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Abstract 

 

People use disguise to look unlike themselves (evasion) or to look like someone else 

(impersonation). Evasion disguise challenges human ability to see an identity across variable 

images; Impersonation challenges human ability to tell people apart. Personal familiarity with an 

individual face helps humans to see through disguise. Here we propose a model of familiarity 

based on high-level visual learning mechanisms that we tested using a deep convolutional neural 

network (DCNN) trained for face identification. DCNNs generate a face space in which identities 

and images co-exist in a unified computational framework, that is categorically structured around 

identity, rather than retinotopy. This allows for simultaneous manipulation of mechanisms that 

contrast identities and cluster images. In Experiment 1, we measured the DCNN’s baseline 

accuracy (unfamiliar condition) for identification of faces in no disguise and disguise conditions. 

Disguise affected DCNN performance in much the same way it affects human performance for 

unfamiliar faces in disguise (cf. Noyes & Jenkins, 2019). In Experiment 2, we simulated familiarity 

for individual identities by averaging the DCNN-generated representations from multiple images 

of each identity. Averaging improved DCNN recognition of faces in evasion disguise, but reduced 

the ability of the DCNN to differentiate identities of similar appearance. In Experiment 3, we 

implemented a contrast learning technique to simultaneously teach the DCNN appearance 

variation and identity contrasts between different individuals. This facilitated identification with 

both evasion and impersonation disguise. Familiar face recognition requires an ability to group 

images of the same identity together and different identities apart. The deep network provides a 

high-level visual representation for face recognition that supports both of these mechanisms of 

face learning simultaneously. 
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Seeing through disguise: Getting to know you with a deep convolutional neural network 

 

People recognise the faces of friends, family, and colleagues with ease (Burton, White, & McNeill, 

2010; Jenkins, White, Van Montfort, & Burton, 2011; Kemp, Towell, & Pike, 1997). These 

familiar faces can be identified accurately even in challenging image conditions (Burton, Wilson, 

Cowan, & Bruce, 1999; Lander, Bruce, & Hill, 2001; Noyes & Jenkins, 2017). Recognition is 

more difficult for unfamiliar faces—those we have encountered infrequently or from brief 

exposures. Despite the difficulty of the task, accurate identification of unfamiliar faces can be 

important. For example, at passport control, an officer must decide if you are, or are not, the person 

photographed in the passport that you present. People make errors on these types of tasks, even 

with high quality images, taken on the same day, with comparable illumination, and with people 

displaying the same facial expression (Burton et al., 2010; Kemp et al., 1997). 

Techniques that increase familiarity, by increasing viewing time and/or the number and 

variability of exposures to a face, improve identification accuracy (Bruce, 1994; Bruce, Doyle, 

Dench, & Burton, 1991; Burton, Kramer, Ritchie, & Jenkins, 2016; Clutterbuck & Johnston, 2005; 

Dowsett, Sandford, & Burton, 2016; Jenkins et al., 2011; Menon, Kemp, & White, 2018; Murphy, 

Ipser, Gaigg, & Cook, 2015; Ritchie & Burton, 2017). Although it is clear that familiarity with a 

face improves identification accuracy, less is known about the underlying mechanisms that 

facilitate robust and generalisable face learning. 

Burton et al. (2005) proposed face averaging as a mechanism for creating robust face 

representations. They proposed that an “average” image representation is constructed mentally 

from the images of a face that we encounter. Noise from variability (e.g., illumination) is 

minimised when multiple images are averaged. By this account, the visual system learns faces by 

creating an identity representation based on the average of all of the images a person experiences 

across multiple encounters with a face. This “person-identity prototype” 1 model creates a central 

tendency representation of one’s actual experience from multiple images of an individual’s face. 

Burton et al. (2005) tested the face-image averaging mechanism using a computational model 

based on principal components analysis (PCA). They first morphed the images to a common shape 

using bi-linear interpolation of manually set key points. Next, they used these shape-normalised 

 

[1]
 We introduce the term “person-identity prototype” here to distinguish this concept from the more classical 

notion of a face population prototype. 
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images to train the model with 1, 3, 6, or 9 exemplar images of each identity, or with an average 

image comprising these same images. A nearest neighbour match was computed at test in 

Mahalanobis distance for a new image of each training identity. Training with average images 

yielded higher accuracy than training with exemplar images. Furthermore, the greater the number 

of exemplar images in the average, the higher the identification accuracy, as measured by the 

nearest neighbour metric. Therefore, this averaging mechanism proved effective in boosting 

identification performance using information from variable images. 

Burton et al. (2005) also looked at the effect of averaging on human perception. They measured 

reaction times on a name-to-face matching task of averaged celebrity faces consisting of 3, 6, or 9 

images. Reaction times decreased as the number of images included in the average increased. 

Additionally, reaction times for average faces were lower than for single images. In terms of 

accuracy, participants performed better on averaged faces in trials where the name matched the 

face, though in mismatched trials there was no difference between single image and averaged 

conditions. 

Exemplar averaging also improved identification of a 2005 industry-standard face recognition 

algorithm from 54% to 100% correct (Jenkins & Burton, 2008). This was important, because 

algorithms at that time struggled to identify images that varied in illumination, pose, and 

expression (O’Toole et al., 2007; Phillips, Moon, Rizvi, & Rauss, 2000). The benefit of using 

averages is that they retain aspects of a face that are diagnostic of identity, while removing noise 

from the variability of the images encountered (Bruce, 1994; Jenkins et al., 2011).  

The person-identity prototype model of familiarisation was tested for psychological relevance 

in Kramer, Ritchie, and Burton (2015). Participants viewed four simultaneous images of a 

previously unknown identity, followed by a single test image. Participants decided whether the 

test image was present in the four-image display. The test image was either: a.) a learned image of 

the identity; b.) a previously unseen image of the identity; c.) an average image of the identity 

created from the four learned images; or d.) an average image created from four previously unseen 

images of the identity. Human accuracy was higher for an average image composed of four 

exemplar images that were learned by a participant, than for an average image composed of four 

novel images of the same identity. Kramer et al. (2015) concluded that human face representations 

are based on mental averages of the exemplar images we encounter. 
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The person identity prototype theory makes progress in understanding the mechanisms that 

may be responsible for learning within-person image and appearance variation. However, 

successful face recognition requires skill on two critical tasks: learning within-person image 

variation and distinguishing among faces of similar appearance. Face-image averaging addresses 

the first task—referred to in the literature as “telling faces together” (Andrews, Jenkins, Cursiter, 

& Burton, 2015). A different type of mechanism is needed for distinguishing among faces of 

similar appearance (“telling faces apart”). This latter skill is at the core of the long-embraced 

definition of “face expertise”  (Diamond & Carey, 1986; Gauthier & Nelson, 2001). Expertise has 

been considered, historically, in the following context. Faces consist of the same features (e.g., 

eyes, nose, and mouth) arranged into a similar configuration. The information useful for 

discriminating among different identities is subtle and difficult to articulate/quantify. Because 

people are able to discriminate among highly similar faces, humans have sometimes been 

considered “face experts” (though see Rossion, 2018; Young & Burton, 2018). This historical 

definition of face expertise was presented agnostic to the role of face familiarity.  

The concept of expertise fits well with classic face prototype theory, which has been a 

motivating principle of many studies in face processing, over decades. This theory assumes that 

face representations encode the information in a face that makes it different from a population face 

average (cf. Valentine, 1991). By this account, face codes capture the uniqueness of a face relative 

to a population. Classic prototype theory is supported by data on the effects of face typicality 

(Light, Kayra-Stuart, & Hollander, 1979), as well as the benefits of facial caricaturing for creating 

a good likeness of a person (Benson & Perrett, 1991).  

The prototype theory of face perception (Valentine, 1991) and the person-identity prototype 

model of Burton et al. (2005) are not mutually exclusive. Instead, these two models address 

different aspects of the face recognition problem—discriminating among similar face identities 

and dealing with appearance/image variability within an identity. To be clear, in classic prototype 

theory (Valentine, 1991, 2001), “average” refers to the central tendency of the population of face 

identities known to the individual. In the person-identity prototype model, “average” refers to the 

central tendency of the images of a single face seen by an individual. It is worth noting that classic 

prototype theory considers the physical structure of the face itself, independent of image and 

appearance variation, and assumes that there is only one representation of a face (cf. O’Toole, 

Castillo, Parde, Hill, & Chellappa, 2018). The person-identity prototype theory also posits a single 
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representation of each face, but uses a representation that reflects actual images encountered in the 

real world. 

Notably, in the majority of studies in which classic prototype theory has been examined, 

especially in the early face processing literature, participants were tested with unfamiliar faces 

(though see Hellawell, & Hay, 1987) and viewed only a single image of each identity. Thus, the 

role of familiarity in discriminating among similar faces has been studied less than its role in 

generalising recognition across images (Young & Burton, 2017). 

In addition to classic prototype theory, which considers differences from a central average, and 

person-identity prototype theory, which considers image/appearance differences around an 

identity-specific average, there are also differences between individual exemplar faces. How do 

we learn contrast between individual faces—especially those of similar appearance, in the context 

of image variability? This question differs from the one at the core of prototype theory, where 

contrast is always relative to a central prototype or population average. Along these lines, Mundy, 

Honey, and Dwyer (2007) demonstrated that people are better able to distinguish two similar faces 

(from a single image of each), if they have the opportunity to compare and contrast the two face 

images during face learning. Accuracy was higher when people alternately viewed each image, 

than when they saw the same images repeated multiple times in sequence. The role of contrast was 

supported further, because discrimination accuracy improved with simultaneous learning (viewing 

the two identities side by side) over successive exposures (viewing the two images in sequence). 

The authors attribute the contrast benefit to identity adaptation (Leopold, Rhodes, Müller, & 

Jeffery, 2005; Mundy et al., 2007; Rhodes & Jeffery, 2006).  

Cavazos, Noyes and O’Toole (2019) replicated the advantage of distributed over sequential 

viewing order in face learning, using a face recognition task with own and other-race faces. They 

also tested a larger number of identities (N = 36) than Mundy et al. (2007). One caveat to the 

benefit of distributed learning is that the images must be recognisable to the participants as the 

same identity. Distributed presentation did not aid recognition when images were too variable to 

be readily grouped together by identity. Together, these studies indicate that viewing orders that 

facilitate perceiving contrasts between individual identities result in better face learning. 

Another way to assess the role of between-person contrast in face learning is to manipulate the 

similarity of the learning faces. Dwyer and Vladeanu (2009) tested participants’ ability to learn 

target faces from among faces of similar appearance, dissimilar appearance, or in isolation. At test, 
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participants were instructed to identify the target face from a line-up array. Matching accuracy was 

highest for identities learned from among faces of highly similar appearance. The similarity of 

learning items may have forced participants to focus on the distinguishing features for an identity. 

The authors suggested that this process might involve adaptation. 

In an updated version of the person prototype model, Kramer, Young, Day, and Burton, 

(2017) implemented a linear discriminant analysis (LDA) to optimise separation by identity in 

their computational model. The model uses labelled data to learn identity classification, which can 

then be tested on new images of the face. They began by shape-normalizing faces in a 

preprocessing stage. Next, they created a face space with PCA and applied LDA to enhance the 

distances between individuals. The PCA+LDA model resulted in more accurate face identification 

than the LDA model alone. The authors conclude that face familiarity is achieved by learning 

idiosyncratic variation for individual faces. 

Combined, the majority of studies that have demonstrated a benefit of contrast learning on 

recognition have not considered within-person image variability (though see Cavazos et al., 2019; 

Kramer, Young, & Burton, 2018; Kramer et al., 2017). To date, no studies have attempted to model 

human familiarity using a deep learning convolutional neural network (DCNN). Here we consider 

both sides of the face recognition problem—telling similar faces apart and determining when 

variable images show the same person. We use images of disguised faces to investigate this 

problem, because different types of disguise selectively challenge the two skills needed to identify 

people. Impersonation disguise—a deliberate change in appearance to look like someone else—

poses challenges for face discrimination, and evasion disguise—a deliberate change in appearance 

to look unlike one’s self—challenges face recognition over variable images. 

We employed recent computational models based on DCNNs to provide a viable test-bed for 

exploring face recognition under disguise from both perspectives. In the last five years, DCNNs 

have made important strides in achieving face recognition from images that show substantial 

within-person variability, including over variable images and personal appearance. In that sense, 

they are beginning to emulate human face recognition as it applies for familiar faces (O’Toole et 

al., 2018). Previous-generation models, though successful at recognising faces from within a single 

viewpoint and with reasonably well controlled illumination, are far less successful with even small 

changes in imaging parameters and appearance (O’Toole, An, Dunlop, Natu, & Phillips, 2012; 

Phillips, Hill, Swindle, & O’Toole, 2015; Turk & Pentland, 1991; Zhao, Krishnaswamy, 
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Chellappa, Swets, & Weng, 1998). Older models, therefore, demonstrate skills similar to those 

humans show for unfamiliar faces (Burton et al., 2010, 1999; Kemp et al., 1997; Phillips, & 

O’Toole, 2014; White, Kemp, Jenkins, Matheson, & Burton, 2014).   

Notably, the computations used in DCNN models are inspired by the primate visual system 

and consist of cascaded layers of local convolution and pooling operations. DCNNs have general 

experience with faces, because they are trained to classify identity from variable images, using 

10’s of thousands of training identities, from variable (‘in-the-wild’) images of the faces. Once 

trained, the output “identity” units for the training faces are removed. In this “decapitated” state, 

the system can generate a representation of any arbitrary face image at its top-layer. These 

representations come from the network’s general face knowledge history  (O’Toole et al., 2018), 

and support some degree of identification generalisation across image/appearance variation, even 

for faces not used in training (i.e., unfamiliar faces). This generic system, however, retains no 

knowledge of individual faces. 

To learn specific identities from one or more images, a DCNN is typically trained by adding 

a new layer of identity units at the output layer. A second small network learns to classify the 

DCNN-generated face image representations of these new identities based on a small to moderate 

numbers of images of each (cf. O’Toole, et al., 2018). For present purposes, DCNNs generate a 

face space in which identities and images co-exist in a unified computational framework (Hill et 

al., 2019; O’Toole et al., 2018). It is possible, therefore, to investigate the effects of learning 

identity contrast in the context of image/appearance variability, using the high-level visual 

representation produced by the DCNN. 

Here we used disguise to test how familiarity with a person enables more robust face 

recognition with variation in appearance. In a recent test of human face matching performance for 

disguised faces (Noyes & Jenkins, 2019), familiar participants had a strong advantage over 

unfamiliar participants in seeing through disguise (Noyes & Jenkins, 2019). 

The goal of the current study was to test learning mechanisms that can support human-like 

face recognition under evasion and impersonation disguise. Here, human-like performance 

includes both familiar and unfamiliar face recognition.  We used a DCNN as a model of face 

learning that begins as a face recognition system that is “unfamiliar” with the individual test faces. 

In Experiment 1, we show that the DCNN, in this state, performs comparably to humans who are 

unfamiliar with disguised (evasion, impersonation) faces. In Experiment 2, we test a face-
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averaging mechanism to familiarise the DCNN with the test identities. The averaging mechanism 

is applied to the high-level visual face representations produced at the top layer of DCNN units. 

This approach differs from that of Burton et al. (2005) who averaged information directly available 

in face images. We demonstrate how our work differs from previous averaging and contrast 

learning methods in Table 1. Face representations at the top level of a DCNN have been shown to 

represent face identity, in addition to image characteristics (cf. O’Toole et al., 2018), including 

viewpoint and illumination (Hill et al., 2019; Parde et al., 2017, Parde 2020). This is a strong 

departure from modeling familiarity with mechanisms aimed at altering the representation of 

image-based information in a face space. We show that averaging the high-level visual 

representations that result from the DCNN improves performance on trials that benefit from 

learning within-person variation. The cost of this improvement, however, is decreased 

performance for images of different identities that are similar in appearance. 

 

Paper	 Pre-processing	of	

image	

Similarity	

computation	

(Unfamiliar)		

Calculation	 Post	Processing	

	

(Familiar)		

Result	 Limitations	

Burton	et	al.	(2005)			 Shape	normalisation	 PCA	 Nearest	neighbour	

matches.	‘Hit’	if	nearest	

neighbour	the	same	ID.		

Averages	–	(Study	3)	created	by	

morphing	together	shape	free	images.	

Arithmetic	means	at	pixel	level.	Number	

of	images	contributing	to	average	varied	

(3,6,9).		

Studies	4	and	5	-	created	as	described	for	

Study	3	with	the	additional	step	of	

morphing	the	shape	free	average	back	to	

the	average	2D	shape	outline	of	the	

individual	in	the	images.	

Image	average	

based	systems	

outperform	

instance	based	

versions	

Shape	

information	

extracted	

through	pre-

processing	

	

Viewpoint	

generalization	

limitations		

Kramer	et	al.	

(2017,2018)			

Shape	normalisation	 	PCA	

	

Nearest	centroid.		 PCA+LDA	–	trained	on	identity	 “	“	 “	“	

This	paper	 None	 DCNN	 Similarity	score	

compared	against	

criterion.		

Averaging	–	of	DCNN-generated	high	

level	visual	representations	for	images	

used	to	familiarise	the	identity.	Number	

of	images	contributing	to	the	average	

varied.	

	

SVM	–	trained	to	discriminate	each	

identity	from	all	other	identities.		

	

Improved	

performance	on	

same-identity	

trials		

	

Improved	

performance	on	

same-identity	

trials,	high	

performance	on	

different-identity	

trials.		

	

Table 1. The current work uses a DCNN and averaging of DCNN-generated face representations to model face familiarity. The 

table outlines how this approach differs to previous models.  

 

In Experiment 3, we implemented a version of contrast learning to capture learning of both 

within- and between-person variation in the high-level visual representations produced by DCNNs 

and measure the contribution of each to face learning.  We show that general face learning and 

averaging across image variability in these high-level visual representations cannot solve the 

problem of recognising disguised faces at a level that compares with familiar humans. Instead, it 
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is necessary to reshape the top-layer DCNN face space by providing the algorithm with 

information about both within- and between-person variation.  

 

Experiments 

Experiment 1 – Unfamiliar Identification of Disguised Faces by a DCNN 

In Experiment 1, we tested DCNN accuracy on the FAÇADE face-matching test; a face-matching 

task that includes photos of faces taken in evasion disguise, impersonation disguise and no disguise 

(cf. Noyes & Jenkins, 2019). We compared DCNN performance against human accuracy, 

measured in Noyes and Jenkins (2019). 

First, we asked whether the DCNN could perform the face recognition task with disguised 

images, and if so, whether the level of performance was more similar to unfamiliar or familiar 

human participants. Second, we asked whether the pattern of accuracy for the DCNN across 

evasion and impersonation disguise mirrored the human pattern. Based on the human data from 

Noyes and Jenkins (2019), we expected disguise to impair DCNN identification accuracy. We also 

expected DCNN identification accuracy to be lower for evasion than impersonation trials. Because 

the DCNN representation is based on general knowledge of faces, rather than on specific identities, 

we expected machine performance to mirror that of humans who are unfamiliar with the faces. 

Method 

Materials 

The images used in this study were the 156 matching task image pairs from the Noyes and 

Jenkins (2019) FAÇADE image set. The database consists of images of models photographed in 

no disguise, evasion disguise, and impersonation disguise conditions (see Figure 1). In the creation 

of this unique dataset, each person provided his or her work identification photograph to act as a 

“reference image”. This reference image showed the model with no disguise. All other images of 

the model (in disguise and no disguise) were compared against this reference image. A second “no 

disguise” image of each identity was taken during a photograph session. This second no disguise 

image was paired with the reference image to provide a ‘same-identity- no-disguise’ image pair in 

the matching task. The ‘different-identity no-disguise’ image pairs consisted of the reference 

image of one identity and the no disguise image of another identity. 

Next, the models created both an evasion and impersonation disguise. For the evasion disguise, 

they were asked to change their appearance to look “as different as possible” from their reference 
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image. Models often went to great lengths to do this, by wearing wigs, growing/shaving beards, 

changing their hairstyles, and by applying or removing make-up worn in the reference image (See 

Figure 1). The same-identity disguise image pairs consisted of the reference image and the image 

of the model in evasion disguise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the impersonation photographs, the models were asked to change their appearance to look 

like the reference photograph of two other individuals in the data set. One of these individuals was 

selected due to high similarity in appearance to the model, whereas the other one was chosen at 

random from the available reference images (within gender). These images were used to create 

different-identity disguise image pairs, which consisted of a reference image and an impersonation 

image. 

The resulting image pairs for the DCNN matching task consisted of same identity trials, and 

two types of different identity trials (see Figure 1). The different person trials were categorised as 

different similar (the two people photographed were paired intentionally, because they have a 

similar appearance naturally) and different random (the pair was created by selecting two identities 

of the same gender from the dataset at random). 

Figure 1. Example of same-identity and different-identity image pairs. The photograph on the left is always a reference 

photograph, and the photograph on the right either a same or different-identity photo trying to look unlike themselves (evasion) 

(far left) and like someone else (impersonation) (middle and right).  
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All image trial types (same identity, different similar, different random) were included in the 

no disguise and disguise conditions. Every image pair included a reference image and another 

image that varied according to disguise condition and trial type. For the no disguise condition, this 

image was always a no-disguise image, but was either the same identity as the reference image or 

a different identity, depending on the trial type. For the disguise conditions, this image was an 

evasion disguise for same identity trials, and an impersonation disguise for different identity trials 

(see Figure 1). 

Deep Convolutional Neural Network: Structure and Training 

The DCNN we tested (Sankaranarayanan, Alavi, Castillo, & Chellappa, 2016) consists of 7 

convolutional layers, 3 pooling layers, and 3 fully connected layers. These layers work to extract 

features (the computer’s numerical representation of an image) from input images. The network 

uses Parametric Rectified Linear Units (PReLUs) between each layer. This method was chosen, 

because it allows negative output values and improves the convergence rate (Sankaranarayanan et 

al., 2016). When the network is used to extract features from images, features are taken from layer 

fc7. This layer has 512 units. The network was trained using a publicly available dataset (CASIA-

Webface Dataset) (Yi, Lei, Liao, & Li, 2014). This database consists of approximately half a 

million images and includes over 10,000 identities. 

Procedure 

All images from the FAÇADE matching task were processed by the face-identification DCNN, 

which generated a 512-element feature vector for each image. As noted, this face representation 

consisted of the activation levels of the top-layer DCNN units in response to the input image 

(Sankaranarayanan et al., 2016). We refer to this, henceforth, as the DCNN face representation. 

For any given pair of test images, similarity between faces was calculated by measuring the cosine 

distance (similarity) between the face representation vectors of the two images in the pair. 

These similarity scores were compared, in turn, against a criterion value to determine whether 

the similarity between the two DCNN representations was high enough to consider the pair a 

matched identity. Image pairs were assigned a “same” or “different” identification response 

depending on whether the similarity of the images was greater than the criterion. The criterion was 

selected to mimic standard use of computational models of face recognition, which typically 

employ a decision threshold chosen to keep false alarms (i.e., images of different people 

incorrectly identified as the same person) low. Specifically, we set the threshold to 0.46, the value 
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needed to maintain a false alarm rate of 0.1% for “in-the-wild” images. This criterion corresponded 

to the similarity score at which only one in one-thousand non-match pairs in the IJB-A database 

would be falsely judged a match (Klare et al. 2015). 

 To determine DCNN accuracy, the DCNN response (same- or different- identity) was 

compared against the correct response for each image pair and the percentage of correct responses 

was calculated for each image type and disguise condition.  

  

Results and Discussion 

The DCNN achieved perfect matching accuracy for no disguise image pairs for both same and 

different identity trials, and for impersonation trials. Identification accuracy for evasion trials was 

equal to chance. There are striking similarities between the patterns of performance of the DCNN 

and the data from unfamiliar human observers reported by Noyes and Jenkins (2019) (Figure 2).   

 

Figure 2. Patterns of performance accuracy for the DCNN mirrors that of unfamiliar human participants from Noyes and Jenkins 

(2019). Reported numbers are the percentage of correct response. 

 

The low accuracy of the DCNN for evasion disguise exposes a weakness in the DCNN 

that humans share.  Because DCNNs are currently the state-of-the-art for computer-based face 

recognition, this might pose a security threat in applied scenarios. From a research utility 

perspective, however, this finding provides an opportunity to explore mechanisms of human face 

learning. To test this, we incorporated within person variability in face learning and contrast-

learning methods of familiarity. The methods and results of these manipulations are provided in 

Experiments 2 and 3. 

         As noted, humans familiar with the people/faces tested in Noyes and Jenkins (2019) 

matched disguised faces with higher accuracy than the DCNN (Figure 2). Next, we return to 

theories of face learning in an attempt to improve DCNN performance. 
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Experiment 2. Familiarity through ‘averaging’ DCNN Representations               

  

In this experiment, we modelled human familiarity by trying to increase the accepted range of 

within-person variability through face representation averaging. Whereas previous studies 

attempted to create a more stable face representation through image averaging, here we averaged 

the DCNN face representations. Averaging images places emphasis on  low-level (retinotopic) 

visual representations. In contrast, averaging DCNN representations operates on higher-level 

visual codes that index face identity categorically across image and appearance variation. These 

might be considered analogous to codes in the fusiform face area (Grill-Spector & Weiner, 2014).  

In Experiment 1, we compared the similarity of feature vectors for the two images in each 

pair. In Experiment 2, we replaced the single feature vector obtained for the reference image with 

an average feature vector for the identity. To achieve this, we entered new data into our algorithm 

in the form of “ambient” images of each of our models. The DCNN calculated a feature vector for 

each of these new images. These face representation vectors were then averaged for each identity. 

We hypothesised that an averaged representation should be a more robust identity code than a 

single comparison image. We further hypothesised that this familiarisation method should be 

especially effective for improving the model’s ability to tolerate challenging within-person 

variation from evasion disguise. 

         Specifically, in Experiment 2 we expected that DCNN matching accuracy would increase 

for evasion disguise items. However, it is less clear how face representation averaging will affect 

different-identity trials. This scenario has not been tested by previous experiments. Average 

representations may reduce accuracy on different person trials, because expanding tolerance for 

within-person variation may “blur” the boundaries of identity for different faces, especially when 

those faces are of similar appearance.  

 

Methods 

Stimuli 

The FAÇADE models provided a set of no-disguise ambient images (M = 20 per identity) to be 

used as “familiarisation images” for the DCNN. These images included naturalistic appearance 

changes across time, such as changes in hairstyle, pose, expression and illumination. Notably, the 
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images did not include any deliberate attempt to disguise appearance (see Figure 3). The test 

stimuli were again the 156 FAÇADE matching task pairs. 

 

 

 

 

Figure 3. Example of the types of ambient images provided by the models for use in this experiment. The images in Figure 3 are 

illustrative of the experimental stimuli and depicts author EN who did not appear in the experiments. 
  

Procedure 

An average feature vector was obtained for each identity as follows. First, all familiarisation 

images were processed by the DCNN. This produced a feature vector for each familiarisation 

image. These feature vectors were then averaged for each identity with increasing group sizes (N 

= 3, 5, 10, 15 and 20 images) to simulate increasing familiarity (cf. Clutterbuck & Johnston, 2002, 

2005). For each group size condition (with the exception of group size N = 20), a random sample 

of N images was drawn, and the experiment was repeated 5 times. The average performance of 

these 5 iterations served as the accuracy measure. The procedure to obtain similarity scores largely 

mirrored that used in Experiment 1, with the exception that the newly calculated average identity 

feature vector replaced the previous single feature vector from the reference image.  

  

Results and Discussion 

Experiment 1 revealed that the DCNN achieved chance levels of matching performance for 

evasion trials. In Experiment 2, accuracy for the familiarised DCNN for evasion image pairs 

increased with the number of images averaged (See Table 2). Feature vectors consisting of 20 

images increased DCNN matching accuracy for evasion pairs to 65% over its original level of 

chance performance. 
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Although performance increased for evasion trials, accuracy declined for different identity 

trials when the reference and model images were of similar appearance. On different identity 

(similar appearance) trials, accuracy decreased with the number of images included in the average. 

Thus, although averaged feature vectors expanded the acceptable range of within-identity 

appearance variation, it decreased the ability of the DCNN to discriminate among different people 

of a similar appearance. 

It is evident from the results of Experiment 2 that increasing the accepted range of variability 

of a face does not solve all aspects of the face recognition problem. Human familiarity relies not 

only on creating a stable representation of an identity, but also on learning between-identity 

contrasts and stable representations of these other known identities. In Experiment 2, averages 

were created only for the reference identity. Notably, the familiar humans in Noyes and Jenkins 

(2019) were familiar with all identities from the FAÇADE dataset. We incorporate these factors 

into Experiment 3.  

  

Experiment 3. Contrast Method of Familiarity  

  

In this experiment, we incorporated a learning mechanism to enhance between-person contrast, 

and model tolerance of within-person variability. We used Support Vector Machine (SVM) 

Table 2. An improvement in accuracy for same-identity trials came at a cost of more errors on different-identity trials. 

Reported numbers are the percentage of correct responses.  
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classifiers to simulate the between-person contrast familiarity mechanism with all identities in the 

FAÇADE dataset.  

  

Methods 

Stimuli 

As in Experiment 2, the familiarisation images consisted of the ambient image sets provided by 

the FAÇADE models. The test stimuli remained constant across all experiments and were the 156 

FAÇADE matching task pairs. 

 

Procedure 

SVM learning was used to familiarise the DCNN with each identity in the FAÇADE database. An 

SVM is a kernel-based binary classification technique. The goal of an SVM is to optimally separate 

data by finding a vector or hyperplane in a data space that allows for the greatest margin of 

separation between the closest points of the two distributions (Vapnik, Golowich, & Smola, 1997). 

This hyperplane or vector that best separates the target distribution from the rest of the data is 

called the ‘support vector’ for that distribution. 

Separate support vector classifiers were trained for each identity from the FAÇADE database. 

Images of the identity to be learned were labelled as positive examples, and all other images were 

labelled as negative examples. Each identity took a turn as the positive example to create a support 

vector for each identity. Thus, each identity’s support vector provided a representation of a single 

identity, learnt in contrast to all other identities in the dataset. We believe that contrast is a 

mechanism that is available in the real world to help us learn differences between faces (Cavazos 

et al. 2019, Roark et al. 2007). To incorporate within-person variability, the number of images that 

contributed to the SVM was varied from 3 to 20 images, as in Experiment 2. 

In Experiments 1 and 2, the similarity of images was calculated as the cosine similarity of the 

DCNN’s top-level feature vectors for the images in an image pair. In Experiment 3, this top-level 

feature output was used as the input to each SVM. This produced an ‘identity vector’ for each 

image—a vector in which each element represents the likelihood that the image is the person that 

the SVM was trained to classify. Similarity scores for each image pair were calculated by 

computing the cosine similarity of these new SVM-based identity vectors to determine whether 

the two images in the image pair should be classified as the same identity, and if so, whether the 
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identity classification would be correct. More formally, the similarity score was again compared 

against a criterion, to determine image classification—same or different identity. 

The SVM-based method operates in a qualitatively different similarity space than the method 

implemented in our previous experiments, and therefore required a new criterion score. To select 

this score, support vector classifiers were created from a sample of the IJB-A dataset (Klare et al. 

2015) to match the number of models in the FAÇADE dataset. The cosine similarity between the 

identity support vectors and the corresponding true identity vectors (for test images) was 

calculated, and the similarity value at the 0.1% false alarm rate was taken as the criterion cut off. 

 

Results and Discussion 

Accuracy on same-identity disguise trials increased when contrast familiarisation was 

implemented with support vectors. Performance increased with the number of ambient images 

used in the support vector training, from 60.77% for 3 images to 71.54% for 20 images. This 

occurred whilst maintaining generally high performance across the other image types (see Table 

3), similar to that observed by Noyes & Jenkins 2019 for familiar viewers (see Figure 2). Notably, 

familiar participants in Noyes & Jenkins 2019 had high levels of personal familiarity with the 

models across time whereas the SVM results are based on max N=20 images of each model 
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This familiarity method expanded the range of accepted appearances for an identity, but critically, 

also refined the representation. In addition to an increase in accuracy on same identity trials, 

different identity errors were reduced. 

  

General Discussion 

Successful recognition means that we do not confuse people who resemble one another, and that 

we can perceive identity-constancy across variable images of the same person. Although it is 

theoretically clear that successful familiar face recognition requires an ability to group images of 

the same identity together and different identities apart, few studies have considered both of these 

mechanisms of face learning simultaneously. Where both have been tested (Kramer et al. 2017), 

the averaging mechanism was implemented at a pre-processing (image-level) stage, prior to the 

application of the neural network. This implements the averaging mechanism at a stage analogous 

to low-level visual processing (i.e., at the image level). The DCNN model, by contrast, allows for 

both processes to be applied to high level visual representations. The advantage of this model over 

previous approaches stems from the fact that high-level visual representations, processed through 

early visual processing mechanisms are categorical in form. In these representations, categorical 

variation between identities is enhanced relative to variation of image data around identities (Hill 

et al. 2019, Parde et al. 2020). Critically, this is more consistent with what is known about how 

 

Table 3. Learning within person variability and between person contrast improved performance for all image types. The 

more within and between variability learnt, the higher the performance. Reported numbers are the percentage of correct 

responses.  
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retinotopic visual representations in early vision are converted into categorical visual 

representations in inferotemporal cortex, than is the implementation of morphing in early visual 

areas. 

Deep networks provide a compelling framework for exploring theories of face learning and 

the mechanisms that support human performance for familiar face recognition. This perspective 

can be tested in a particularly useful way when we consider recognition of disguised faces, which 

challenge both the skill of telling people apart (evasion) and of telling people together 

(impersonation). The network can be used to examine how the representation of an individual face 

evolves as the “system” is exposed to increasing numbers of image exemplars. DCNNs can support 

separate learning mechanisms that encourage increased distinctions between individuals and/or 

decreased distinctions among images of the same person. In the context of recent work on how 

humans recognise familiar and unfamiliar people under evasion and impersonation disguise 

(Noyes & Jenkins, 2019), deep learning can offer insight into face-learning mechanisms that go 

beyond modeling familiarity simply as “seeing more images of an individual”. In our work, we 

asked how increased image exposure could be exploited to best create a representation that 

balances image generalisation with identity separation.  

To begin, unfamiliar face identification for both disguised and non-disguised faces was 

modeled here using the general face knowledge history of the system (O’Toole, et al. 2018) (Exp. 

1). Operating in this mode, the DCNN only has general expertise for faces, which it acquires 

through training with a vast dataset of labeled face images. In this baseline configuration, the 

network performs like a human participant with a lifetime of experience with faces, but with no 

knowledge of the individual faces in the test set. Both the DCNN, and humans unfamiliar with the 

faces we tested (Noyes & Jenkins, 2019), showed extremely poor performance for evasion 

disguise, and moderately impaired performance for impersonation disguise. Notably, even without 

specific knowledge of individual faces, the DCNN and humans accurately recognised undisguised 

images of the same individuals. 

Previous studies indicate that familiarity improves human face identification performance 

and supports generalised recognition over image variation, including variation due to disguise 

(e.g., Noyes & Jenkins, 2019). We tested learning mechanisms that promote recognition robustness 

in different ways. In adding a familiarity component to the baseline DCNN, we drew on evidence 

that exposure to multiple diverse images contributes to recognition accuracy (Burton et al., 2016). 
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We also drew on previous models’ use of image-based averaging to stabilise identity-specific 

information across images, while minimising image variation noise (Burton, Jenkins, Hancock, & 

White, 2005; Jenkins & Burton, 2008; Jenkins et al., 2011; Kramer et al., 2017). The approach we 

took to familiarisation via averaging, however, differed in important ways from these previous 

models, which have averaged face images through a morphing process prior to processing the 

images through the network (Kramer et al., 2018, 2017). Instead, we processed images through 

the deep network to produce “identity” representations at the top layer of the network, as a first 

step. Only then, did we average the representations of the face that emerged at the top layer of the 

network. This takes advantage of the general face knowledge history of the network to produce an 

identity representation that benefits from the DCNNs general ability to “untangle” identity and 

image-based information in face images (Hill et al., 2019; O’Toole et al., 2018; Parde et al., 2020).  

Using the DCNN’s ability to transform an image-based, retinotopic representation into a 

categorical representation seems consistent with the way human vision operates in the natural 

world. Indeed, when we encounter an image of either a known or unknown individual, this image 

is processed first through low-level visual mechanisms. What emerges at higher order visual areas 

represents face identity more saliently than any particular face image experienced (Parde et al., 

2020). A decision of whether or not an individual is known is almost certainly made at this post-

processing stage. If other images of the individual have been encountered, the averaging 

hypothesis would posit that the representation in memory consists of a better (i.e., more noise-

resistant) representation made from multiple image exposures. 

The averaging approach we employed resulted in better recognition of faces in evasion 

disguise, but less accurate recognition of impersonation disguise. The reason for this is clear. 

Evasion disguise challenges the ability of the network to group widely variable images of a person 

together into a single identity. Representation averaging extends the acceptable range of variation, 

to subsume images of people trying to evade identification. This mechanism facilitates learning of 

within-person variability at the cost of accepting some impersonators as examples of the identity 

they are trying to look like. 

Whilst averaging goes part way toward an account of familiarity, a separate contrast 

mechanism is needed in face learning to reinforce distinctions between similar identities. This 

mechanism must draw on differences between an individual identity and all other identities in the 

set of faces we know. The SVM provides a mechanism for both telling faces apart and clustering 
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multiple images of each identity together. Specifically, the SVM, which we applied to learning 

individual “familiar” identities, via their DCNN-generated representations, improved accuracy on 

evasion trials, while maintaining high performance for impersonation trials. For each individual in 

the “familiar set”, the SVM learns to separate the representation of the images of each identity 

from those of all other identities in the set. Thus, the network learns what makes a person different 

from a local population of other people with whom it is familiar. Both of these mechanisms – 

averaging and contrast – must come together for the facilitation of successful face learning that 

can see through evasion disguise and detect impersonation. 

Returning to the larger issues, these findings inform theories of face learning and contribute 

to a revision of our understanding of face space theory. The classic face space model, in the original 

metaphorical formulation implemented with eigenfaces, assumes that a face can be represented by 

a single image of each identity, as a point in the space, and therefore does not accommodate within 

person variability in appearance (for a different perspective on formulation on classic face space 

see Lewis, 2004) . A more recent tenant of the face space model incorporates this variability in the 

form of an identity region within a face space that encompasses many exemplar images of a single 

identity in close proximity to each other (Hill et al., 2019). This occurs in a way that allows for 

image location in the identity-space to be structured according to the type and salience of image 

variation (e.g., viewpoint, illumination). When DCNNs are successful at face recognition, it 

follows that identity regions for different individuals remain distinct. As psychological theories of 

face familiarity progress, they must begin to consider mechanisms for distinguishing among 

individual face identities and for seeing individual identities despite appearance and image 

variability. Deep networks for face recognition offer a base from which both sides of this question 

can be studied. 

 

 

Acknowledgements  

Funding provided by National Eye Institute Grant R01EY029692-01 to AOT and by the 

Intelligence Advanced Research Projects Activity (IARPA). This research is based in part on work 

supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced 

Research Projects Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012 and 

2019-022600002. The views and conclusions contained herein are those of the authors and should 

not be interpreted as necessarily representing the official policies or endorsements, either 

expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is 

authorised to reproduce and distribute reprints for Governmental purposes notwithstanding any 

copyright annotation thereon. 



23 

 

References 

 

Andrews, S., Jenkins, R., Cursiter, H., & Burton, A. M. (2015). Telling faces together: Learning new 

faces through exposure to multiple instances. Quarterly Journal of Experimental Psychology , 

68(10), 2041–2050. Retrieved from https://doi.org/10.1080/17470218.2014.1003949 

Benson, P. J., & Perrett, D. I. (1991). Perception and recognition of photographic quality facial 

caricatures: Implications for the recognition of natural images. European Journal of Cognitive 

Psychology. Retrieved from https://doi.org/10.1080/09541449108406222 

Bruce, V. (1994). Stability from Variation: The Case of Face Recognition the M.D. Vernon Memorial 

Lecture. The Quarterly Journal of Experimental Psychology Section A. Retrieved from 

https://doi.org/10.1080/14640749408401141 

Bruce, V., Doyle, T., Dench, N., & Burton, M. (1991). Remembering facial configurations. Cognition, 

38(2), 109–144. Retrieved from https://doi.org/10.1016/0010-0277(91)90049-a 

Burton, A. M., Jenkins, R., Hancock, P. J. B., & White, D. (2005). Robust representations for face 

recognition: the power of averages. Cognitive Psychology, 51(3), 256–284. Retrieved from 

https://doi.org/10.1016/j.cogpsych.2005.06.003 

Burton, A. M., Kramer, R. S. S., Ritchie, K. L., & Jenkins, R. (2016). Identity From Variation: 

Representations of Faces Derived From Multiple Instances. Cognitive Science, 40(1), 202–223. 

Retrieved from https://doi.org/10.1111/cogs.12231 

Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow Face Matching Test. Behavior Research 

Methods. Retrieved from https://doi.org/10.3758/brm.42.1.286 

Burton, A. M., Wilson, S., Cowan, M., & Bruce, V. (1999). Face Recognition in Poor-Quality Video: 

Evidence From Security Surveillance. Psychological Science. Retrieved from 

https://doi.org/10.1111/1467-9280.00144 

Cavazos, J. G., Noyes, E., & O’Toole, A. J. (2019). Learning context and the other-race effect: Strategies 

for improving face recognition. Vision Research. Retrieved from 



24 

 

https://doi.org/10.1016/j.visres.2018.03.003 

Clutterbuck, R., & Johnston, R. A. (2002). Exploring levels of face familiarity by using an indirect face-

matching measure. Perception. Retrieved from https://doi.org/10.1068/p3335 

Clutterbuck, R., & Johnston, R. A. (2005). Demonstrating how unfamiliar faces become familiar using a 

face matching task. European Journal of Cognitive Psychology. Retrieved from 

https://doi.org/10.1080/09541440340000439 

Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. Journal of 

Experimental Psychology. General, 115(2), 107–117. Retrieved from https://doi.org/10.1037//0096-

3445.115.2.107 

Dowsett, A. J., Sandford, A., & Burton, A. M. (2016). Face learning with multiple images leads to fast 

acquisition of familiarity for specific individuals. Quarterly Journal of Experimental Psychology , 

69(1), 1–10. Retrieved from https://doi.org/10.1080/17470218.2015.1017513 

Dwyer, D. M., & Vladeanu, M. (2009). Perceptual learning in face processing: comparison facilitates face 

recognition. Quarterly Journal of Experimental Psychology , 62(10), 2055–2067. Retrieved from 

https://doi.org/10.1080/17470210802661736 

Gauthier, I., & Nelson, C. A. (2001). The development of face expertise. Current Opinion in 

Neurobiology, 11(2), 219–224. Retrieved from https://doi.org/10.1016/s0959-4388(00)00200-2 

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and 

its role in categorization. Nature Reviews. Neuroscience, 15(8), 536–548. Retrieved from 

https://doi.org/10.1038/nrn3747 

Hill, M. Q., Parde, C. J., Castillo, C. D., Ivette Colón, Y., Ranjan, R., Chen, J.-C., … O’Toole, A. J. 

(2019). Deep convolutional neural networks in the face of caricature. Nature Machine Intelligence, 

1(11), 522–529. Retrieved 18 May 2020 from https://doi.org/10.1038/s42256-019-0111-7 

Jenkins, R., & Burton, A. M. (2008). 100% accuracy in automatic face recognition. Science, 319(5862), 

435. Retrieved from https://doi.org/10.1126/science.1149656 

Jenkins, R., White, D., Van Montfort, X., & Burton, A. M. (2011). Variability in photos of the same face. 



25 

 

Cognition. Retrieved from https://doi.org/10.1016/j.cognition.2011.08.001 

Kemp, R., Towell, N., & Pike, G. (1997). When Seeing should not be Believing: Photographs, Credit 

Cards and Fraud. Applied Cognitive Psychology. Retrieved from https://doi.org/3.0.co;2-

o">10.1002/(sici)1099-0720(199706)11:3<211::aid-acp430>3.0.co;2-o 

Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., ... & Jain, A. K. (2015). Pushing 

the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. 

In Proceedings of the IEEE conference on computer vision and pattern recognition, 1931-1939. 

Kramer, R. S. S., Ritchie, K. L., & Burton, A.M. (2015). Viewers extract the mean from images of the 

same person: A route to face learning. Journal of Vision. Retrieved from 

https://doi.org/10.1167/15.4.1 

Kramer, R. S. S., Young, A. W., & Burton, A. M. (2018). Understanding face familiarity. Cognition, 172, 

46–58. Retrieved from https://doi.org/10.1016/j.cognition.2017.12.005 

Kramer, R. S. S., Young, A. W., Day, M. G., & Burton, A. M. (2017). Robust social categorization 

emerges from learning the identities of very few faces. Psychological Review, 124(2), 115–129. 

Retrieved from https://doi.org/10.1037/rev0000048 

Lander, K., Bruce, V., & Hill, H. (2001). Evaluating the effectiveness of pixelation and blurring on 

masking the identity of familiar faces. Applied Cognitive Psychology. Retrieved from 

https://doi.org/3.0.co;2-7">10.1002/1099-0720(200101/02)15:1<101::aid-acp697>3.0.co;2-7 

Leopold, D. A., O’Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced shape encoding 

revealed by high-level aftereffects. Nature Neuroscience. Retrieved from 

https://doi.org/10.1038/82947 

Leopold, D. A., Rhodes, G., Müller, K.-M., & Jeffery, L. (2005). The dynamics of visual adaptation to 

faces. Proceedings. Biological Sciences / The Royal Society, 272(1566), 897–904. Retrieved from 

https://doi.org/10.1098/rspb.2004.3022 

Light, L. L., Kayra-Stuart, F., & Hollander, S. (1979). Recognition memory for typical and unusual faces. 

Journal of Experimental Psychology. Human Learning and Memory, 5(3), 212–228. Retrieved from 



26 

 

https://www.ncbi.nlm.nih.gov/pubmed/528913 

Menon, N., Kemp, R. I., & White, D. (2018). More than a sum of parts: robust face recognition by 

integrating variation. Royal Society Open Science. Retrieved from 

https://doi.org/10.1098/rsos.172381 

Mundy, M. E., Honey, R. C., & Dwyer, D. M. (2007). Simultaneous presentation of similar stimuli 

produces perceptual learning in human picture processing. Journal of Experimental Psychology. 

Animal Behavior Processes, 33(2), 124–138. Retrieved from https://doi.org/10.1037/0097-

7403.33.2.124 

Murphy, J., Ipser, A., Gaigg, S. B., & Cook, R. (2015). Exemplar variance supports robust learning of 

facial identity. Journal of Experimental Psychology. Human Perception and Performance, 41(3), 

577–581. Retrieved from https://doi.org/10.1037/xhp0000049 

Noyes, E., & Jenkins, R. (2017). Camera-to-subject distance affects face configuration and perceived 

identity. Cognition, 165, 97–104. Retrieved from https://doi.org/10.1016/j.cognition.2017.05.012 

Noyes, E., & Jenkins, R. (2019). Deliberate disguise in face identification. Journal of Experimental 

Psychology. Applied, 25(2), 280–290. Retrieved from https://doi.org/10.1037/xap0000213 

O’Toole, A. J., An, X., Dunlop, J., Natu, V., & Phillips, P.J. (2012). Comparing face recognition 

algorithms to humans on challenging tasks. ACM Transactions on Applied Perception. Retrieved 

from https://doi.org/10.1145/2355598.2355599 

O’Toole, A. J., Castillo, C. D., Parde, C. J., Hill, M. Q., & Chellappa, R. (2018). Face Space 

Representations in Deep Convolutional Neural Networks. Trends in Cognitive Sciences, 22(9), 794–

809. Retrieved from https://doi.org/10.1016/j.tics.2018.06.006 

O’Toole, A. J., Phillips, P.J., Jiang, F., Ayyad, J., Penard, N., & Abdi, H. (2007). Face Recognition 

Algorithms Surpass Humans Matching Faces Over Changes in Illumination. IEEE Transactions on 

Pattern Analysis and Machine Intelligence. Retrieved from https://doi.org/10.1109/tpami.2007.1107 

Parde, C. J., Castillo, C., Hill, M. Q., Colon, Y. I., Sankaranarayanan, S., Chen, J. C., & O’Toole, A. J. 

(2017, May). Face and image representation in deep CNN features. In 2017 12th IEEE International 



27 

 

Conference on Automatic Face & Gesture Recognition (FG 2017), 673-680. IEEE. 

Parde, C. J., Colón, Y. I., Hill, M. Q., Castillo, C. D., Dhar, P., & O’Toole, A. (2020). Single Unit Status 

in Deep Convolutional Neural Network Codes for Face Identification: Sparseness Redefined. arXiv 

Preprint. Retrieved from https://doi.org/arXiv:2002.06274. 

Phillips, P. J., Hill, M. Q., Swindle, J. A., & O’Toole, A. J. (2015). Human and algorithm performance on 

the PaSC face Recognition Challenge. 2015 IEEE 7th International Conference on Biometrics 

Theory, Applications and Systems (BTAS). Retrieved from 

https://doi.org/10.1109/btas.2015.7358765 

Phillips, P. J., & O’Toole, A. J. (2014). Comparison of human and computer performance across face 

recognition experiments. Image and Vision Computing. Retrieved from 

https://doi.org/10.1016/j.imavis.2013.12.002 

Phillips, P. J., Moon, H., Rizvi, S. A., & Rauss, P. J. (2000). The FERET evaluation methodology for 

face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence. 

Retrieved from https://doi.org/10.1109/34.879790 

Rhodes, G., & Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision Research. 

Retrieved from https://doi.org/10.1016/j.visres.2006.03.002 

Ritchie, K. L., & Burton, A. M. (2017). Learning faces from variability. Quarterly Journal of 

Experimental Psychology , 70(5), 897–905. Retrieved from 

https://doi.org/10.1080/17470218.2015.1136656 

Rossion, B. (2018, June). Humans Are Visual Experts at Unfamiliar Face Recognition. Trends in 

cognitive sciences. Retrieved from https://doi.org/10.1016/j.tics.2018.03.002 

Sankaranarayanan, S., Alavi, A., Castillo, C. D., & Chellappa, R. (2016). Triplet probabilistic embedding 

for face verification and clustering. 2016 IEEE 8th International Conference on Biometrics Theory, 

Applications and Systems (BTAS). Retrieved from https://doi.org/10.1109/btas.2016.7791205 

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 

71–86. Retrieved from https://doi.org/10.1162/jocn.1991.3.1.71 



28 

 

Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face 

recognition. The Quarterly Journal of Experimental Psychology. A, Human Experimental 

Psychology, 43(2), 161–204. Retrieved from https://doi.org/10.1080/14640749108400966 

Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support Vector Method for Function Approximation, 

Regression Estimation, and Signal Processing. Advances in Neural Information Processing Systems, 

(9), 281–287. Retrieved from https://doi.org/10.1007/978-3-642-33311-8_5 

White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014). Passport officers’ errors in 

face matching. PloS One, 9(8), e103510. Retrieved from 

https://doi.org/10.1371/journal.pone.0103510 

Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning Face Representation from Scratch. Retrieved from 

https://doi.org/http://arxiv.org/abs/1411.7923 

Young, A. W., & Burton, A. M. (2017). Recognizing Faces. Current Directions in Psychological Science. 

Retrieved from https://doi.org/10.1177/0963721416688114 

Young, A. W., & Burton, A. M. (2018, June). What We See in Unfamiliar Faces: A Response to Rossion. 

Trends in cognitive sciences. Retrieved from https://doi.org/10.1016/j.tics.2018.03.008 

Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. 

Perception, 16(6), 747–759. Retrieved from https://doi.org/10.1068/p160747 

Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D. L., & Weng, J. (1998). Discriminant Analysis of 

Principal Components for Face Recognition. Face Recognition. Retrieved from 

https://doi.org/10.1007/978-3-642-72201-1_4 

 


