivial and very interesting.

Finally, Figs. 5(d)-(f) compare the guaranteed quan-
tum advantage ∆perr associated with idler assisted pro-
tocols with that of the nearest-neighbour dynamic pro-
tocol in this discrimination setting, for νT = 0.01 and a
variety of resource/environmental parameters. The most
significant guaranteed advantage is observed for 1-CPF,
as shown in both Fig. 4(d) and Fig. 5(d). While it
is clear that unassisted protocols are more sensitive to
noisy, thermal environments, quantum advantage is still
achievable without the use of idlers. These results em-
phasise the achievability of quantum-enhanced, idler-free
protocols for short-range environment localisation tasks.

DISCUSSION

We have formalised the construction of unassisted,
quantum enhanced discrimination protocols in a multi-
channel setting, using multipartite quantum states. We
identified two distinct classes of block protocols, fixed
and dynamic, which differ in how they distribute multi-
partite entanglement across channel patterns. The oper-

ational interpretations of these protocols were discussed,
along with their relationship with one another. Further-
more, we formulated a logical correspondence between
dynamic protocols and error correction; variable probe-
domains throughout discrimination help to correct errors
that fixed probe-domains cannot.

In order to explicitly study the efficacy of these pro-
tocols, we designed unassisted protocols for the discrimi-
nation of bosonic Gaussian channel patterns. These pro-
tocols were based based on the use of entangled, multi-
mode CV-GHZ states. Through analytical and numeri-
cal investigation, we showed that these unassisted proto-
cols can provide significant advantage over the optimal
classical strategies for the discrimination of both bosonic
loss and environmental noise. In some cases, idler-free
approaches can achieve performance on par with idler-
assistance.

These results strongly encourage the further investi-
gation of dynamic block protocols. Motivated by the
problem setting and chosen class of probe-states, we were
able to engineer high performance, quantum-enhanced
unassisted protocols. However, determining the optimal
unassisted protocol for specific multi-channel discrimi-
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nation tasks is now an open question. It is of interest
to explore more sophisticated versions of these protocols
based on the optimisation of probing configurations over
specific image spaces, and adaptive protocols that mod-
ify probe-domain distributions on the fly. Such studies
could reveal high performance, unassisted discrimination
strategies tailored to realistic applications.
Since this research was conducted in the CV picture

based on Gaussian entangled states, this makes it par-
ticularly relevant to near term quantum sensing appli-
cations. The exploration of alternative entangled probe
states is an immediate path of interest, as the employ-
ment of popular non-Gaussian entangled states could
provide further enhancements to these unassisted pro-
tocols. Furthermore, the translation of this research for
finite-dimensional channels is also an important topic,
in which similar unassisted protocols may display strong
quantum advantage.
Investigating the space of unassisted discrimination

protocols is of importance for near term quantum tech-
nologies. The insights and results of this work signifi-
cantly loosen the resource constraints on realisable quan-
tum technologies that rely on pattern recognition, em-
phasising that idler-assistance is not always a necessity.

METHODS

Channel Position Finding

The task of Channel Position Finding (CPF) describes
the multi-hypothesis discrimination task of locating a sin-
gle target channel ET hidden amongst an array of back-
ground channels EB . An m-channel CPF problem is as-
sociated with the image space UCPF which is the set of all
m-length multi-channels which contain exactly one tar-
get channel.
Let us define a function which constructs an m-length

channel pattern with one target channel in the xth posi-
tion of the set

em(x) = P1:x {T, B, . . . , B
︸ ︷︷ ︸

m−1 times

}. (26)

Here P1:x is a permutation operator that swaps the po-
sition of the first label T with the xth element in the
set. Then we can construct the CPF image space for
m-modes,

UCPF = em(1) ∪ . . . ∪ em(m) =

m⋃

x=1

em(x). (27)

For am-channel CPF problem, |UCPF| = m. For example,
if m = 3, then

UCPF = {{B,B, T}, {B, T,B}, {T,B,B}}. (28)

More generally, we may investigate k-CPF, where the
number of targets channel that occur within each chan-
nel pattern is precisely k < m, hidden amongst m − k

background channels. We denote this image space Uk
CPF

.
Let us define a more general function which generates
an m-length channel pattern with precisely k-target la-
bels in the positions indicated by the unique indices
x1, x2, . . . , xk,

ekm(x1, . . . , xk) = P1...k:x1...xk
{T, . . . , T
︸ ︷︷ ︸

k times

, B, . . . , B
︸ ︷︷ ︸

m−k times

}. (29)

Here, each permutation operator P1...k:x1...xk
swaps all of

the target channel labels from positions 1, . . . , k with the
channel labels at the positions x1, . . . , xk. Then we can
construct any k-CPF image space by iterating over all
unique permutations of the target channel labels,

Uk
CPF

=
⋃

1≤x1 6=x2 6=... 6=xk≤m

ekm(x1, . . . , xk). (30)

For an m-channel k-CPF problem, Uk
CPF

contains exact
Ck

m channel patterns, where Ck
m = m!/(k!(m− k)!) is the

binomial coefficient. For example, if m = 3, k = 2, then
the image space is

U2
CPF

= {{T, T,B}, {T,B, T}, {B, T, T}}. (31)

Clearly when k = 1 we regather the previous single CPF
image space.
Both CPF and k-CPF find a number of fundamental

settings within target-detection, quantum enhanced clas-
sical data-readout and environment localisation. They
provide a valuable platform for studying multi-channel
discrimination; if we can understand how to attain quan-
tum enhancements in the readily analysable CPF frame-
work, then we can learn to extract and apply these en-
hancements in more complex settings.

Bosonic Gaussian Channel Patterns

Under the action of a single-mode GPI quantum chan-
nel, an input Gaussian state described completely via its
covariance matrix (CM) Vin with zero first moments un-
dergoes the transformation

Vin → Vout = (
√
τI)V (

√
τI)T + νI, (32)

where I is a 2 × 2 identity matrix. The overall quan-
tum channel can be denoted as Eτ,ν and is defined with
respect to a transmissivity parameter 0 ≤ τ ≤ 1 describ-
ing attenuation/amplification properties and an induced
noise parameter ν ≥ 0.
Binary GPI channel patterns then consist of a sequence

ofm-GPI channels with unique target/background trans-
missivities τB , τT and noise properties νB , νT . Consider
now a m-mode Gaussian state with CM Vin and zero
first moments. Let the following be a matrix function of
a general variable x which depends on a position k in a
channel pattern i,

I[x]i := xi1I ⊕ . . .⊕ ximI =

m⊕

k=1

Å

xik 0
0 xik

ã

. (33)
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Then a multi-mode Gaussian state which is transformed
according to a GPI binary channel pattern ρ 7→ Ei(ρ) un-
dergoes the following transformation on its CM in phase
space

Vi = (I[
√
τ ]i)Vin(I[

√
τ ]i)

T + I[ν]i . (34)

Therefore, it is easy to study the CMs of multi-mode
Gaussian probe states interacting with GPI channel pat-
terns.

Bosonic CV-GHZ States

As discussed in Results, a CV-GHZ state Φµ
m can be

constructed as the extension of a TMSV state to many
modes. Indeed, such an m-mode state can be completely
characterised by its CM (with zero first moments) as
given in Eq. (20). Here we show why maximum correla-
tions are satisfied at c1 = −c2 = cmax. The symplectic
spectrum of the CV-GHZ state takes the form,

ν− =
»

(µ− c1)(µ− c2), (35)

ν+ =
»

(µ+ (m− 1)c1)(µ+ (m− 1)c2), (36)

such that ν+ is (m − 1)-degenerate. In order to cap-
ture maximal correlations (at finite squeezing), we use
the bona fide condition ν± ≥ 1

2 to state that

|c| ≤

»

µ2 − 1
4

m− 1
. (37)

Hence, this leads to the notion of maximal symmetric
correlations when the correlation parameters satisfy c1 =
−c2 = cmax = (m− 1)−1

√

µ2 − 1/4.
CV-GHZ states can then be readily used to construct

probe states in conjunction with a probe-domain dis-
tribution, where it can be used as a building block for
more general multipartite states. This construction can
be equivalently represented in phase space, where tensor
products over sub-states become direct sums over sub-
CMs. More precisely, given an N -partite probe-domain
distribution S (disjoint or non-disjoint) we can equiva-
lently express the global CV-GHZ input state Φµ

S via its
CM,

Φµ
S → V µ

S =

N⊕

j=1

V µ
sj
, (38)

where V µ
sj

is the CM of a |sj |-mode CV-GHZ state ir-
radiated over the modes contained in the probe-domain
sj .

Numerical Computation of Error Bounds

Consider two identical, m-mode CV-GHZ states V µ
m

which are used to probe two unique, m-length Gaussian

channel patterns, Ei and Ei′ . We can conveniently write
the output states from these interactions,

Φµ
i
= Ei(Φµ

m) → V µ
i
, (39)

Φµ
i′
= Ei′(Φµ

m) → V µ
i′
. (40)

Now consider the fidelity between these two output
states F (Φµ

i
,Φµ

i′
). Thanks to the Gaussianity of CV-

GHZ states and GPI multi-channels, the fidelity between
these states can be computed exactly using only their
phase space representations using the formulae from [59],

F (Φµ
i
,Φµ

i′
) = FG(V

µ
i
, V µ

i′
), (41)

where we denote FG as the Gaussian fidelity function.
In summary, we have a way to represent the input

probe states of unassisted block protocols, through V µ
S ;

the ability to describe output states by transforming
input states according to GPI multi-channels Ei as in
Eq. (34),

Φµ
S,i = Ei(Φµ

S) → V µ
S,i, (42)

and the means to compute the fidelity between any two
output states. Given these techniques, and a multi-
channel discrimination problem {πi; Ei}i∈U , we can read-
ily compute the fidelity-based error probability lower and
upper bounds,

perr ≥
1

2

∑

i 6=i′∈U
πiπi′F

2M
G

[
V µ
S,i, V

µ
S,i′ ,

]
, (43)

perr ≤
∑

i 6=i′∈U

√
πiπi′F

M
G

[
V µ
S,i, V

µ
S,i′ ,

]
. (44)

To study the error bounds of dynamic block protocols,
we need only invoke the dynamic/fixed protocol trans-
formation discussed in the Results section. In this way,
we modify the channel patterns according to the probe-
domain distribution i → νi. By computing the fidelity
between the outputs of CV-GHZ states irradiated over
the modified patterns

FG

[
V µ
S,νi

, V µ
S,ν

i′

]
, (45)

error bounds can be readily computed for dynamic block
protocols. The numerical methods presented here can
always be used for fixed or dynamic block protocols, and
more generally using any Gaussian input states.

Performance Benchmarks

Classical Performance

Here we collect expressions for the classical fideli-
ties using optimal coherent states for the multi-channel
discrimination settings explicitly studied in this work.
These can then be used to derive exact error-bounds,
and benchmark quantum advantage.
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The best classical protocol for discriminating a single
pure-loss channel is achieved by a block protocol using
coherent states. Indeed, the optimal (energy constrained)
M -copy, single-mode coherent state given by [41],

α⊗M
coh = |MNS〉〈MNS | , (46)

where NS is the mean photon number of the signal state.
If a single pure-loss channel possesses transmissivity ηB
or ηT , the fidelity between the two possible single-copy
output states is given by

F loss
cl = exp

ï

−NS

2
(ηB − ηT )

2

ò

. (47)

For m-length multi-channels, we simply use m single
mode coherent states to discriminate each channel in-
dependently.

For additive noise channels, τ = 1 and the task is to
discriminate between background/target noise νB , νT >
0. The optimal classical input state is just the m-copy
vacuum state |0〉⊗m

, since displacements or phase shifts
have no impact on the output states from the chan-
nel. The single probe copy fidelity between the potential
single-mode output states can be written as [43],

F add
cl =

1
√

(νT + 1)(ν + 1)−√
νT νB

. (48)

Using these fidelity expressions within the error proba-
bility bounds from Eqs. (51) and (52), we can provide
effective classical benchmarks for both multi-channel
discrimination settings.

Idler-Assisted Performance

We can similarly collect expressions for idler-assisted
block protocols in the context of bosonic pure-loss chan-
nel patterns and environment localisation.

For the discrimination of bosonic loss, one can employ
an idler-assisted protocol in which each channel is probed
with one mode from an M -copy TMSV state, Φµ, where
µ = NS + 1/2 is the level squeezing. Consider a sin-
gle pure-loss channel Ej which may have transmissivity
ηj ∈ {ηB , ηT }. While one mode interacts with the chan-
nel, the other mode is perfectly protected (in a quantum
memory for instance) and thus undergoes the action of
an identity channel. The output state is then simply the
finite-energy Choi state Φµ

Ej
= Ej ⊗ I(Φµ). The fidelity

between the output states Φµ
EB

and Φµ
ET

is [41]

F loss
idler =

1

1 +NS∆
, (49)

where ∆ = 1−
√

(1− ηB)(1− ηT )−
√
ηBηT . By ex-

tending this to m-channels using M -copy probes, we can
easily bound performance of the idler-assisted block pro-
tocol.
We can perform an identical analysis for environment

localisation by computing the fidelity between possible
output states of a pair of additive-noise channels with
target noise or background noise νB/νT . In this case,
it is convenient to utilise the parameter µ = NS + 1/2,
where the output fidelity reads [42]

F add
idler =

2µ
√
νT νB +

√

(2µνT + 1)(2µνB + 1)

2µ(νT + νB) + 1
. (50)

Once again extending these fidelities to consider m-
channels and using M -copy probes states, we can easily
bound the performance of idler-assisted block protocols.

Fidelity Properties of CV-GHZ States

In the most general pattern recognition settings, a nu-
merical approach is necessary. However, when using CV-
GHZ states (and especially when one focuses on TMSV
states) this numerical approach can be simplified via an-
alytical insights. This requires a much closer (and more
extensive) investigation of the fidelity properties of CV-
GHZ states which is beyond the scope of this paper, and
can be found in Ref. [60].
In the supplementary material we provide a flavour of

these insights, centring on the fidelity degeneracy proper-
ties of CV-GHZ states. We numerically convey how non-
disjoint probe-domain distributions can raise the degen-
eracy of fidelities throughout binary channel pattern im-
age spaces. We then analytically identify the root cause
of inferior error-bounds for fixed protocols compared to
dynamic protocols for the problem settings considered in
this work. In doing so, we provide greater insight to our
arguments in the main text.
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SUPPLEMENTARY NOTES

Fidelity Degeneracies of CV-GHZ States

Consider an arbitrary, N -element image space U =
{i1, i2, . . . , iN} which generate m-length quantum chan-
nel patterns, and the associated multi-channel ensemble
{πi; Ei}i∈U . Now, consider the use of an unassisted block
protocol using m-mode CV-GHZ states. As we know
from the main text, we can benchmark the performance
of this protocol via the the fidelity-based error probabil-
ity bounds [55, 56],

perr ≥
1

2

∑

i 6=i′∈U
πiπi′F

2M (Φµ
i
,Φµ

i′
), (51)

perr ≤
∑

i 6=i′∈U

√
πiπi′F

M (Φµ
i
,Φµ

i′
). (52)

While this can be achieved numerically, it can become
inefficient. The total number of ways that we can choose
unequal pairs of channel patterns is N(N − 1). This
means that in general, there exist N(N − 1) potentially
unique, non-unit fidelities that one needs to compute in
order to calculate the error bounds. For large pattern
spaces this can be enormous, making it difficult to an-
alytically keep track of all possible output fidelities, or
numerically perform these sums.
However, thanks to their symmetry, when using CV-

GHZ states as quantum probes the number of unique
fidelities that may occur is dramatically reduced. The
CV-GHZ state symmetry causes many of the unique
output fidelities within Eqs. (51) and (52) to be highly
degenerate. Indeed, fidelity degeneracy tells us that if
there are exactly gfid unique output fidelities, typically
gfid ≪ N(N − 1).
Let us be more precise: Consider a pair of image spaces

of m-length, binary channel patterns: one is the k-CPF
image space Uk

CPF, such that each pattern contains pre-
cisely k-target channels, and the other is a l-CPF im-
age space U l

CPF such that each pattern contains precisely
(l 6= k)-target channels. Take two identical m-mode CV-
GHZ states Φµ

m which interact with the multi-channels
Ei and Ei′ , resulting in two unique output states Φµ

i
and

Φµ
i′
. Now consider the fidelity,

F (Φµ
i
,Φµ

i′
), for i ∈ Uk

CPF, i
′ ∈ U l

CPF. (53)

We find that this fidelity is equivalent for all pairs of
channel patterns i, i′ which have the same Hamming dis-
tance. That is, for all

i ∈ Uk
CPF, i

′ ∈ U l
CPF, s.t Hamming(i, i′) = d > 0, (54)

the fidelity F (Φµ
i
,Φµ

i′
) is completely degenerate. For a

rigorous proof of this, please see [60]. Fidelity degenera-
cies are extremely useful, and can help to not only im-
prove numerical efficiency, but reveal analytical insights.

Numerical Insights

In Fig. 6 we have numerically investigated the fidelity
degeneracy properties of a number of different unas-
sisted dynamic/disjoint protocols for the discrimination
of pure-loss channel patterns. Here we observe two clear
points; CV-GHZ states lose distinguishability when we
widen their domain size as expected, due to weakening
quantum correlations (discussed in the main text). This
can be seen by comparing the output fidelity spectrum of
the m = 10 mode CV-GHZ probe state (green) compared
to the other probe-domain distributions.
Furthermore, non-disjoint probe domain distributions

are able to “spread out” the degeneracies involved with
disjoint probing protocols. In Fig. 6, we compare a fixed
block protocol using a disjoint, exclusively two-mode dis-
tribution of probe domains (orange). We then use a dy-
namic nearest neighbour protocol with the exact same
number of probe modes (blue). While the output fidelity
distributions possess a similar spread in values, the vari-
ation in probe-domains raises many of the degenerate
fidelities. In doing so, it flattens the overall distribution,
and gives rise to more distinguishable output fidelities.

Fidelity Degeneracies of TMSV states

We will now focus on the case of using m = 2 CV-
GHZ states, i.e. TMSV states. As discussed in the main
text, these states maximise their entanglement content
with respect to input energy, since quantum correlations
do not need to be spread across many modes. Further-
more, they offer the simplest test case for analytically
investigating fidelity degeneracies. This will help to un-
veil concrete reasons for the discrepancy between fixed
and dynamic protocols.
We wish to identify all the possible, unique output

fidelities associated with TMSV states irradiated over
m = 2 length binary channel patterns. We can sum-
marise this image space easily as it is very small,

U2 = {{B,B}, {B, T}, {T,B}, {T, T}}. (55)

Thanks to the fidelity degeneracy properties discussed
in the previous section it turns out that there are only
four unique sub-fidelities that can occur when one irradi-
ates two-mode binary channel patterns with unassisted
TMSV states. Here, we define a sub-fidelity as a sin-
gle output fidelity that occurs between specific pairs of
channel patterns. These sub-fidelities are completely de-
termined by the number of the target channels, k and
l, contained within the considered channel pair, i and i

′
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Figure 6. Histograms of fidelity degeneracies for unequal
m = 10 pure-loss channel patterns over the complete image
space of binary channel patterns U10, for a selection of probe-
domain distributions: m-mode CV-GHZ state (green), dis-
jointly distributed TMSV states (orange) and nearest neigh-
bour distributed TMSV states (blue). The fixed block proto-
cols are using M = 2 probe-copies, while the dynamic nearest
neighbour protocol is using M = 1 copies. In this way, the
average channel use of all the protocols is the same, M̄ = 2.

respectively. Hence we will denote each sub-fidelity in
the form Fk:l where k (l) indicates the number of target
channels in the channel pattern i (i′). Doing so, we can
write all the unique, two-mode sub-fidelities

F0:1(µ), when i = {B,B}, i′ ∈ {{T,B}, {B, T}},
F0:2(µ), when i = {B,B}, i′ = {T, T},
F1:1(µ), when i = {B, T}, i′ = {T,B},
F1:2(µ), when i = {T, T}, i′ ∈ {{T,B}, {B, T}}.

(56)

The Bures fidelity is a symmetric function, therefore the
order of i and i

′ is irrelevant.

These are the only fidelities that can occur when using
TMSV states over pairs of m = 2 length channel pat-
terns. Furthermore, the fidelity is multiplicative, mean-
ing that

F (ρ⊗ ρ′, σ ⊗ σ′) = F (ρ, σ) · F (ρ′, σ′). (57)

Hence, when using collections of exclusively two-mode
states following some probe-domain distribution (such
as in the nearest neighbour protocol), then all of their
unique output fidelities will always be a specific prod-
uct of these sub-fidelities in Eq. (56). Hence, these sub-
fidelities can be used to completely characterise any unas-
sisted discrimination protocol using exclusively TMSV
states (see Ref. [60] for more details).

(a) Additive Noise, (b) Pure Loss.
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Figure 7. Two mode sub-fidelity behaviour with respect to
increasing signal energy NS for unassisted, single-copy TMSV
states interacting with m = 2 length channel patterns for (a)
additive noise channels νT , νB = 0.01, 0.02 and (b) pure-loss
channels ηT , ηB = 0.97, 0.99.

Correspondence with Error Correction

While this may seem like an unnecessary level of de-
tail, the investigation of these sub-fidelities helps to re-
veal critical features of dynamic block protocols.
Each of the sub-fidelities in Eq. (56) is a unique func-

tion that can be analytically characterised via the Gaus-
sian fidelity formulae from [59]. They each possess a
unique behaviour dependent upon the multi-channel dis-
crimination setting that we are considering. If one of the
sub-fidelities is typically very large, this means that the
specific pair of channel patterns that is refers to are very
difficult to discriminate. If a sub-fidelity is very small,
then the pair of channels it refers to are very easy to
discriminate. For example, if F0:2 ≫ F1:1 in a particular
problem setting, then it is much easier to discriminate the
patterns {B, T} from {T,B}, rather than {B,B} from
{T, T}.
Most importantly, when utilising unassisted discrim-

ination protocols, there is an inconsistency of distin-

guishability between different collections of quantum
channels. This inconsistency leads to the corrective be-
haviour that dynamic protocols can provide. We will con-
vey this inconsistency by considering the settings studied
in the main text.

Additive-Noise Channels

Let us take the example of environment localisation for
m = 2 length binary channel patterns of additive-noise
channels with target noise νT and background noise νB .
When we look closely at the sub-fidelities concerned with
this setting, we notice a glaring inconsistency. Three of
these sub-fidelities (F0:1, F0:2 and F1:2) all assume their
minimum in the limit of infinite squeezing,

min Fk:l(µ) = lim
µ→∞

Fk:l(µ). (58)

That is, by increasing the energy of our input states, we
can expect to improve the discrimination of the appropri-
ate pairs of channel patterns. This sub-fidelity behaviour



17

is displayed in Fig. 7(a).
However, this is not the case for the sub-fidelity

F1:1(µ), which is concerned with the discrimination of
the pattern {B, T} from {T,B} (and vice versa). This
sub-fidelity explicitly takes the form

F1:1(µ) =
1

θ −
√

ξ−ξ+
, (59)

where we define the quantities

θ = 2νBνT + 1 + 2µ(νB + νT ), (60)

ξ± = θ − 1± (νB − νT ). (61)

In the limit of infinite squeezing, we find that

lim
µ→∞

F1:1(µ) = 1, (62)

meaning that in the limit of infinite probe state energy,
the pair of channel patterns {B, T} and {T,B} become
completely indistinguishable. Clearly, this will have a
hugely detrimental effect on discrimination performance
which cannot be remedied by increasing the input probe
energy.

Pure-Loss Channels

A similar effect can be observed within pure-loss chan-
nel patterns. Let us consider the case of probing m = 2
length binary channel patterns such that each channel is
a pure-loss channel with either a target transmissivity ηT
or background transmissivity ηB . Now, we find that the
two mode sub-fidelities F0:1, F1:1, and F1:2 tend to zero
in the limit of infinite squeezing,

min Fk:l(µ) = lim
µ→∞

Fk:l(µ) = 0. (63)

This means that in the limit of infinite energy and max-
imum entanglement, the channel pairs that characterise
each of these sub-fidelities become perfectly distinguish-
able.

However, we may focus on the quantity F0:2(µ) which
defines the distinguishability of the patterns {B,B},
{T, T}. This sub-fidelity takes a relatively compact form
given by,

F0:2(NS) =
2NS

√
κ1 +

√
κ2

1−NS(ηB + ηT − 2)(ηT + ηB)
. (64)

where we use µ = NS + 1/2 as in the main text, and we
define the quantities

κ1 = ηBηT (ηT − 1)(ηB − 1), (65)

κ2 = 1−NS(ηB + ηT − 2)(ηB + ηT )− 4N2
Sκ1. (66)

In the limit of infinite squeezing, this sub-fidelity F0:2

instead finds the finite quantity

lim
µ→∞

F0:2 = 4

 

ηBηT (ηB − 1)(ηT − 1)

(ηB + ηT − 2)2(ηB + ηT )2
, (67)

which is non-zero when either ηj 6= 1. Therefore, even
when using infinitely squeezed input states, the patterns
i = {B,B} and i

′ = {T, T} are not perfectly distinguish-
able via unassisted input states. The behaviour of these
sub-fidelities are displayed in Fig. 7(b).

Analytical Insight

It is now clear why dynamic protocols are so effective
at redeeming the performance of these multi-channel dis-
crimination tasks. When using unassisted, multipartite
entangled probe states, the distinguishability of the out-
put states can vary considerably, dependent upon the
collection of quantum channels that they interact with.
By overlapping probe-domains, channels can be probed
in conjunction with different collections of channels in the
pattern. In doing so, we are increasing the likelihood of
probing a more a distinguishable collection. These more
distinguishable channel regions are then able to correct

the errors invoked by probes interacting with poorer re-
gions.

Example

As an example, let us take the discrimination of Gaus-
sian additive-noise channels with TMSV states according
to some probe-domain distribution. Consider an m = 4
length channel pattern,

i = {i1, i2, i3, i4} = {B, T, T,B}, (68)

that we wish to discriminate. Here, we first consider a
fixed block protocol that follows the probe-domain dis-
tribution Sd = {{1, 2}, {3, 4}}. As a result of this distri-
bution, we will possess the following TMSV states which
irradiate specific channel sub-patterns,

Φµ

{1,2} irradiates {i1, i2} = {B, T},
Φµ

{3,4} irradiates {i3, i4} = {T,B}.
(69)

As discussed earlier in this section, the sub-fidelity F1:1

is very poor, meaning that the sub-patterns {B, T} and
{T,B} are very difficult to distinguish from one another.
Therefore, if we irradiate a sub-pattern {B, T} or {T,B}
directly with a TMSV state, our overall discrimination
ability will be very ineffective, as we will struggle to de-
termine which is the true pattern. It is highly desirable to
avoid instances of this kind of pattern interaction, but ob-
viously we cannot know prior to interaction where these
pairs of channel patterns arise (this would defeat the pur-
pose of discrimination). The embodies a critical weak-
ness of fixed block protocols. If we unwittingly choose a
probe-domain distribution which irradiates input states
over poorly distinguishable collections of patterns, the
ability to discriminate the overall channel pattern will be
compromised.
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We now see why varying the probe-domains is so effec-
tive. Consider now a non-disjoint probe-domain distribu-
tion, Snd = {{1, 2}, {2, 3}, {3, 4}, {1, 4}} (this is in fact
the nearest neighbour protocols discussed in the main
text). Consider the same m = 4 length channel pattern,
i = {B, T, T,B}. As a result of this distribution, we will
possess the following TMSV states which irradiate the
specific channel sub-patterns,

Φµ

{1,2} irradiates {i1, i2} = {B, T},
Φµ

{2,3} irradiates {i2, i3} = {T, T},
Φµ

{3,4} irradiates {i3, i4} = {T,B},
Φµ

{1,4} irradiates {i1, i4} = {B,B}.

(70)

While we are still unfortunately irradiating the poorly
distinguishable collections of channels {i1, i2} = {B, T}
and {i1, i2} = {T,B} with two of our input probes,
we now also apply probe states to the sub-patterns
{i2, i3} = {T, T} and {i1, i4} = {B,B}. These collec-
tions of channels are much more distinguishable, and
invoke the stronger sub-fidelities F0:1, F0:2, and F1:2.
Hence, by varying our probe domains we are able to
gather different, more distinguishable “opinions” of re-
gions of the channel pattern. The stronger distinguisha-
bility of the regions {i2, i3} and {i1, i4} can help to cor-
rect the contribution of the poorly distinguishable chan-
nel collections.
It is important to note that this improved performance

is not connected to an increased number of probe modes.
Recall from the main text that we can fairly compare dy-
namic/fixed block protocols with the same average chan-
nel use M̄ . With equivalent resources, the dynamic pro-
tocol will outperform the fixed version thanks to its vari-
able probe-domains.


	Idler-Free Multi-Channel Discrimination via Multipartite Probe States
	Abstract
	 Introduction
	 Results
	 Quantum Pattern Recognition
	 General Unassisted Block Protocol
	 Fixed Block Protocols
	 Dynamic Block Protocols
	 Dynamic/Fixed Block Protocol Transformation
	 Correspondence with Error Correction

	 Designing Unassisted Block Protocols
	 Unassisted Bosonic Quantum Pattern Recognition
	 Bosonic Gaussian Channel Patterns
	 Unassisted Bosonic Block Protocols

	 Numerical Results
	 Discrimination of Bosonic Loss
	 Environment Localisation


	 Discussion
	 Methods
	 Channel Position Finding
	 Bosonic Gaussian Channel Patterns
	 Bosonic CV-GHZ States
	 Numerical Computation of Error Bounds
	 Performance Benchmarks
	 Classical Performance
	 Idler-Assisted Performance

	 Fidelity Properties of CV-GHZ States

	 Acknowledgments
	 References
	 Supplementary Notes
	 Fidelity Degeneracies of CV-GHZ States
	 Numerical Insights

	 Fidelity Degeneracies of TMSV states
	 Correspondence with Error Correction
	 Additive-Noise Channels
	 Pure-Loss Channels

	 Analytical Insight
	 Example




