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Abstract 8 

This work proposes a new fault detection algorithm for photovoltaic (PV) systems based on artificial neural 9 

networks (ANN) and fuzzy logic system interface. There are few instances of machine learning techniques 10 

deployed in fault detection algorithms in PV systems, therefore, the main focus of this paper is to create a 11 

system capable to detect possible faults in PV systems using radial basis function (RBF) ANN network and 12 

both Mamdani, Sugeno fuzzy logic systems interface.  13 

The obtained results indicate that the fault detection algorithm can detect and locate accurately different 14 

types of faults such as, faulty PV module, two faulty PV modules and partial shading conditions affecting 15 

the PV system. In order to achieve high rate of detection accuracy, four various ANN networks have been 16 

tested. The maximum detection accuracy is equal to 92.1%. Furthermore, both examined fuzzy logic 17 

systems show approximately the same output during the experiments. However, there are slightly difference 18 

in developing each type of the fuzzy systems such as the output membership functions and the rules applied 19 

for detecting the type of the fault occurring in the PV plant. 20 

Keywords: Photovoltaic System, Photovoltaic Faults, Fault Detection, ANN Networks, Fuzzy Logic 21 

Systems 22 

 

1. INTRODUCTION 23 

The monitoring and regular performance supervision on the functioning of grid-connected photovoltaic 24 

(GCPV) systems is necessary to ensure an optimal energy harvesting and reliable power production. The 25 

development of diagnostic methods for fault detection in the PV systems behaviour is particularly important 26 

due to the expansion degree of GCPV systems nowadays and the need to optimize their reliability and 27 

performance. 28 

There are existing techniques which were developed for possible fault detection in grid-connected PV 29 

systems. Some of these techniques use meteorological and satellite data for predicting the faults in the 30 

GCPV plants [1 & 2]. However, some of the PV fault detecting algorithms do not require any climate data 31 

(solar irradiance and module temperature) such as the earth capacitance measurements established by Taka-32 

Shima [3]. 33 

Other PV fault detection algorithms is based on the comparison of simulated and measured yield by 34 

analysing the losses of the DC side of the GCPV plant [4-6]. Furthermore, a fault detection method based 35 

on the ratio of DC side and the AC side of the PV system is proposed by W. Chine et al [7]. The method 36 

can detect five different faults such as faulty modules in a PV string, faulty DC/AC inverter and faulty 37 

maximum power point tracking (MPPT) units. On the other hand, S. Silvestre et al [8] proposed a new 38 

procedure for fault detection in GCPV systems based on the evaluation of the current and the voltage 39 
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indicators. The main advantage of this algorithm is to reduce the number of monitoring sensors in the PV 40 

plants and integrating a fault detection algorithm into an inverter without using simulation software or 41 

additional external hardware devices. 42 

Further fault detection algorithms focus on faults occurring in the AC-side of GCPV systems, as proposed 43 

by M. Dhimish et al [9]. The approach uses mathematical analysis technique for identifying faulty 44 

conditions in the DC/AC inverter units. Moreover, hot-spot detection in PV substrings using the AC 45 

parameters characterization was developed by [10]. The hot-spot detection method can be further used and 46 

integrated with DC/DC power converters that operates at the subpanel level. A comprehensive review of 47 

the faults, trends and challenges of the grid-connected PV systems is shown in [11-13]. 48 

Other PV fault detection approaches use statistical analysis techniques for identifying micro cracks and 49 

their impact of the PV output power as presented by [14]. However, T. Zhao at al [15] developed a decision 50 

tree (DT) technique for examining two different types of fault using an over-current protection device 51 

(OVPD). The first type of fault is the line-to-line that occurs under low irradiance conditions, and the second 52 

is line-to-line faults occurring in PV arrays equipped with blocking diodes. 53 

PV systems reliability improvement by real-time field programmable gate array (FPGA) based on switch 54 

failures diagnosis and fault tolerant DC-DC converters is presented by [16]. B. Chong [17] suggested a 55 

controller design for integrated PV converter modules under partial shading conditions. The developed 56 

approach is based on a novel model-based, two-loop control scheme for a particular MIPC system, where 57 

bidirectional Cuk DC-DC converters are used as the bypass converters and a terminal Cuk boost functioning 58 

as a while system power conditioner. 59 

Nowadays, fuzzy logic systems widely used with GCPV plants. R. Boukenoui et al [18] proposed a new 60 

intelligent MPPT method for standalone PV system operating under fast transient variations based on fuzzy 61 

logic controller (FLC) with scanning and storing algorithm. Furthermore, [19] presents an adaptive FLC 62 

design technique for PV inverters using differential search algorithm.  Furthermore, N. Sa-ngawong & I. 63 

Ngamroo [20] proposed an intelligent PV farms for robust frequency stabilization in multi-area 64 

interconnected power systems using Sugeno fuzzy logic control, similar approach was developed by [21] 65 

for power optimization in standalone PV systems.  66 

In [22 & 23] authors have used a Mamdani fuzzy logic classification system which consists of two inputs, 67 

the voltage and power ratio, and one output membership function. The results can accurately detect several 68 

faults in the PV system such as partial shading and short circuited PV modules.  69 

Artificial intelligent networks (ANN) is another machine leaning technique nowadays is used for detecting 70 

faults in PV systems. A learning method based on expert systems is developed by [24] to identify two types 71 

of fault (due to the shading effect and to the inverter’s failure). Whereas [25] proposed an ANN network 72 

that detects faults in the DC side of PV systems which includes faulty bypass diodes and faulty PV modules 73 

in a PV string. 74 

A. Millit et al [26] shows that ANN networks is a possible solution for modelling and estimating the output 75 

power of a GCPV systems. However, a failure mode prediction and energy harvesting of PV plants to assist 76 

dynamic maintenance tasks using ANN based models is proposed by F. Polo et al [27]. Further investigation 77 

on a very short term load forecasting for a distribution system with high PV penetration is suggested by S. 78 

Sepasi [28]. Finally, B. Amrouche & X. Pivert [30] offered an ANN network based daily local forecasting 79 

for global solar radiation (GHI). The ANN model is developed to predict the local GHI based on a daily 80 

weather forecast provided by the US National Oceanic and Atmospheric Administration (NOAA) for four 81 

neighbouring locations. 82 
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The main contribution of this work is to present a new algorithm for isolation and identification of the faults 83 

accruing in a PV system. The algorithm is capable to detect several faults such as faulty PV module in a 84 

PV string, faulty PV string, faulty MPPT, and partial shading conditions effects the PV system. The 85 

proposed algorithm is comparing between two different approaches for detecting failure conditions which 86 

can be described as the following: 87 

1. Artificial Neural Network (ANN) Approach:  88 

Four different ANN networks have been compared using a logged data of several faulty conditions 89 

affecting the examined PV plant. The maximum PV fault detection accuracy achieved by the ANN 90 

networks is equal to 92.1%. 91 

 92 

2. Fuzzy Logic Fault Classification Approach: 93 

This approach consists of two types of fuzzy logic interface systems: Mamdani and Sugeno. Both 94 

fuzzy interface systems were briefly compared and developed using MATLAB/Simulink software. 95 

This approach was tested using a faulty PV data which was logged from the examined 1.1 kWp PV 96 

plant installed at the University of Huddersfield.  97 

The overall system design is shown in Fig. 1. The PV plant has a capacity of 1.1 kWp. A computer interface 98 

has two options, a PV fault detection algorithms which use MATLAB/Simulink software which contains 99 

the ANN and the fuzzy logic interface system. Furthermore, LabVIEW software is used for the real-time 100 

long-term data monitoring as well as, data logging software environment. 101 

This paper is organized as follows: Section 2 presents the data acquisition in the PV plant. Section 3 102 

describes the methodology used, Fault detection algorithm and diagnosis rules are presented, while section 103 

4 lists the results and discussion of the work. Finally, section 5 describes the conclusion and future work. 104 

 

 

 

Fig. 1.  Overall System Architecture Design for the Examined PV Plant 
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2. Faults in Photovoltaic Plants 105 

The faults occurring in a PV system are mainly related to the PV array, MPPT units, DC/AC inverters, the 106 

storage system and the electrical grid. This work aims to detecting the faults occurring in the PV array and, 107 

with reference to Table 1, eleven different fault are investigated.  108 

It is worthy to mention that PS conditions used in this work corresponds to an irradiance level affects all 109 

examined PV modules. Thus, during the experiments, all examined PV modules were tested under the same 110 

PS conditions with different shading percentages (20%, 30%, etc.). 111 

3. METHODOLOGY 112 

This section reports the PV data acquisition system, PV theoretical modelling, the overall fault detection 113 

algorithm, and the detailed design of the proposed artificial neural network and the fuzzy logic interface 114 

system. 115 

3.1 PV Plant and data Acquisition 116 

The PV system used in this work consists of a grid-connected PV plant comprising 5 polycrystalline silicon 117 

PV modules each with a nominal power of 220 Wp. The photovoltaic modules are connected in series. The 118 

photovoltaic string is connected to a Maximum Power Point Tracker (MPPT) with an output efficiency of 119 

not less than 95.0% [31 & 32]. The DC current and voltage are measured using the internal sensors which 120 

are part of the Flexmax MPPT unit.  121 

A Vantage Pro monitoring unit is used to receive the Global solar irradiance measured by the Davis weather 122 

station which includes a pyranometer. A Hub 4 communication manager is used to facilitate acquisition of 123 

modules’ temperature using the Davis external temperature sensor, and the electrical data for each 124 

photovoltaic string. VI LabVIEW software is used to implement data logging and monitoring functions of 125 

the PV system.  Fig. 2 illustrates the overall system architecture of the PV plant.  126 

The real-time measurements are taken by averaging 60 samples, gathered at a rate of 1 Hz over a period of 127 

one minute. Therefore, the obtained results for power, voltage and current are calculated at one minute 128 

intervals. 129 

The SMT6 (60) P solar module manufactured by Romag, has been used in this work. The electrical 130 

characteristics of the solar module are shown in Table 2. The standard test condition (STC) for these solar 131 

panels are: solar irradiance = 1000 W/m2, module temperature = 25 °C 132 

 

TABLE 1 

DIFFERENT TYPE OF FAULTS OCCURRING IN THE EXAMINED PV PLANT 

Type of Fault Symbol 

Normal Operation and PS effects the PV system F1 

One faulty PV module F2 

Two faulty PV modules F3 

Three faulty PV modules F4 

Four faulty PV modules F5 

One faulty PV module and PS effects the PV system F6 

Two faulty PV modules and PS effects the PV system F7 

Three faulty PV modules and PS effects the PV system F8 

Four faulty PV modules and PS effects the PV system F9 

Faulty PV String F10 

Faulty MPPT unit F11 
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3.2.  Photovoltaic Theoretical Modelling 133 

The DC side of the PV system is modelled using the 5-parameter model. The voltage and current 134 

characteristics of the PV module can be obtained using the single diode model [29] as follows: 135 

                                                       𝐼 =  𝐼𝑝ℎ −  𝐼𝑜 (𝑒𝑉+𝐼𝑅𝑠𝑁𝑠𝑉𝑡  − 1) − (𝑉+𝐼𝑅𝑠𝑅𝑠ℎ )                                       (1) 136 

TABLE 2 

ELECTRICAL CHARACTERISTICS OF SMT6 (60) P PV MODULE 

Solar Panel Electrical Characteristics Value 

Peak Power 220 W 

Voltage at maximum power point (Vmp) 28.7 V 

Current at maximum power point (Imp) 7.67 A 

Open Circuit Voltage (VOC) 36.74 V 

Short Circuit Current (Isc) 8.24 A 

Number of cells connected in series 60 

Number of cells connected in parallel 1 

Rs , Rsh 0.53 Ohms , 1890 Ohms 

dark saturation current (Io) 2.8 × 10-10 A 

Ideal diode factor (A) 1.5 

Boltzmann’s constant (K) 1.3806 × 10-23 J.K-1 

 

 

 

 

Fig. 2.  Examined PV System Installed at the Huddersfield University, United Kingdom 
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where 𝐼𝑝ℎ is the photo-generated current at STC , 𝐼0  is the dark saturation current at STC, 𝑅𝑠  is the module 137 

series resistance, 𝑅𝑠ℎ  is the panel parallel resistance, 𝑁𝑠 is the number of series cells in the PV module and 138 𝑉𝑡  is the thermal voltage and it can be defined based on: 139 

                                                                             𝑉𝑡 =  𝐴 𝐾 𝑇𝑞                              (2) 140 

where 𝐴 the ideal diode factor, 𝑘 is Boltzmann’s constant and 𝑞 is the charge of the electron. 141 

The five parameter model is determined by solving the transcendental equation (1) using Newton-Raphson 142 

algorithm [30] based only on the datasheet of the available parameters for the examined PV module that 143 

was used in this work as shown in Table 1. The power produced by the PV module in watts can be easily 144 

calculated along with the current (I) and voltage (V) that is generated by equation (1), therefore: 145 

                                                                           Ptheoretical = I ×V                          (3) 146 

The Current-Voltage (I-V) and Power-Voltage (P-V) curves of the examined PV module is shown in Fig. 147 

3(A) and Fig. 3(B) respectively. Three different simulation results is explained at 1000, 500, and 100 W/m2. 148 

However, the simulation temperature remains at STC (25 °C). 149 

The purpose of using the analysis for the I-V and P-V curves, is to generate the expected output power of 150 

the examined PV module, therefore, it can be used to predict the error between the real-time long-term PV 151 

measured data and the theoretical power and voltage performance. 152 

 
(A) 

 
(B) 

 

Fig. 3.  Photovoltaic Theoretical Curves Modelling. (A) I-V Curve. (B) P-V Curve 
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3.3 Overall PV Fault Detection Algorithm 153 

In order to determine the type of a fault occurred in our PV plant, two ratios have been identified. Power 154 

ratio (PR) and voltage ratio (VR) have been used to categorise the region of the fault because both ratios 155 

have the following features:  156 

1) Both ratios are changeable during faulty conditions in the PV system 157 

2) When the power ratio is equal to zero, the voltage ratio can still have a value regarding the voltage 158 

open circuit of the PV modules 159 

The power and voltage ratios are given by the following expressions: 160 

                                                                              PR =  PtheoreticalPmeasured                                           (4) 161 

           162                                                                                      VR =  VtheoreticalVmeasured                                  (5) 163 

 164 

where 𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 is the theoretical output power generated by the PV system, 𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured 165 

output power from PV string, 𝑉𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  is the theoretical output voltage generated by the PV system and 166 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the measured output DC voltage from PV string. 167 

Since the internal sensors of the MPPT have a conversion error rate of 95% as shown in Fig. 2, the power 168 

ratios are calculated at 5% error tolerance of the theoretical power which presents the maximum error 169 

condition for the examined PV system. Therefore, the maximum and minimum power and voltage ratios 170 

are expressed by the following formulas which contains the tolerance rate of the MPPT units and the total 171 

number of PV modules in the PV string: 172 

                                                                      PR min =  PtheoreticalPmeasured                                                                      (6) 173 

 174 

                                                                     PR max =  Ptheoretical Pmeasured × MPPT Tolerance Rate                                                     (7) 175 

                                                                                          VR min =  VtheoreticalVmeasured                                                  (8) 176 

 177                                                                                VR max =  VtheoreticalVmeasured  × MPPT Tolerance Rate                                             (9) 178 

 179 

The normal operation mode region of the examined PV plant at STC is shown in Fig. 4 case1, the values 180 

of the PR can be calculated using (6 & 7) as the following: 181 Normal Operation Mode −  PR min =  PtheoreticalPmeasured =  11001100 = 1 182 

 183 Normal Operation Mode −  PR max =  Ptheoretical Pmeasured  ×  MPPT Tolerance Rate =  11001100 × 95% = 1.053 184 

 185 

As can be noticed from Fig. 4 case 2, the maximum partial shading condition detected by the irradiance 186 

sensor is equal to 97.3%, therefore, the maximum PR is calculated as the following: 187 Fault Detection Algorithm Maximum PR =  Ptheoretical Pmeasured  ×  MPPT Tolerance Rate =  110023.66 × 95% ≈ 50 188 
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The value of the maximum PR is important because if the PR is greater than 50, then the fault detection 189 

algorithm can specify whether a fault occurred in the MPPT unit or there is a complete disconnection of a 190 

PV string from the entire PV system. In order to detect which type of fault accrued in the region of PR > 191 

50. The value of the voltage ratio has been considered, two conditions is selected: 192 

1. If VR ≥ 0, then a faulty PV string is detected 193 

2. If VR = 0, then a faulty MPPT unit is detected 194 

Furthermore, if the value of the PR does not lie within the normal operation mode region and it is not higher 195 

than the PR max threshold (PR ≥ 50), then the value of the PR and VR is passed to the second part of the 196 

fault detection algorithm which consists of two different machine learning techniques as shown in Fig. 5.  197 

The first technique is the artificial neural network (ANN). In order to select the most suitable ANN model 198 

structure, four different ANN models have been developed: 199 

 2 Inputs, 5 outputs using 1 hidden layers 200 

 2 Inputs, 5 outputs using 2 hidden layers 201 

 2 Inputs, 9 outputs using 1 hidden layers 202 

 2 Inputs, 9 outputs using 2 hidden layers 203 

A brief illustration on the selection of the variables and ANN model structure is covered in the next section 204 

(section 3.4). 205 

The second machine learning technique used to detect possible faults occurring in the PV system is the 206 

fuzzy logic. In this paper, two different fuzzy logic systems have been implemented: 207 

 Mamdani-type fuzzy logic system interface 208 

 Sugeno-type fuzzy logic system interface 209 

The fuzzy logic systems are explained in section 3.5. Moreover, the type of the fault which can be detected 210 

using the machine learning techniques are shown in Table 1. 211 

 

 
 

Fig. 4.  DC side Numerical Calculations at Maximum and Minimum Operating Points 
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3.4  ANN Model Implementation 212 

The main objective of the ANN model is to detect possible faults in the examined PV system shown in 213 

Fig. 2. The ANN model has been developed as follows: 214 

 Selection of input and output variables 215 

 Data set normalization 216 

 Selection of network structure 217 

 Network training 218 

 Network test 219 

The input parameters used to configure all tested ANN models are the VR and PR ratios which can be 220 

calculated using (8 & 9) respectively. The Data set (input variables) are normalized within the range of -1 221 

and +1 using (10). 222 

     y =  (ymax− ymin)(x− xmin)(xmax− xmin) + ymin                                                         (10) 223 

where  ∈  {𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥} ,𝑦 ∈  {𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥} and x is the original data value and y is the corresponding 224 

normalized value with 𝑦𝑚𝑖𝑛 =  −1 and 𝑦𝑚𝑎𝑥 =  +1. 225 

 
 

Fig. 5.  Detailed PV Fault Detection Approach 
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In order to select the most efficient architecture for the ANN model, a comparison between four different 226 

ANN models have been performed where the structure of all tested ANN networks is the Radial Basis 227 

Function (RBF) as shown in Fig. 6. 228 

ANN models A and B are using 2 inputs (VR & PR) and five outputs, where the hidden layers are equal to 229 

one and two respectively. The purpose of increasing the hidden layers, is to increase the computational 230 

performance of the ANN network, thus, increasing the detection accuracy (DA) of the ANN model. The 231 

faults which can be detected using both ANN models are: 232 

 F1: Partial Shading (PS) affecting the PV system 233 

 F2: One faulty PV Module and PS affecting the PV system 234 

 F3: Two faulty PV Modules and PS affecting the PV system 235 

 F4: Three faulty PV Modules and PS affecting the PV system 236 

 F5: Four faulty PV Modules and PS affecting the PV system 237 

From the research conducted using several days measurements (briefly described in the results section), the 238 

comparison between model A and model B shows that both models have a low detection accuracy where 239 

the maximum achieved detection accuracy is equal to 77.7%. Therefore, this challenge was solved by 240 

adding new types of faults for the ANN network that allows the ANN model to detect faulty PV modules 241 

only (No PS on the entire PV plant). 242 

ANN models C and D are using 2 inputs (VR & PR) and nine outputs, where the hidden layers are equal to 243 

one and two respectively. The faults which can be detected using both ANN models are: 244 

 F1: PS affecting the PV system 245 

 F2: One faulty PV Module only 246 

 F3: Two faulty PV Modules only 247 

 F4: Three faulty PV Modules only 248 

 F5: Four faulty PV modules only 249 

 F6: One faulty PV Module and PS affecting the PV system 250 

 F7: Two faulty PV Modules and PS affecting the PV system 251 

 F8: Three faulty PV Modules and PS affecting the PV system 252 

 F9: Four faulty PV Modules and PS affecting the PV system 253 

In this study, the data set have been recorded from the experimental setup shown in Fig. 2. The data set 254 

used to train, validate, and test the ANN networks contains 6480 measurements logged in 9 days as shown 255 

in Fig. 7, where each day consists of 720 sample. During the experiment, the PV modules’ temperature is 256 

between 15.3 – 16.7 oC, the value of the VR and PR have been logged.  Each day has a different fault 257 

applied to the PV systems which can be simplified by the following: 258 

 Day 1: Partial shading conditions affecting the PV system 259 

 Day 2: One PV module has been disconnected from the PV system (faulty PV modules) 260 

 Day 3: Two PV modules have been disconnected from the PV system 261 

 Day 4: Three PV modules have been disconnected from the PV system 262 

 Day 5: Four PV modules have been disconnected from the PV system 263 

 Day 6: One PV module has been disconnected and PS applied to all other PV modules 264 

 Day 7: Two PV modules have been disconnected and PS applied to all other PV modules 265 

 Day 8: Three PV modules have been disconnected and PS applied to all other PV modules 266 

 Day 9: Four PV modules have been disconnected and PS applied to all only existing PV module 267 
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The obtained measurements is then divided into three subsets: 268 

1. 70% of the data are used to train the ANN networks. 269 

2. 10% of samples are used to validate the ANN network. This test is not used in the training process. 270 

3. 20% of samples are used to test the actual ANN network detection accuracy. 271 

The implementation of the ANN network has been developed using MATLAB/Simulink software. ALL 272 

results obtained from the ANN network is discussed briefly in the results section, where the maximum 273 

obtained detection accuracy among all tested ANN models is equal to 92.1% for the ANN model which 274 

contains 2 inputs, 9 outputs using 2 hidden layers. Moreover, the minimum Mean Square Errors (MSE) 275 

achieved during the training and test processes are 0.005 and 0.007 respectively. 276 

 

 

Fig. 6.  The Adopted ANN Network. (A) 2 Inputs, 5 Outputs using 1 Hidden Layer, (B) 2 Inputs, 5 Outputs using 2 Hidden Layers,    

(C) 2 Inputs, 9 Outputs using 1 Hidden Layer, (D) 2 Inputs, 9 Outputs using 2 Hidden Layers  
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3.5  Fuzzy Logic Model Implementation 277 

In this study, the second machine learning technique used to detect faults in the PV system is the fuzzy 278 

logic system interface. In order to select the most efficient model for the fuzzy logic system fault detection 279 

interface, a comparison between two fuzzy models widely utilized for the classification of faults have been 280 

performed: Mamdani fuzzy logic and Sugeno type fuzzy system.  281 

Mamdani fuzzy logic systems commonly suited to human input interface. However, the Sugeno fuzzy 282 

systems are well established using a linear weighted mathematical expressions. The main advantages for 283 

both fuzzy logic systems are illustrated by the following: 284 

 Sugeno-type:       Mamdani-type:  285 

- It is computational efficient.    -     It is intuitive.   286 

- It works well with linear techniques.   -     It has widespread acceptance. 287 

- It works well with optimization methods and   -     It is well suited to human input  288 

Adaptive techniques.           systems interface 289 

- It has guaranteed continuity of the output 290 

Interface surface. 291 

 
 

Fig. 7.  Dataset used to Train and Validate the ANN networks 
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Both implemented fuzzy logic systems are shown in Fig. 8.  The VR and PR ratios are used as input 292 

variables for the fuzzy logic classification system, where VR and PR is calculated using (7 & 9) 293 

respectively. The VR and PR regions are illustrated in Table 3. As can be noticed, ten different regions 294 

have been selected, where region 1 is the low partial shading (PS) condition. Whereas, region 4 is used for 295 

a faulty PV module with high PS condition (50% ~ 97.3% PS). The minimum and maximum limits for each 296 

region of the VR and PR is also shown in Table 3, the defuzzification process for the input rules is the 297 

centroid type.  298 

All measurements for the theoretical VR and PR have been taken from a MATLAB/Simulink model which 299 

is designed the same as the examined PV system presented in Fig. 2 with the consideration of all PV 300 

parameters given in Table 2. 301 

After identifying the input variables VR and PR regions, it is required to set the rulers for the fuzzy logic 302 

system interface. As shown in Fig 8, Mamdani fuzzy logic system consists of ten different membership 303 

functions (MF) which are described by the following: 304 

 MF1: Low PS affecting the PV system 305 

 MF2: High PS affecting the PV system 306 

 MF3: One faulty PV module and low PS affecting the PV system 307 

 MF4: One faulty PV module and high PS affecting the PV system 308 

 MF5: Two faulty PV modules and low PS affecting the PV system 309 

 MF6: Two faulty PV modules and high PS affecting the PV system 310 

 MF7: Three faulty PV modules and low PS affecting the PV system 311 

 MF8: Three faulty PV modules and high PS affecting the PV system 312 

 MF9: Four faulty PV modules and low PS affecting the PV system 313 

 MF10: Four faulty PV modules and high PS affecting the PV system 314 

The Mamdani based system architecture is using the Max-Min composition technique with a centroid type 315 

defuzzification process.  316 

TABLE 3 

FUZZY LOGIC INPUT REGIONS – VR & PR  

Scenario Partial 

Shading % 

Min Voltage 

(V) 

Max Voltage 

(V) 

Min Power 

(W) 

Max Power 

(W) 

Fuzzy 

Classification 

System Region 

Partial Shading 

(PS) 

0 - 49% 1 1.2 1 2.4 1 

50 - 97.3% 1.1 1.4 2.1 28 2 

Faulty PV 

Module and PS 

0 - 49% 1.26 1.5 1.3 3 3 

50 - 97.3% 1.34 1.7 2.7 35 4 

2 Faulty PV 

Module and PS 

0 - 49% 1.67 1.95 1.8 4 5 

50 - 97.3% 1.76 2.26 3.5 47 6 

3 Faulty PV 

Module and PS 

0 - 49% 2.52 2.93 2.5 5.9 7 

50 - 97.3% 2.65 3.4 5.3 70 8 

4 Faulty PV 

Module and PS 

0 - 49% 5 5.9 5 12 9 

50 - 97.3% 5.3 6.8 10.6 141 10 
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Similarly, the fuzzy logic rules obtained for the Sugeno type fuzzy logic interface is equal to 10 as shown 317 

in Fig. 8. Where each rule presents the same rule as described in the Mamdani fuzzy logic system. The 318 

Sugeno based system architecture is using the Max-Min composition technique with a centroid type 319 

defuzzification process. 320 

It is worth pointing out that a high number of fuzzy logic rules ensure both completeness and appropriate 321 

resolution of the fault detection accuracy. However, a high number of fuzzy rules may lead to an over 322 

parameterized system, thus reducing generalization capability and accuracy of detection the type of the 323 

fault accruing in the examined PV system. Therefore, the number of fuzzy rules depends on the number of 324 

input variables, system performance, the execution time and the membership functions. In this paper, ten 325 

fuzzy logic rules were decided according to a sensitivity analysis made by varying the number and type of 326 

the rule. A satisfactory level of performance was obtained after a tuning process, i.e. starting from faulty 327 

PV module only and progressively modifying the fuzzy system to detect all possible faults the may occur 328 

in the PV plant according to the faults types listed in Table 1. 329 

Both fuzzy logic systems rules are based on: if, and statement. The fuzzy rules are briefly listed in Appendix 330 

A. Furthermore, the output surface for Mamdani and Sugeno fuzzy logic systems are plotted and 331 

represented by a 3D curves as shown in Fig. 9(A) and Fig. 9(B) respectively. Where the x-axis presents the 332 

PR ratio, y-axis presents the VR ratio, and the fault detection output is on the z-axis.  333 

 

 
 

Fig. 8.  The Adopted Sugeno and Mamdani Fuzzy Logic Systems 
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4. RESULTS AND DISCUSSION 334 

This section reports the results of the developed fault detection algorithm. Furthermore, a comparison 335 

between the developed machine learning techniques with some ANN and fuzzy logic systems obtained by 336 

various researchers is briefly explained in section 4.4 (discussion section). 337 

4.1 Experimental Data 338 

In order to test the effectiveness of the proposed fault detection algorithm, a number experiments were 339 

conducted. Table 4 shows a full day experimental scenarios which are applied to the PV plant, where the 340 

perturbation process made to the PV system is shown in Appendix B. Each scenario lasts for an hour and 341 

it contains a different condition applied to the examined PV system illustrated previously in Fig. 2. 342 

As can be noticed, the data samples for both sleep and normal operation modes are not included in the 343 

evaluation process of the machine learning techniques, since both scenarios can be detecte3d using the 344 

mathematical regions explained in Fig. 5. Furthermore, scenarios 3~5 and 7~11 are evaluated by the ANN 345 

network and the fuzzy logic system, were the total number of sample for the faulty conditions is equal to 346 

 
(A) 

 

 
(B) 

 

Fig. 9.  Fuzzy Logic Systems Classifier Output Surfaces. (A) Mamdani-Type Fuzzy Logic System Interface, (B) Sugeno-Type Fuzzy 

Logic System Interface  



16 

 

four hundred and eighty. Moreover, a comparison between the theoretical output power vs. the real time 347 

long term measured data of the PV system during the tested faulty conditions are is shown in Fig. 10. 348 

TABLE 4 

MULTIPLE FAULTS OCCURRING IN THE EXAMINED PV SYSTEM 

Scenario # Start 

time 

End 

time 

Condition applied to the PV system Number of samples applied 

to the ANN network 

1 5:45 5:57 Sleep mode - 

2 5:58 6:59 Normal operation mode - 

3 7:00 7:59 20% partial shading 60 

4 8:00 8:59 Faulty PV module and 20% partial shading 60 

5 9:00 9:59 Faulty PV module and 40% partial shading 60 

6 10:00 10:59 Normal operation mode - 

7 11:00 11:59 2 Faulty PV modules and 30% partial shading 60 

8 12:00 12:59 30% partial shading 60 

9 13:00 13:59 4 Faulty PV modules only 60 

10 14:00 14:59 3 Faulty PV modules and 20% partial shading 60 

11 15:00 15:59 3 Faulty PV modules only 60 

12 16:00 17:57 Normal operation mode - 

13 17:58 19:00 Sleep mode - 

 Sum: 480 

 

Fig. 10.  Theoretical Output Power vs. Measured Output Power for All Tested Scenarios Applied on the Examined PV system, Each 

Case is Perturbed as Shown in Appendix B 
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4.2 Performance Evaluation of the proposed ANN Networks 349 

In order to verify the performance of the proposed ANN networks, the VR and PR ratios of 480 samples 350 

illustrated in Table 4 have been used as an input for each ANN network shown previously in Fig. 6. For 351 

analyzing the effectiveness of each ANN network, Fig 11(A-D) shows the output classification confusion 352 

matrices for the developed ANN networks.  353 

The cells of each matrix with red and green colors presents the percentage of faults correctly and not 354 

correctly classified by the ANN network respectively. Additionally, the fault classification number, fault 355 

type and number of samples for each examined ANN network is shown in Table 5. Moreover, the gray 356 

blocks represents the total percentage of the detection accuracy in the column and row respectively. 357 

In order to understand how to read the confusion matrices shown in Fig. 11. The first confusion matrix (Fig. 358 

11(A)) will be explained in brief. In this figure, the first five diagonal cells show the number and percentage 359 

of correct classifications by the trained network. For example, 118 samples for F1 (fault type, shown in 360 

Table 5), are correctly classified. This corresponds to 24.6% of all tested samples (480 sample). Similarly, 361 

30 samples are correctly classified as F2, this corresponds to 6.3% of all 480 samples. 362 

In row 1, 1 sample is incorrectly classified as F1 and it is classified as F3, this corresponds to 0.2% of all 363 

480 samples. Similarly, 2 samples of F5 are incorrectly classified as F1 and this corresponds to 0.4% of all 364 

480 samples. 365 

In row 2, 30 samples are correctly classified as being F2, this corresponds to 6.3% of all 480 samples. 366 

Out of 120 sample corresponds to row 1, 97.5% are correct and 2.5% are wrong.  Out of 120 samples 367 

corresponds to column 1, 98.3% are correct and 1.7% are classified incorrectly. For row 2, all samples have 368 

been classified correctly, 100%. However, for column 2, out of 120 samples, 25% are correct and 75% are 369 

incorrect.  370 

The overall detection accuracy of the confusion matrix could be calculated using the diagonal cells as the 371 

following: 372 

 373 

1st cell (24.6%) + 2nd cell (6.3%) + 3rd cell (10.2%) + 4th cell (17.3%) + 5th cell (11.9%) = 70.2% 374 

 375 

This 70.2 corresponds to the percentage of correctly classified samples (out of all tested samples, 480 376 

sample). And 29.8% correspond to incorrectly classified samples. 377 

From the obtained results in Fig. 11(A) the minimum detection accuracy is associated with column 2, where 378 

75% of the samples are incorrectly classified. This situation occurred when 3 faulty PV modules and PS 379 

affecting the PV module (F3) is classified as F2. And this happens when there is a rapid drop/increase in 380 

the irradiance level or PS conditions affecting the examined PV modules. 381 

Similar results obtained with the second ANN network (contains 2 outputs and 2 hidden layers) shown in 382 

Fig. 11(B). Where the percentage of the error in identifying F3 is increased to 83.3%, shown in column 2. 383 

However, the overall detection accuracy of the second ANN network is increased to 77.7% comparing to 384 

70.2% obtained by the first ANN network. This increase in the detection accuracy is due to the second 385 

hidden layer which enables more training and validation computational process for the ANN network before 386 

the testing phase.  387 
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As can be noticed, ANN networks one and two have low overall detection accuracy. As mentioned earlier 388 

in section 3.4, this challenge was solved by adding new type of faults for the ANN network that allows the 389 

ANN model to detect faulty PV modules only (No PS on the entire PV plant).  390 

Fig. 11(C) describes the output classification confusion matrix of the third ANN network (contains 9 391 

outputs and 1 hidden layer). The overall detection accuracy of the ANN network is equal to 87.5% where 392 

the highest error is associated with F7 (row 7). This fault is related to the samples of F7 which are classified 393 

as F8. This situation occurred when two faulty PV modules with high partial shading condition is detected 394 

by the ANN network as three faulty PV modules with low PS condition affecting the entire PV system.  395 

The last ANN network contains 2 inputs, 9 outputs and 2 hidden layers. The overall detection accuracy of 396 

the network is 92.1% which means that the ANN network detects accurately 442 samples out of 480, this 397 

results is shown in Fig. 11(D).  398 

The highest error in identifying the type of the fault is associated with the samples of F6 being classified as 399 

F1. The total percentage of error is equal to 10.3%, shown in column 1. Out of 120 samples, 8 sample are 400 

incorrectly classified. This situation occurred when there is a high partial shading conditions applied to the 401 

PV system including one faulty PV module. Based on the detected samples, this type of the fault is classified 402 

as being F1 (PS affecting the PV system).  403 

In conclusion,  the obtained results of this section shows that the maximum detection accuracy of all 404 

examined ANN networks is equal to 92.1% which is achieved by the fourth ANN network that includes 2 405 

inputs, 9 outputs with 2 hidden layers. 406 

 

TABLE 5 

FAULTS ASSOCIATED WITH THE EXAMINED ANN NETWORKS 

ANN network Fault 

number 

Type of the fault Number of 

samples 

ANN network 1 and 

2 as shown in Fig. 

11(A) and Fig. 11(B) 

respectively 

F1 PS affecting the PV system 120 

F2 1 Faulty PV module & PS affecting the PV module 120 

F3 2 Faulty PV modules & PS affecting the PV module 60 

F4 3 Faulty PV modules & PS affecting the PV module 120 

F5 4 Faulty PV modules & PS affecting the PV module 60 

 

 

ANN network 3 and 

4 as shown in Fig. 

11(C) and Fig. 11(D) 

respectively 

F1 PS affecting the PV system 120 

F2 1 Faulty PV module 0 

F3 2 Faulty PV modules  0 

F4 3 Faulty PV modules  60 

F5 4 Faulty PV modules  60 

F6 1 Faulty PV module & PS affecting the PV module 120 

F7 2 Faulty PV modules & PS affecting the PV module 60 

F8 3 Faulty PV modules & PS affecting the PV module 60 

F9 4 Faulty PV modules & PS affecting the PV module 0 
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4.3 Performance Evaluation of the proposed Fuzzy Logic Systems 407 

In order to test the effectiveness of the proposed fuzzy logic systems (Mamdani and Sugeno) the faulty 408 

samples shown previously in Table 4 have been processed in each fuzzy system. Furthermore, the 409 

implementation of the fuzzy logic systems are explained in section 3.5. 410 

A. Mamdani Fuzzy Logic System: 411 

Fig. 12(A) shows the output membership function vs. the faulty samples which are equal to 480 for 412 

Mamdani fuzzy logic system interface. Each faulty PV condition is labelled on the figure. As an example, 413 

             
(A)      (B) 

 

 
(B)        (D) 

(C)  

Fig. 11.  Classification Confusion Matrices for the Examined ANN Networks shown previously in Fig. 4. (A) 2 Inputs, 5 Outputs using 1 

Hidden Layer, (B) 2 Inputs, 5 Outputs using 2 Hidden Layers, (C) 2 Inputs, 9 Outputs using 1 Hidden Layer, (D) 2 Inputs, 9 Outputs 

using 2 Hidden Layers 
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case 3 presents 20% partial shading condition affecting the PV module, for this particular PV faulty 414 

scenario, the output of the fuzzy system is equal to 0.5, which is the region of PS condition illustrated in 415 

Fig. 12(B). Similarly, case 4 and 5 presents a faulty PV module with 20% and 40% PS respectively. Both 416 

cases are within the same membership function region due to the low PS condition affecting the PV 417 

modules, this situation is labeled as case 4 and case 5 on both Figs. 12(A) and 12(B). 418 

As can be noticed that all examined faulty conditions are accurately detected by Mamdani fuzzy logic 419 

system. However, between case 7 and case 8 there is a small amount of error in detecting the region of the 420 

fault, same result accruing between case 8 and case 9. This situation is occurring in the fuzzy system due 421 

to the high number of faulty regions identified by the fuzzy system, additionally, the VR and PR ratios are 422 

strongly depends on the performance of the voltage and current sensors used to detect the change in the PV 423 

parameters (voltage, current and power). Therefore, the fuzzy logic system might need some extra few 424 

seconds to start detecting the exact faulty occurring in the PV installation. 425 

B. Sugeno Fuzzy Logic System: 426 

Fig. 13(A) shows the output membership function vs. the faulty samples for Sugeno fuzzy logic system 427 

interface. Each faulty PV condition is labelled on the figure. As an example, case 7 presents two faulty PV 428 

modules and low partial shading condition affecting the PV plant, for this particular PV faulty scenario, the 429 

output of the fuzzy system is equal to 5, which is the region of PS condition illustrated in Fig. 13(B). 430 

 
(A) 

 
(B) 

Fig. 12.  Output Results Obtained using Mamdani Fuzzy Logic System. (A) Membership Functions vs. Number of Samples, (B) 

Membership Function Explained Previously in Section 3.5 vs. Type of Fault 
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Similarly, case 10 and 11 presents a three faulty PV modules with 20% and 0% PS respectively. Both cases 431 

are within the same membership function region due to the low PS condition affecting the PV modules, this 432 

situation is labeled as case 10 and case 11 on both Figs. 13(A) and 13(B). 433 

From the result obtained by the Sugeno fuzzy logic system, all examined faulty conditions are accurately 434 

detected. However, between case 7 and case 8 there is a small amount of error in detecting the region of the 435 

fault. This situation is occurring in the fuzzy system due to the high number of faulty regions identified by 436 

the fuzzy system, additionally, the VR and PR ratios are strongly depends on the performance of the voltage 437 

and current sensors used to detect the change in the PV parameters (voltage, current, and power). Similar 438 

error was also observed by the Mamdani fuzzy logic system between case 7 and case 8. 439 

In conclusion, this section presents the behavior of the fuzzy logic systems developed for detecting faulty 440 

conditions occurring in the examined PV system. Both fuzzy logic systems show an accurate results in 441 

detecting various faults comparing to the results obtained by the ANN networks which has a maximum 442 

detection accuracy equals to 92.1%. A comparison between both machine learning techniques are discussed 443 

briefly in the following section: 4.4 discussion. 444 

 
(A) 

 
(B) 

Fig. 13.  Output Results Obtained using Sugeno Fuzzy Logic System. (A) Membership Functions vs. Number of Samples, (B) 

Membership Function Explained Previously in Section 3.5 vs. Type of Fault 
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4.4 Discussion 445 

In this study, artificial intelligent network (ANN) and fuzzy logic system interface have been developed for 446 

detecting faults in PV installations. However, the PV system used for analyzing the performance of both 447 

machine learning techniques is considered as low capacity PV installation (1.1 kWp). For that instance, the 448 

output of the fuzzy logic systems shows an accurate detecting accuracy (all examined faults have been 449 

detected correctly) comparing to the ANN which has a maximum detection accuracy equals to 92.1% 450 

obtained for the fourth ANN structure which contains 2 inputs, 9 outputs using 2 hidden layers. The input 451 

membership functions of the fuzzy logic system could be much complicated if the examined PV installation 452 

has much more PV modules (~100 PV modules), since each PV module could affect the overall input 453 

membership functions. 454 

In order to test the effectiveness of the final detection accuracy obtained by the ANN network. The proposed 455 

method has been compared with the ANN output results presented in [25]. The output confusion matrix for 456 

both obtained studies are compared in Fig. 14(A) and Fig. 14(B). As can be noticed, the overall detection 457 

efficiency of the proposed ANN network is equal to 92.1% comparing to 90.3% obtained by [25]. The faults 458 

which are detected by [25] is related to the bypass diodes in the PV systems which is quite different than 459 

the faults obtained by this research. However, both ANN networks are using the variations of the voltage 460 

and the power form the PV plant as an inputs for the ANN model. 461 

To the best of our knowledge, few of the reviewed articles used a fuzzy logic system to detect faults in PV 462 

installations. Therefore, this is one of the novel contribution of this study. A compression between the 463 

output membership functions developed by [1] and this study are shown in Fig. 15(A) and Fig. 15(B) 464 

respectively. In [1] authors’ are using Mamdani fuzzy logic system for enhancing the detection of partial 465 

shading conditions effecting the PV plant. The proposed mathematical calculations of the fuzzy logic 466 

system is also presented in Fig. 15(A). Moreover, the fuzzy logic systems (Mamdani and Sugeno) presented 467 

in this paper are used for detecting possible faults accruing in the examined PV system. The overall 468 

detection accuracy of the proposed fuzzy systems is very high, since the examined PV system does not 469 

contain too many PV modules.  470 

                          
(A)                                                                                                        (B) 

 

Fig. 14.  Classification Confusion Matrix for ANN Network. (A) Results Obtained by W. Chine et al [25], (B) Results Achieved using 

the Proposed ANN Fault Detection Algorithm 
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The obtained results for the developed ANN network and the fuzzy logic system are compared in Table 5. 471 

The mathematical modelling on the ANN network is much simpler comparing to the creation of the fuzzy 472 

logic membership functions, this situation is correct specially for large PV installations. However, the ANN 473 

network does require a log of samples in order to validate and train the network while the fuzzy logic 474 

systems does not require any log of data before creating the membership function, it just need to update the 475 

mathematical modelling with the degradation rates of the MPPT units and/or any other possible source for 476 

decreasing the overall efficiency of the PV system such as the DC/AC inverters. 477 

The overall detection accuracy for both machine learning techniques are high if they have been built 478 

accurately. Finally, Table 6 shows some of the recent applications for ANN networks and the fuzzy logic 479 

systems developed nowadays in PV plants. 480 
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Fig. 15.  Fuzzy Logic Models. (A) Membership Functions Proposed by M. Tadj [1], (B) Membership Functions for Mamdani and 

Sugeno Fuzzy Logic Systems Proposed in this Study 
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5. CONCLUSION 481 

This paper presents a new photovoltaic (PV) fault detection algorithm which comprises both artificial neural 482 

network (ANN) and fuzzy logic system interface. The algorithm is capable for detecting various fault 483 

occurring in the PV system such as faulty PV module, two faulty PV modules and partial shading conditions 484 

affecting the PV system. Both machine learning techniques was validated using a 1.1 kWp PV plant 485 

installed at the University of Huddersfield, United Kingdom. 486 

The fault detection algorithm is using the variations of the voltage and power of the examined PV system 487 

as an input for both ANN and the fuzzy logic system. In order to achieve high rate of detection accuracy, 488 

four various ANN networks have been tested. The maximum overall detection accuracy was obtained is 489 

equal to 92.1% from an ANN network which contains 2 inputs, 9 outputs using 2 hidden layers. 490 

Additionally, two different fuzzy logic systems have been examined. Mamdani fuzzy logic system interface 491 

and Sugeno type fuzzy system. Both examined fuzzy logic systems show approximately the same output 492 

during the experiments. However, there are slightly difference in developing each type of the fuzzy systems 493 

such as the output membership functions and the rules applied for detecting the type of the fault occurring 494 

in the PV plant 495 

The developed fault detection algorithm has been discussed and compared with various results obtained 496 

from different references in the discussion section. Finally, further investigation of the proposed fault 497 

detection algorithm is intended to be used with field programmable gate array (FPGA) platforms which 498 

accelerate the speed of detecting possible faults occurring in PV systems. 499 

TABLE 6 

COMPARISON BETWEEN ANN AND FUZZY LOGIC SYSTEMS 

Comparison ANN Network Fault Detection 

Approach 

Fuzzy Logic System Fault Detection 

Approach 

Mathematical Modelling  Does not contain complex 

mathematical modelling, since it 

depends on a log of data 

For larger PV systems(~100 PV modules) 

the membership functions does require a 

lot of mathematical expressions 

Detection Accuracy High High 

Detection Time “Response” Fast (milli/micro seconds) Fast (milli/micro seconds) 

Photovoltaic Parameters Depends on the type of the PV fault 

which needs to be detected 

Depends on the type of the PV fault which 

needs to be detected 

Logged Data Required Dose not require any previous logged data 

Recent Applications Applied 

to PV Systems 

i. Improving the 

estimation of GCPV 

power output [33] 

ii. Forecasting for global 

solar radiation [34 & 

35] 

i. Power optimization in 

standalone PV systems 

[21] 

ii. PV fault detection based 

on multi-resolution 

signal decomposition [36 

& 37] 
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Appendix A  500 

Fuzzy logic rules applied for both Mamdani and Sugeno fuzzy logic systems interface: 501 

 1. If (Voltage-Ratio is 1) and (Power-Ratio is 1) then (Type-of-Fault-Detected is 1) (1)  502 

 2. If (Voltage-Ratio is 2) and (Power-Ratio is 2) then (Type-of-Fault-Detected is 2) (1)  503 

 3. If (Voltage-Ratio is 3) and (Power-Ratio is 3) then (Type-of-Fault-Detected is 3) (1)  504 

 4. If (Voltage-Ratio is 4) and (Power-Ratio is 4) then (Type-of-Fault-Detected is 4) (1)  505 

 5. If (Voltage-Ratio is 5) and (Power-Ratio is 5) then (Type-of-Fault-Detected is 5) (1)  506 

 6. If (Voltage-Ratio is 6) and (Power-Ratio is 6) then (Type-of-Fault-Detected is 6) (1)  507 

 7. If (Voltage-Ratio is 7) and (Power-Ratio is 7) then (Type-of-Fault-Detected is 7) (1)  508 

 8. If (Voltage-Ratio is 8) and (Power-Ratio is 8) then (Type-of-Fault-Detected is 8) (1)  509 

 9. If (Voltage-Ratio is 9) and (Power-Ratio is 9) then (Type-of-Fault-Detected is 9) (1)  510 

 10. If (Voltage-Ratio is 10) and (Power-Ratio is 10) then (Type-of-Fault-Detected is 10) (1)  511 

Appendix B 512 

Perturbation process made to test the examined photovoltaic plant: 513 
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