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ABSTRACT: Supply chain information is invaluable to further
regionalize product life cycle assessments (LCAs), but detailed
information linking production and consumption centers is not
always available. We introduce the commodity supply mix (CSM)
defined as the trade-volume-weighted average representing the
combined geographic areas for the production of a commodity
exported to a given market with the goal of (1) enhancing the
relevance of inventory and impact regionalization and (2)
allocating these impacts to specific markets. We apply the CSM
to the Brazilian soybean supply chain mapped by Trase to obtain
the mix of ecoregions and river basins linked to domestic
consumption and exports to China, EU, France, and the rest of
the world, before quantifying damage to biodiversity, and water
scarcity footprints. The EU had the lowest potential biodiversity damage but the largest water scarcity footprint following respective
sourcing patterns in 12 ecoregions and 18 river basins. These results differed from the average impact scores obtained from Brazilian
soybean production information alone. The CSM can be derived at different scales (subnationally, internationally) using existing
supply chain information and constitutes an additional step toward greater regionalization in LCAs, particularly for impacts with
greater spatial variability such as biodiversity and water scarcity.

KEYWORDS: life cycle inventory, spatialization, supply chains, biodiversity, water scarcity, soybean, Brazil, trade

■ INTRODUCTION

Life cycle assessment (LCA) is an approach that allows for the
quantification of potential impacts of production and
consumption processes throughout the life cycle of a product
or service.1 LCAs follow a four-step process according to the
ISO 14044 standard:1 (1) goal and scope definition, (2) life
cycle inventory (LCI), (3) life cycle impact assessment
(LCIA), and (4) normalization and interpretation. LCAs
originally presented average potential impacts using generic
site conditions, until the 1990s when the benefits of site-
specific approaches became an important topic of discussion.2

Since then, developments have highlighted the importance of
representing site-specific conditions not only to account for
differences in processes across multiple sites (e.g., electricity
generation) but also because emissions (to soil, air, water) in
different environmental settings and locations may lead to
different impacts (e.g., terrestrial acidification, eutrophica-
tion).2,3 The inclusion of site-specific information can, in turn,
affect the conclusions of LCAs that would only be based on
site-generic data.3

Regionalization in LCA refers to the efforts to move from
site-generic to more site-specific information and involves (1)
providing more regionally relevant information that is

applicable to both LCI (i.e., “inventory regionalization”) and
LCIA phases (i.e., “impact regionalization”) and (2)
accounting for spatial variability, particularly in elementary
flows (or “inventory spatialization”).3 Ideally, site-specific
elementary flows would match the spatial resolution of existing
characterization factors, but practitioners can be limited by the
availability of data or the resolution of impact assessment
models while also facing trade-offs between selecting finer
spatial resolution data and reducing uncertainty in the results.4

Efforts to further regionalize LCAs have accelerated in recent
years, with the inclusion of land and water use impact
categories, leading up to the UN Environment’s Life Cycle
Initiative Global Guidance on Environmental Life Cycle
Assessment Indicators (or Global Guidance, henceforth).5

Land occupation and transformation impacts require detailed
information on biophysical conditions and spatial hetero-
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geneity to quantify potential damage to biodiversity and
ecosystem services.6,7 Similarly, water consumption and
degradation impacts are known to vary across river basins
due to variability in human and ecosystem demand8,9 or
background chemical concentrations10 affecting human
health11 or natural resources.12 More systematic region-
alization in LCAs has been accompanied by methods to
reduce uncertainty from spatial variability in both elementary
flows and characterization factors,13−17 methods for prioritiz-
ing regionalization,18−20 software solutions,3,21 and stand-
ardization of spatial boundaries.22

Regionalization has been a key consideration for the
increasing number of LCAs of food products.23−29 These
LCAs require high-resolution information on regional
practices, soil and water conditions for production, as well as
environmental conditions for emissions to soil, air, and water
to derive more regionalized impacts.30 Impact spatialization,
for instance, through finer-resolution LCI, can lead to different
impact scores, particularly in cases of spatially variable
characterization factors.29 This finer regionalization can also
reduce uncertainty in impact assessment results,19 which can
be an important step for agricultural products.31 For example,
Yang et al. show that a finer-scale LCI of corn production in
the United States using county boundaries was beneficial in
differentiating variability in water use impacts, while state
boundaries were enough for greenhouse gas emissions.29

Three important challenges remain, however, to allow for a
widespread application of finer-resolution LCI to further
regionalize LCAs: (1) many food products are made using
ingredients derived from agricultural commodities, which are
aggregated and shipped in bulk, thereby increasing the
challenge in deriving a spatially explicit LCI from “farm-to-
fork”; (2) products are delivered to consumers through
complex supply chains that obscure the true source region(s)
and therefore the information required to regionalize LCAs;
(3) when performing an LCA of a more complex consumer
product (milk replacements, packaged meat product, etc.),

practitioners may have limited information on the production
process of the raw materials (e.g., soy or corn production),
thus limiting the ability to estimate potential damage to
biodiversity, ecosystem services, and water use, which are more
regionally significant. To overcome the above challenges, much
work to date has focused on mapping international supply
chains using either physical trade models,32 regionalized
input−output models,33,34 or data-driven subnational trade
flow networks.26,35,36 In many cases, a transformed commodity
(e.g., livestock feed) is tracked in terms of its primary
agricultural commodity (e.g., soy, corn) as a means to link
producers with consumers in LCA.28,32 These studies,
however, do not typically include further industrialization of
these final products and often miss consumer-facing life cycle
phases (e.g., distribution, product use, and end-of-life).
Several options are available to practitioners to increase the

regionalization of an LCA study, all of which implicitly attempt
to detail the supply chain of the production system under
consideration: (1) regional downscaling through field surveys
or regional output percentages, (2) testing production and
supply scenarios, or (3) supply mixes. Regional output
percentages allow for spatialization of the LCI based on, for
example, the production output to capture both inter- and
intraregional movements of a commodity or product.15

Production and supply scenario testing can provide insights
into a set of production and supply conditions among different
regions with distinct environmental settings (e.g., land, water
use, climate) or supply chains. For example, Castanheira and
Freire37 tested land use change and transportation scenarios
for Brazilian and Argentinean soybean exported to Europe.
Consumption or supply mixes are now available in ecoinvent
version 3 through market data sets,38 where the LCI is
available from the global supply and consumption of products.
This last option is particularly convenient for practitioners with
little or no information on where production activities occur;
however, the data relies on global production and consumption

Figure 1. Supply chain of a commodity produced and exported from country A (exporter) to country B (importer) before being re-exported to
country D. The commodity is sourced from several subregions within country A (regions 1−5) before supplying country B through the trade hub
networks (TH1, TH2, TH3). Each region and country can both produce, supply (s), and consume (c) the commodity. Numbers in bold are those
used in Table 1 to calculate the commodity supply mix.
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statistics and will miss important subnational spatial variability
for commodity production processes.
In this paper, we introduce the commodity supply mix

(CSM) derived from a systematic approach to improve
regionalization in LCA using existing commodity supply
chain mapping at the subnational level but applicable to
other scales (subregional to international). Similar to existing
approaches exemplified by electricity39 and water mixes,40 the
CSM aims to generate regionalized LCI for LCA practitioners
even in cases where information may be lacking on the
production of a commodity that is used as an ingredient into a
more complex product. First, we describe the concept of the
CSM for improving regionalization in LCAs before applying
the method using Trase36 to a case study of land and water
uses for Brazilian soybean consumed domestically and
exported to China (Mainland), the EU, France, and the rest
of the world (RoW). We expect the CSM to be a much needed
option for practitioners seeking to improve regionalization in
LCAs of complex agrifood products, particularly for the
quantification of potential impacts to biodiversity and water
use.5

■ METHODS

Commodity Supply Mix. Weidema et al.41 define a
production mix as a combination of suppliers of a product to
areas of production and define a supply mix as the additional
link between this production mix and specific consumers.
Following this definition, we describe the CSM as a trade-
volume-weighted average representing the combined geo-
graphic areas for the production of a commodity (or source
regions) that are destined to specific consumer markets for that
commodity. The CSM relies on the mapping of commodity
supply chains, either nationally or internationally, to determine
(1) the spatially explicit location of potential source regions
that are associated with elementary flows, (2) at a scale
adaptable to regional characterization factors that (3) can be
linked to consumers. The CSM relies on supply chain nodes
where commodities are combined in bulk before being
transported to the next node(s) (hereafter named “trade
hubs”). The nodes could be whole countries when considering
re-exports of commodities within the context of international
trade but also grain storage facilities, processing plants,
distribution centers, etc., when looking specifically at in-
country processes. For instance, within a producing country A
(Figure 1), a CSM can be derived subnationally considering
source regions that act as both regions of production and
consumption (regions 1−5) through trade hubs (TH1, TH2,
TH3) within the country. A CSM can also be derived at the
country level considering international trade partners. For
example, country B (Figure 1) may import a commodity from
both countries A and C before the commodity is re-exported
to country D (interpreted as a “market”). In this international
case, country C can be considered an international trade hub.
The CSM therefore links production to a place of consumption
(or market); it can be applied at any scale following the needs
and availability of both elementary flow data and character-
ization factors defined in the LCA study’s goal and scope, a
coarse resolution being defined through country-to-country
international trade, and the finest resolution being the
multicountry subnational sourcing-to-country connections.
The strength of the CSM for more regionalized LCAs is to
match the region(s) (Figure 1) to a resolution that can match

existing characterization factors at a finer resolution than a
country’s borders.
In LCA, potential impacts are calculated following eq

115,16,42

∑=I m CFl

s i

i
s

i
sl

, (1)

where Il is the potential impact for impact category l, mi
s are the

LCI elementary flows of emissions or resources extracted s in
region i, and CFi

sl are the characterization factors for the impact
category l identified by each elementary flow s for each region
i. Current guidelines recommend that impact categories
include potential damage to biodiversity and impacts to
water scarcity,5 for which the elementary flows are to be
constructed from land and water uses (as s in eq 1) in
ecoregions and river basins (as i). Using information on the
commodity supply chain, the CSM distributes both elementary
flows and characterization factors according to individual
source regions linked to specific consumer markets j, as shown
in eqs 2 and 3

∑=I mCSM ( CF )cl

s i

i
cj

i
cs

i
csl

, (2)

=
∑

S

S
CSMi

cj i
cj

i
i
cj

1 (3)

where CSMi
cj (unitless) is the supply- or trade-volume-

weighted share of source region i of commodity c for market
j obtained by deriving the fraction of supply of the commodity
among source regions Si

cj that supply the commodity to market
j. We apply eq 3 to a theoretical example (Table 1) to derive

the CSM for a commodity from source regions in country A
and exported to country B (Figure 1). The CSM is compatible
with existing definitions of supply mix in ecoinvent38 such that
results may be integrated in ecoinvent’s market data sets.

Case Study.We apply the CSM to a regionalized cradle-to-
market attributional LCA of Brazilian soybean (as whole bean)
focused on potential biodiversity damage from land occupation
and impacts of water consumption from irrigation. The
functional unit is 1 tonne of soybean produced in Brazil in
2017 that is destined to the main markets considering both the
domestic market and Brazil’s main international trading
partners: China (Mainland), the EU (including the United
Kingdom), France, and the RoW. The CSM is applied using
the soybean supply chain map from the Transparency for
Sustainable Economies (Trase) initiative36 (see below) to

Table 1. Theoretical Example of Calculation of the
Commodity Supply Mix (CSM) of Country B Importing a
Commodity from Country A Whose Supply Is Concentrated
in Source Regions 1−5 (Figure 1)

regions

country
A supply
from
sources

trade
hubs

country A
total

supply to
trade hubs

proportion traded
to country B from
trade hubs of
country A

CSM:
proportion
traded to

country B from
country A
regions

1 2 TH1 11 0.786 0.143

2 3 0.214

3 6 0.429

4 1 TH2 3 0.214 0.071

5 2 0.143
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obtain the share of soybean supplied from different municipal-
ities classified within Brazilian ecoregions and river basins.
These supply chains are then combined with land and water
use information to derive the elementary flows for each
regionally specific characterization factor. Potential damage to
biodiversity from land occupation was derived following eq 47

∑=I A tCSM ( CF )c

i

i
cj

i
c c

i
c,occ ,occ ,occ ,occ

(4)

where Ic,occ (PDF yr tonne−1) is the potential damage to
biodiversity from commodity c considering the LCI as the
product of the area of land occupation in Brazilian ecoregion i,
Ai
c,occ (m2 tonne−1), and the occupation time (tc,occ assumed to

be 0.30−0.38 yr according to Flach et al.43) (see Table S1 in
the Supporting Information for the full list of Brazilian
ecoregions and Figure S1 for the map). Values of CFi

c,occ (PDF
m−2) are the ecoregion-specific characterization factors for
land occupation from Chaudhary and Brooks44 (crop-
intensive) (Table S1) based on the ecoregions from The
Nature Conservancy.45 Values of Ai

c,occ were derived from the
2017 inverse yield of each Brazilian municipality.46

Impacts of water consumption were expressed as a water
scarcity footprint (WSF, m3 tonne−1) following Boulay et al.9

using characterization factors specific to irrigation and
following eq 5

∑=WSF CSM (WFI CF )c

b

b
cj

b
c

b
c

(5)

where WFIb
c (m3 tonne−1) is the water footprint inventory of

commodity c in each river basin b assuming a constant water
consumption of 90 mm of irrigation per crop cycle (converted
to m3 tonne−1) across the river basins following early planting
practices in Brazil assumed to be widespread47 for the purposes
of the case study. Values of CFb

c are the AWARE character-
ization factors for irrigation, as defined in Boulay et al. (Table
S2 and Figure S2).9

We used Trase (trase.earth) for Brazilian soybean (v.2.5.0)48

in 2017 to derive the CSM for the soybean supply chain and
obtain the potential impacts of land occupation and water
consumption from eqs 4 and 5. Trase is based on an improved
supply chain map previously described by Godar et al.,49 which
uses soybean exports and per-shipment trade data to link
Brazilian municipalities of soybean production to import
countries. In a first step, per-shipment trade records are used to
identify the municipalities of taxation containing either farms,
silos, or wholesale retailing (i.e., trader assets) by combining
information from trade records (i.e., country of destination,
cargo owner (trader), Brazilian state of production), tax
records, and a list of trader assets. In a second step, the
municipality of soybean production is identified by the
minimum cost flow analysis using linear programming50 that
is optimized considering a combination of a trader’s asset
location (with silos identified using information on economic
activity linked to the tax information), soybean demand
(domestic and export demand), and transportation costs. The
result is a Brazilian subnational supply chain map linking a
municipality of production to a country of destination and the
trader/port combination for each transaction. Municipalities
acting as sources for our markets of interest in 2017 (Brazil,
China, the EU, France, and the RoW) were then classified into
source ecoregions and river basins following two classification
methods (see the Uncertainty Analysis section) prior to

deriving the CSM for each market based on the supply volume
of soybean exported.

Uncertainty Analysis. We accounted for three sources of
uncertainty in the case study. First, we considered uncertainty
in the classification of each municipality into ecoregions and
river basins to ensure the results were not affected by zoning
(also described as the “modifiable areal unit problem”).14 The
soybean supply chain mapped in Trase links a Brazilian
municipality of production to the market of interest; as a result,
a classification of each municipality within each ecoregion and
river basin was necessary to select the appropriate character-
ization factors. However, a problem arises when attempting to
classify a municipality located at the border of two adjacent
ecoregions or river basins, leading to the selection of one
characterization factor over another. We therefore considered
two classification schemes following (1) the majority soybean
area (labeled MS hereafter) and (2) the majority municipality
area (MA). In the MS classification method, municipalities
were part of an ecoregion or river basin if the majority of the
soybean cropland area in the municipality (as determined
using soybean crop maps from Song et al.51 and available in
Trase) were within that boundary. In the MA classification
method, municipalities were part of an ecoregion or a river
basin if the majority of the municipality’s area was within their
limits. Second, we accounted for uncertainty in tc,occ from eq 4
(mean = 0.34 yr (125 days), upper bound = 0.38 yr (149
days), and lower bound = 0.30 yr (110 days)) following Flach
et al.43 to represent the share of soybean occupation time in
the annual crop cycle, as many regions of Brazil harvest more
than one crop per year (soybean is often followed by corn).
Finally, we accounted for the uncertainty in the character-
ization factors for land occupation (eq 4) as Chaudhary and
Brooks44 provide a distribution (mean, upper, and lower 95%
confidence intervals) for each of their characterization factors.
Impact assessment results assume no uncertainty in the inverse
yield for land occupation (Ai

c,occ) nor any uncertainty in the
water consumption for irrigation (WFIb

c and CFb
c).

The Brazilian soybean supply chain map is based on trade
data and a complete list of silos identified with company
ownership that can be linked to exporters in the trade data. In
addition, the links between the trade hubs and the municipal-
ities of production represent those with the lowest cost of
transportation, therefore illustrating the highest probable
supply chain based on available information. In cases where
these connections could not be made due to lack of
information in the combined data sets (e.g., lack of information
on the Brazilian state of production, missing trader, or
ownership information), the soybean was labeled as having
“unknown origin”. In those cases, impacts were calculated
using an LCI derived from the national mean yield. This means
that the soybean of unknown origin was assigned the impact of
the Brazilian soybean production mix.

Interpretation of Results. Impact assessment results are
presented as a weighted average and as a probability density of
impact scores from the spatial variability across ecoregions and
river basins. The weighted average is obtained by taking the
sum of the impact scores for each municipality supplying
soybean to each market, weighted by their individual CSM. We
interpreted these results as the impacts of the average tonne of
soybean exported to each market. They are compared against
the Brazilian soybean production mix or the weighted average
obtained by summing the impact scores for all municipalities
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that produced soybean in 2017,46 weighted by the contribution
of each municipality to total production.
We also present the probability density of impact scores

following the spatial variability of results for each municipality
that produced and supplied markets with soybean, according
to five cases. These cases are meant to represent different
options following a gradual increase in information available on
commodity sourcing:

• “Production” case (P) for which impact scores are
derived assuming an equal probability of soybean supply
to markets. In mathematical terms, the values of the LCI
(mi

s in eq 1) are obtained in each of the Brazilian
municipalities and then divided by the number of
municipalities (2275). This case can be interpreted as a
typical option available for an analyst who would only
have information on Brazilian soybean production.

• “Production mix” (PM) for which the probability of
impact scores is distributed according to the contribu-
tion of each municipality to the total Brazilian soybean
production. This case is similar to the P case, but for
which a weighting factor accounts for the variability in
soybean production across Brazil, assuming that markets
have a greater probability of sourcing soybean from
municipalities with greater production. This can also be
interpreted as a typical option available for an analyst
seeking to include more regional variability in the LCI.

• “Production mix to market” (PMM) is the same as the
PM case but is qualitatively augmented by the
information provided by the trade connections between

municipalities of soybean production and each market
(i.e., trade volumes are not considered). In other words,
the impact scores are obtained using information on
municipal soybean production but reduced to those
municipalities identified as suppliers of each of the
markets. This case can be interpreted as an option
resulting from in-country research or specific supply
chain research carried out for the LCA.

• “Commodity supply mix” (CSM) for which the
probability of impact scores follows the CSM.

• “Consumption boundary” (B) for which the probability
of impact scores is derived assuming an equal probability
of sourcing from the ecoregions or river basin
boundaries identified in Trase. This case can be
interpreted as an option resulting from general
tendencies of supply focused specifically on ecoregion
or river basin boundaries without additional knowledge
on the amount of soybean sourced from these
geographic boundaries.

In short, the above cases are meant to represent different

options available for the LCA study considering limited

information on regional production (as P, PM, B) or some

information on supply chains (PMM, CSM).
Analysis was carried out, and graphs were generated using R

statistical software (v.4.0.5)52 in R Studio (v.1.4.1103),53 with

the tidyverse,54 rgdal,55 sf,56 and patchwork57 packages.

Figure 2. Spatially explicit life cycle inventory for land occupation (m2 yr tonne−1) for Brazilian soybean exported to China in 2017. Values shown
are specific to the majority soybean classification of municipalities into the ecoregions37 and mean land occupation time.35 Results for Brazil’s
domestic consumption and exports to the EU, France, and the RoW are shown in Figures S3−S6.
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■ RESULTS

Commodity Supply Mix and Life Cycle Inventory.
Brazil supplied 98.9 Mtonnes of soybean (as whole bean) in
2017, 93% of which was traced back to a municipality of origin
(the remaining 7% could not be linked to a municipality of

origin). The CSM varied for each market: spanning 12
ecoregions and 17 river basins for domestically consumed
soybean, 11 ecoregions (Figure 2) and 19 river basins for
exports to China, 12 ecoregions and 18 river basins (Figure 3)
for exports to the EU (including France), 7 ecoregions and 9

Figure 3. Spatially explicit water footprint inventory per river basin (m3 tonne−1) for Brazilian soybean exported to the EU in 2017. Values shown
are specific to the majority soybean classification of municipalities into river basins.9 Results for Brazil’s domestic consumption and exports to
China, France, and the RoW are shown in Figures S7−S10.

Table 2. Commodity Supply Mix (CSM, Unitless) of Ecoregions and River Basins for Brazilian Soybean Destined to Each
Market in 2017 (for Full Tables, See Tables S3 and S4 in the Supporting Information)a

Brazil China EU France RoW

MS-MA MS-MA MS-MA MS-MA MS-MA

Ecoregions

Araucaria moist forests 0.178−0.179 0.131−0.132 0.023−0.023 0.097−0.110 0.087−0.086

Cerrado 0.489−0.482 0.414−0.404 0.490−0.482 0.485−0.477 0.474−0.466

Chiquitano dry forest 0.005−0.007 0.002−0.001 0.039−0.038 0.121−0.119 0.010−0.007

Parana-Paraiba interior forests 0.189−0.192 0.125−0.138 0.026−0.026 0.071−0.071 0.117−0.116

Mato Grosso tropical dry forests 0.048−0.049 0.061−0.069 0.239−0.249 0.097−0.110 0.132−0.144

Uruguayan savanna 0.074−0.070 0.121−0.113 0.001−0.001 0−0 0.053−0.052

other 0.017−0.019 0.145−0.144 0.182−0.181 0.227−0.223 0.128−0.128

River Basins (Number of Sub-basins)

Amazon 0.109−0.113 (8) 0.156−0.158 (7−6) 0.552−0.560 (5−4) 0.705−0.706 (5−4) 0.313−0.315 (8−7)

La Plata 0.641−0.653 (3) 0.478−0.480 (3) 0.086−0.083 (3) 0.071−0.071 (2−1) 0.415−0.411 (3)

Sao Francisco 0.054−0.054 (1) 0.055−0.066 (1) 0.083−0.091 (1) 0.137−0.137 (1) 0.039−0.052 (1)

other 0.196−0.180 (15) 0.311−0.296 (20) 0.280−0.266 (16) 0.087−0.087 (3−2) 0.232−0.222 (18)
aRanges represent the values obtained for the CSM following the majority soybean area (MS) and majority municipality area (MA) classification
methods into ecoregions and river basins.
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Figure 4. Life cycle inventory and potential damage to biodiversity for 1 tonne of soybean domestically consumed in Brazil and exported to China,
the EU, France, and the rest of the world (RoW) in 2017. Results are broken down into the source ecoregions and compared to the Brazilian
soybean production mix (dashed line) considering the mean characterization factors for Brazilian ecoregions36 and mean land occupation time.35

Values shown are specific to the majority soybean area classification of municipalities into ecoregions.37 Ecoregions hosting less than 4% of total life
cycle inventory or damage to biodiversity were grouped into “Other”. The ecoregion “Unknown” refers to trade data for which no known source
ecoregion could be determined.

Figure 5.Water footprint inventory and water scarcity footprint for 90 mm of irrigation used in the crop development cycle for 1 tonne of soybean
domestically consumed in Brazil and exported to China, the EU, France, and the rest of the world (RoW) in 2017. Results are broken down into
source river basins and compared to the production mix (dashed line) considering the characterization factors for Brazilian river basins.9 Sub-basins
were aggregated into larger basins for clarity (Table S2). The river basin Unknown refers to trade data for which no known source ecoregion could
be determined.
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river basins for France (Table 2), and 12 ecoregions and 20
river basins for exports to the RoW (values reported
considering CSM ≥ 0.001; Tables S3 and S4 and Figures
S3−S10). The Cerrado was the ecoregion that typically
provided the majority of soybean to all markets with CSM
values approaching 0.50. When combined with the Araucaria
moist forests, Chiquitano dry forest, Parana-Paranaiba interior
forests, Mato Grosso tropical dry forests, and the Uruguayan
savanna, the sum of CSM values reached between 0.77
(France) and 0.98 (Brazil) (Tables 2 and S3). Similarly, the
Amazon, Saõ Francisco, and the La Plata were key source river
basins for soybean, with combined CSM values ranging
between 0.69 (China) and 0.91 (France) (Tables 2 and S4).
The land occupation LCI was 884−1120 m2 yr tonne−1 for

Brazilian domestic consumption, 885−1120 m2 yr tonne−1 for
soybean exported to China, 929−1176 m2 yr tonne−1 to the
EU, 919−1041 m2 yr tonne−1 to France, and 900−1140 m2 yr
tonne−1 to the RoW (Figure 4, left) (ranges represent the
uncertainty from and land occupation times as per Flach et
al.).43 The water footprint inventory was 254 m3 tonne−1 for
Brazil (domestic market), 265 m3 tonne−1 for exports to China,
279 m3 tonne−1 to the EU, 276 m3 tonne−1 to France, and 270
m3 tonne−1 to RoW (Figure 5, left). These values can be
compared to the results obtained for the Brazilian soybean
production mix, which was 888−1125 m2 yr tonne−1 (for land
occupation) and 266 m3 tonne−1 (for water consumption)
(Figures 4 and 5, left; production mix are represented by
dashed lines).
Life Cycle Impact Assessment. Spatially explicit land

occupation LCI and water footprint inventory weighted by
trade volume through the CSM were matched with the
ecoregion and river basin characterization factors to derive the
potential biodiversity damage from land occupation (Figure 4,
right) and the water scarcity footprint (Figure 5, right) for each
market. These results represent a weighted average potential
biodiversity damage of land occupation or water scarcity
footprint of soybean sourced from different Brazilian
ecoregions and river basins and destined to the respective
markets. The potential biodiversity damage of Brazil’s soybean
production mix due to land occupation was 2.08 × 10−10 PDF
yr tonne−1, a value that was greater than the damage for
soybean exported to the EU (1.48 × 10−10 PDF yr tonne−1),
France (1.61 × 10−10 PDF yr tonne−1), and the RoW (1.91 ×

10−10 PDF yr tonne−1) but lower when compared to Brazil’s
domestic market (2.28 × 10−10 PDF yr tonne−1) and exports
to China (2.10 × 10−10 PDF yr tonne−1) (all reported results
consider both MS classification of municipalities into
ecoregions, mean characterization factors,44 and land occupa-
tion time)43 (Figure 4, right, and Table S5).
Differences in impact scores were mostly due to less

sourcing in the Araucaria moist forests and the Parana-Paraiba
interior forests for both the EU and France, as well as a lower
percentage of potential damage attributed to unknown sources
in the soybean supply chain for the EU (5.6%) and France
(7.3%) compared to that of China (12.9%) and the RoW
(8.9%) and for which a national characterization factor was
used. The water scarcity footprint of Brazil’s soybean
production mix was 292 m3 tonne−1. This value was greater
than the scores obtained for soybean consumed in Brazil (250
m3 tonne−1) and soybean exported to France (259 m3

tonne−1) and the EU (421 m3 tonne−1) but lower than
soybean exported to China (301 m3 tonne−1) and the RoW
(329 m3 tonne−1) (range representing estimates from the MS

classification into river basins) (Figure 5, right, and Table S7).
The water scarcity footprint was larger for soybean exported to
the EU due to greater sourcing in the Paranaiba river basin in
the southwest of the country.

Uncertainty and Probability Density. There was no
statistically significant difference between impact scores when
comparing distributions from the MS or MA classification of
municipalities into ecoregions or river basins (t-test, p > 0.05
for all markets). When accounting for uncertainty in the
characterization factors for biodiversity and the land
occupation times in the LCI, the impact scores showed
different ranges based on the market of interest (Tables S5 and
S6). The EU’s weighted average potential biodiversity damage
was 1.10−2.01 × 10−10 PDF yr tonne−1, which was lower than
any other market: 1.73−3.03 × 10−10 PDF yr tonne−1 for
soybean consumed in Brazil, 1.20−2.18 × 10−10 PDF yr
tonne−1 for the EU, 1.43−2.56 × 10−10 PDF yr tonne−1 for the
RoW, and 1.58−2.80 × 10−10 PDF yr tonne−1 for China
(values representing the range obtained with MS classifica-
tion).
The probability of impacts from production (P) to boundary

(B) cases showed differences in the ranges of impacts for each
market (Figures S11−S19), but particularly for France where
the probability of potential biodiversity damage and mean
impact scores changed between PM, PMM, and CSM cases
(Figure 6). Statistically significant differences in mean impact

scores were observed when comparing the production mix
(PM) and the CSM cases for potential biodiversity damage (p
< 0.05 for Brazil, China, and France) and water scarcity
footprint (p < 0.05 for Brazil, EU, and France). The water
scarcity footprint for soybean consumed domestically was the
only market that had a significant difference in the mean
impact score between the production mix for market (PMM)
and CSM cases (Table S8).

Figure 6. Probability density of potential biodiversity damage
(median (line) and mean (point)) for 1 tonne of soybean exported
to France in 2017 following distributions obtained in five cases:
production (P), production mix (PM), production mix to market
(PMM), commodity supply mix (CSM), and boundary (B) as
ecoregion. Values shown are specific to the majority soybean
classification of municipalities into ecoregions37 considering mean
characterization factors36 and land occupation time.35 Probability
densities for other markets and water scarcity footprints are available
in the Supporting Information (Figures S11−S19).
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■ DISCUSSION

Improving Regionalization in Life Cycle Assessments.
The Global Guidance to include potential impacts to
biodiversity and water use in LCA16 implies a reliable level
of regionalization that can differentiate spatial variability in
ecoregion land occupation and river basin water use. Results
from the CSM can facilitate the operationalization of the
Global Guidance recommendations and improve LCI spatial-
ization by applying the most regionally relevant character-
ization factors. Previous research has shown the importance of
scale in representing the variability of LCI and its effects on
impact assessment results for corn produced and traded within
the United States.26,28,29 While spatial variability may not be an
important factor to consider for some impact categories (e.g.,
CO2 emissions as in Yang29), other impact categories such as
water scarcity28,29 or biodiversity (this study) can benefit from
further inventory spatialization. This spatial variability in the
LCI is particularly relevant in the LCAs of more complex food
products that rely on ingredients made from agricultural
commodities such as soybean. The production and supply of
these ingredients may be considered as a background process
in the LCA of a food product for which information on spatial
variability is often not available in online databases,29 thus
affecting the land and water use impact assessment results.
Accurate information on exact sourcing of commodities can be
challenging and costly to obtain. As a result, practitioners may
need to make assumptions, consider different scenarios on the
sourcing of ingredients, or may need to consult with experts to
construct the supply chain of a specific product to include
biodiversity and water use impacts (e.g., as in Mila ̀ i Canals et
al.23). If widely applied, the CSM can help facilitate input data
for LCAs using, for instance, the weighted average derived
from the spatial variability to be included in the LCA of a
product using Brazilian soybean as an ingredient.
The CSM relies on knowledge of the supply chain whose

resolution (beyond country−country trade) can further
improve LCI regionalization. It partially resembles what
Yang15 called the regional output percentage (ROP) approach
in LCA for which a percentage output is allocated to different
source regions. We see the use of a CSM to be adequate in
cases where information is limited on the exact sourcing of a
commodity, as is commonly the case for agricultural
commodities. The CSM is applicable at the country level
when considering international trade information, such as from
COMTRADE (comtrade.un.org), from input−output,33,34 or
other physical trade methods,32 but is more informative at a
subnational sourcing level when information is available on
source regions. In this study, we used Trase, which allowed for
LCI regionalization considering the variability in soybean
yields among the Brazilian municipalities, but other subna-
tional supply chain maps may be used (e.g., as in Smith et al.26

or Lin et al.35). Beyond applications for land occupation and
water use, the CSM could also be complementary to
identifying the source location of elementary flows for other
impact categories. For instance, the results of this study could
be complemented with production practices more generally
(e.g., fertilizer application, management practices) to derive
greenhouse gas emissions58 or information relevant to social
LCA as long as the information is available at the Brazilian
municipality level.
Results obtained with the CSM show differences in

biodiversity damage and water scarcity footprint among the

different markets, while they also, in some cases, show
differences with the results that would have been obtained
using other assumptions about the soybean supply chain (e.g.,
production (P), production mix (PM), and consumption
boundary (B)). The CSM could therefore be used as a method
for prioritizing regionalization efforts in LCA such as that
described by Patouillard et al.18 using additional supply chain
information in cases where spatial variability in the LCI is
expected to have an important effect on the impact assessment
results. For some markets, the impact scores were different
when using a production mix compared to that of a CSM,
highlighting the benefit to further spatialize the LCI while also
allowing for a geographic hotspot analysis (see below). The
uncertainty in the results of our case study came from the
uncertainty in both the LCI and LCIA phases, considering
differences in the occupation time (LCI) and the confidence
interval of the characterization factors (LCIA). Uncertainty in
the occupation time depends on either environmental factors,
such as the photoperiod and accumulated rainfall,59 or farming
practices (e.g., double cropping), while uncertainty in the
characterization factors depends on geographic variability
within the same region. The lack of further information on
farming practices (e.g., to resolve the occupation time per
municipality) or the spatial variability in the characterization
factors from Chaudhary and Brooks44 shows a potential limit
to further regionalization in our study based on existing
information to resolve biodiversity damage across markets.
Moreover, the results obtained from the CSM are only as good
as the supply chain that is used to derive it. While Trase relies
on detailed per-shipment trade data, the Brazilian soybean
supply chain represents an average picture of relationships
between municipalities of production and market in any given
year with a certain level of stickiness,60 keeping in mind that a
small portion of these relationships could not be resolved due
to missing information in the data.

Toward More Targeted Regional Hotspots. Different
markets showed different sourcing patterns specific to their
own soybean supply chain, which resulted in distinct
compositions of the land occupation and water use elementary
flows and impact assessment results. The results in this study
for Brazilian soybean complement existing soybean LCAs with
cradle-to-farm gate system boundaries61−64 by expanding
boundaries to include markets. The regionalization of impacts
also highlighted geographic hotspots to address potential
biodiversity and water use impacts in geographic areas of
concern. For instance, the Cerrado ecoregion was a source of
soybean for all markets and is an important biodiversity
hotspot, which has experienced rampant deforestation these
past 20 years.65 Similar to our case study, Green et al.66 used
Trase to assess the impacts of soybean exported from the
Cerrado biome on endemic species as a means to highlight the
role of importing countries on biodiversity. Here, we used
Trase as an input into a CSM that considers all of Brazil’s
ecoregions and river basins to provide a more regionalized LCI
and derive potential impacts from land and water uses
following the methods recommended in the Global Guidance.5

A geographic hotspot analysis in LCA can complement the
current life cycle hotspot analysis, which has been the general
objective of studies linking Brazilian soybean production to
consumption centers,37,58,67 and may be a bridge to combining
both the territorial and supply chain perspectives in LCA.
General efforts to improve transparency of supply chains can
also underscore roles and responsibilities of countries and
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companies as supply chain actors, as expressed in recent
commitments to zero deforestation in supply chains.68

In this paper, we introduced the CSM as a method to
facilitate further regionalization in LCAs while at the same time
allowing for an allocation of impacts to markets. This proposed
approach is relevant for analysts with limited visibility on
production and export of commodities with complex supply
chains seeking to apply recent guidelines on land and water
uses in LCA. The case study of the Brazilian soybean
production and export revealed a variability in potential
impacts on biodiversity and water scarcity based on the main
ecoregions and river basins, and the markets identified in the
soybean supply chain. It also revealed how increasing
information on the supply chain can help redistribute impact
scores based on increasing information from the consumption
perspective. Further examples of the CSM require greater
understanding of national and international supply chains to
provide a new set of LCI information for more regionally
relevant LCAs using detailed and enhanced material flow
analysis or input−output tables. Finally, the application of the
CSM should also be tested in the context of consequential
LCA and territorial LCA to assess its effect on decision-
making.
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Frazaõ, L. D. A.; Cerri, C. E. P.; Cerri, C. C. Greenhouse Gas
Assessment of Brazilian Soybean Production: A Case Study of Mato
Grosso State. J. Cleaner Prod. 2015, 96, 418−425.
(62) Maciel, V. G.; Zortea, R. B.; Grillo, I. B.; Lie Ugaya, C. M.;
Einloft, S.; Seferin, M. Greenhouse Gases Assessment of Soybean
Cultivation Steps in Southern Brazil. J. Cleaner Prod. 2016, 131, 747−
753.
(63) Matsuura, M. I. S. F.; Dias, F. R. T.; Picoli, J. F.; Lucas, K. R.
G.; de Castro, C.; Hirakuri, M. H. Life-Cycle Assessment of the
Soybean-Sunflower Production System in the Brazilian Cerrado. Int. J.
Life Cycle Assess. 2017, 22, 492−501.
(64) Zortea, R. B.; Maciel, V. G.; Passuello, A. Sustainability
Assessment of Soybean Production in Southern Brazil: A Life Cycle
Approach. Sustainable Prod. Consumption 2018, 13, 102−112.
(65) Strassburg, B. B. N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem,
A.; Crouzeilles, R.; Loyola, R.; Latawiec, A. E.; Oliveira Filho, F. J. B.;
Scaramuzza, C. A.; Scarano, F. R.; Soares-Filho, B.; Balmford, A.
Moment of Truth for the Cerrado Hotspot. Nat. Ecol. Evol. 2017, 1,
No. 0099.
(66) Green, J. M. H.; Croft, S. A.; Durán, A. P.; Balmford, A. P.;
Burgess, N. D.; Fick, S.; Gardner, T. A.; Godar, J.; Suavet, C.; Virah-
Sawmy, M.; Young, L. E.; West, C. D. Linking Global Drivers of
Agricultural Trade to On-the-Ground Impacts on Biodiversity. Proc.
Natl. Acad. Sci. U.S.A. 2019, 116, 26085−26086.
(67) Pruden̂cio da Silva, V.; van der Werf, H. M. G.; Spies, A.;
Soares, S. R. Variability in Environmental Impacts of Brazilian
Soybean According to Crop Production and Transport Scenarios. J.
Environ. Manage. 2010, 91, 1831−1839.
(68) zu Ermgassen, E. K. H. J.; Ayre, B.; Godar, J.; Bastos Lima, M.
G.; Bauch, S.; Garrett, R.; Green, J.; Lathuillier̀e, M. J.; Löfgren, P.;
MacFarquhar, C.; Meyfroidt, P.; Suavet, C.; West, C.; Gardner, T.
Using Supply Chain Data to Monitor Zero Deforestation Commit-
ments: An Assessment of Progress in the Brazilian Soy Sector.
Environ. Res. Lett. 2020, 15, No. 035003.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c03060
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

L


