
This is a repository copy of Benchmarking and optimization of robot motion planning with 
motion planning pipeline.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177610/

Version: Published Version

Article:

Liu, Pengcheng orcid.org/0000-0003-0677-4421 and Liu, Shuai (2022) Benchmarking and 
optimization of robot motion planning with motion planning pipeline. The International 
Journal of Advanced Manufacturing Technology. pp. 949-961. ISSN 1433-3015 

https://doi.org/10.1007/s00170-021-07985-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ORIGINAL ARTICLE

Benchmarking and optimization of robot motion planning
with motion planning pipeline

Shuai Liu1
& Pengcheng Liu1

Received: 21 March 2021 /Accepted: 30 August 2021
# The Author(s) 2021

Abstract

Algorithms have been designed for robot motion planning with various adaptability to different problems. However, how to

choose the most suitable planner in a scene has always been a problem worthy of research. This paper aims to find the most

suitable motion planner for each query under three different scenes and six different queries. The work lies in optimization of

sampling-based motion planning algorithms through motion planning pipeline and planning request adapter. The idea is to use

the pre-processing of the planning request adapter, to run OMPL as a pre-processer for the optimized CHOMP or STOMP

algorithm, and connect through the motion planning pipeline, to realize the optimization of the motion trajectory. The optimized

trajectories are compared with original trajectories through benchmarking. The benchmarking determines the most suitable

motion planning algorithm for different scenarios and different queries. Experimental results show that after optimization, the

planning time of the algorithm is longer, but the efficiency is significantly improved. In the low-complexity scenes, STOMP

optimizes the sampling algorithm very well, improves the trajectory quality greatly, and has a higher success rate. CHOMP also

has a good optimization of the sampling algorithm, but it reduces the success rate of the original algorithm. However, in more

complex scenes, optimization performance of the two optimization methods may not be as good as the original algorithm. In

future work, we need to find better algorithms and better optimization algorithms to tackle with complex scenes.

Keywords Robot motion planning . Benchmarking . Optimization .Motion planning pipeline .Manipulation

1 Introduction

With the development and wide application of robot technol-

ogy, robots reflect their importance and superiority in produc-

tion and life. Robots have become an effective tool and exper-

imental platform for studying complex intelligent behaviors

and exploring human thinking patterns. The robotic arm is one

of the earliest robots used in real life and social production. It

is composed of many links (metal rods) and joints (electric

axles). For example, a 7-DOF Panda arm is shown in Fig. 1.

The robotic arm realizes any three-dimensional position and

orientation within its range of motion according to the linkage

and joint. The robotic arms have been assisting or streamlining

operations in certain harsh or harmful environments. In prac-

tical, the working environment of the robotic arm is very

complicated, and there may be many obstacles exist, so the

motion planning of the robotic arm is extremely important [3].

The basic task of motion planning can be described as the

movement from the starting state to the target state [4–8]. It

must satisfy the external constraints of avoiding obstacles in

the configuration space and the internal constraints of the ro-

bot’s speed and acceleration in terms of machinery, sensing.

In simple terms, the use of computer and software algorithm

technology to determine the optimal path of the robot arm

from the starting state to the target state, while ensuring that

it avoids obstacles and meets its own motion performance.

For decades, as robots have become an important part of

modern industry and daily life, motion planning algorithms

have received a lot of attention. The earliest motion planning

problem is to consider how to move a piano from one room to

another room collision-free with any objects (the piano

mover’s problem). In this problem, the piano has six degrees

of freedom (x, y, z, roll, pitch, yaw). In order to solve this

problem, a data set containing the six parameters of the piano

must be set and calculated, which is time parameterized, and

each parameter should be continuous for the change of time,

* Pengcheng Liu

pengcheng.liu@york.ac.uk

1 Department of Computer Science, University of York, York YO10

5GH, UK

The International Journal of Advanced Manufacturing Technology

https://doi.org/10.1007/s00170-021-07985-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-07985-5&domain=pdf
https://orcid.org/0000-0003-0677-4421
mailto:pengcheng.liu@york.ac.uk


moving from one configuration space (starting configuration)

to another configuration space (goal configuration), while

meeting the internal and external constraints of obstacle

avoidance. As early as 1978, Lozano Perez and Wesley intro-

duced the conceptual construction planner of configuration

space (C-Space), which was an epoch-making revolution for

modern motion planning. In 1979, the motion planning of the

piano porter problem proved to be a PSPACE-hard problem.

Traditional motion planning includes subdivision algorithm,

the potential field method, and roadmap algorithm. These al-

gorithms have a common feature. When their parameters are

set appropriately, these algorithms can ensure the integrity of

the plan. And the upper limit of the time spent can also be

guaranteed in a complex environment.

The sampling-based motion planning algorithms are pro-

posed in recent decades and have attracted great attention. In a

nutshell, they generally connect a series of randomly sampled

points from an unobstructed space, trying to establish a path

from the initial state to the target state. These algorithms are

originated with the RPP (randomized potential planner) algo-

rithm proposed by Barraquand and Latombe [9]. In 1994, the

PRM (probabilistic road maps) algorithm [10] and the RRT

(rapidly exploring random tree) algorithm [11], setting off a

new wave of research on robot motion planning. Currently,

PRM and RRT belong to the open motion planning library

(OMPL) [12]. OMPL is a C++ open-source library based on

sampling/random motion planning algorithms. It contains

many prevailing algorithms for motion planning, of which

the most famous are PRM and RRT. Although optimization

motion planning is mentioned in OMPL, OMPL is still a sam-

pling planning algorithm library.

Optimization-based methods recently become popular for

motion planning. The most famous of these are covariant

Hamiltonian optimization for motion planning (CHOMP)

[13] and stochastic trajectory optimization for motion plan-

ning (STOMP) [14]. CHOMP uses gradient-based optimiza-

tion, while STOMP uses stochastic gradient-free optimization.

CHOMP is a novel gradient-based trajectory optimization

program and used for motion planning, which makes many

daily motion planning problems simple and trainable [13].

Although most high-dimensional motion planners divide tra-

jectory generation into different planning and optimization

stages, this algorithm uses covariant gradient and functional

gradient methods to perform the optimization stage to design a

motion planning algorithm based entirely on trajectory opti-

mization. STOMP is a motion planner based on probability

optimization [14]. STOMP produces a collision-free and

smooth trajectory that satisfies the constraints within a certain

period of time. The algorithm does not require gradients and

can also produce a better trajectory. STOMP can solve motion

planning queries very well and quickly when the scene is not

overly complicated.

The sampling-based planning algorithm is the most com-

mon probabilistic complete algorithm and is widely used in

robotic platforms with many degrees of freedom. Among such

algorithms, many variant algorithms have been proposed in

recent years, but there is no clear method to prove which type

of problem is solved by which algorithm is the most reason-

able. For different motion planners, we usually judge the per-

formance of different motion planners through benchmarking.

In this paper, we aim to optimize the sampling algorithm and

benchmarking and compare the optimized trajectory metrics

with the original trajectory metrics through benchmarking, in

order to find a relatively good algorithm for different scenes.

Future researchers can get some help through this article. We

will use the optimization-based algorithm CHOMP or

STOMP to modify the initial trajectory formed by the motion

planning algorithm in OMPL through the concept of planning

adapter and planning pipeline and use their different queries

on different scenes to perform benchmarking respectively, and

then research and analyze on the obtained data. In this way,

we want to optimize some of the existing algorithms and an-

alyze their different metrics in different problem scenes

through benchmarking, so as to find a relatively good algo-

rithm for different planning problems. We speculate that the

trajectory generated by the optimization algorithm is the

shortest path, and its quality should be better than the initial

trajectory, and the optimization does not affect the success

rate. In different scenarios, it has a good optimization perfor-

mance and stability. Our contribution is linking STOMP/

Fig. 1 The robotic arm assists

people in their work. a Franka

Emika Panda [1]. b PR2 Robot

[2]

Int J Adv Manuf Technol



CHOMP and OMPL by using the motion planning pipeline

and using STOMP/CHOMP as the post-processing of OMPL

through the planning request adapter. We provide relevant

information for benchmarking of the implemented optimiza-

tion algorithm to facilitate users to choose a specific planner.

This paper is organized as follows. Section 2 investigates

the related works in motion planning and formulate the prob-

lem. Section 3 discusses the motion planning benchmarking

framework and optimization procedure. In Section 4, the

benchmarking and optimization results are analyzed and

discussed. Finally, conclusions are outlined in Section 5.

2 Related works

Barraquand J and Latombe J C first proposed the RPP method

of motion planning based on sampling [9]. It was this method

that influenced the subsequent random potential field method.

At the same year, another random sampling motion planning

method called ZZ-method was proposed in [15]. This method

has had a huge impact on the probabilistic roadmaps (PRM)

algorithm. Then the first stochastic method in history to solve

the problem of complex motion planning in high-dimensional

space in a true sense, that is, the PRM method, was studied

[16–18]. The PRM method has quickly become one of the

most popular motion planningmethods based on random sam-

pling in recent years. It has shown good performance in many

high-dimensional space planning applications [19, 20]. J.

Kuffner and Steven M. LaValle proposed rapidly exploring

random trees (RRT) [21]. This algorithm is another motion

planning algorithm based on random sampling that has been

widely developed and applied in the past 10 years. The RRT

algorithm is suitable for solving the path planning problems of

mufti-degree-of-freedom robots in complex and dynamic en-

vironments [22]. In 2000, LaValle and Kuffner jointly pro-

posed the RRT-Connect algorithm [23]. This bidirectional

RRT technology has good search characteristics. Compared

with the original rapidly exploring random tree algorithm, the

search speed and search efficiency have been significantly

improved. The improved algorithm of PRM, Lazy PRM,

was also proposed by R. Bohlin and L. E. Kavraki in 2000.

This method reduces the preprocessing process of collision

detection in the sampling phase and speeds up planning

[24]. In 2010, Sertac and Emilio of MIT proved that in the

sampling-based motion planning algorithm, as the sampling

points of the RRT algorithm tend to infinity, the probability of

converging to the optimal solution is 0. For this reason, they

proposed the asymptotic optimality RRT* algorithm [25]. In

recent years, there have been some further optimization stud-

ies on RRT and PRM. Liangjun Zhang and D. Manocha pro-

posed a new optimization-based retraction algorithm and an

enhanced version of RRT planner [26]. The optimization-

based retraction algorithm can improve the performance of

the RRT planner by shrinking the sample, making its sample

more likely to be connected to the tree. D. Kim, Y. Kwon, and

S. Yoon proposed an adaptive lazy collision checking named

adaptive lazy PRM* in 2018 [27]. The planning algorithm is

based on lazy PRM, and its convergence rate is 20 to 250%

faster than previous methods.

Regarding optimization-based methods, CHOMP and

STOMP are typical representatives of optimization algo-

rithms. CHOMP was proposed in 2009. It is a new method

that uses covariant gradient techniques to improve the quality

of the sampled trajectory. It is a new trajectory optimization

program based on covariant gradient descent [13, 28]. In

2011, Zucker M et al. proposed STOMP [14]. This is the first

method of motion planning using a stochastic trajectory opti-

mization framework to explore the space around the trajectory

by generating noisy trajectories. This method is different from

CHOMP in that it is optimized by a specific optimization

algorithm and does not require gradient information. In recent

years, CHOMP and STOMP have also received great atten-

tion and further research [29–31]. In this article, we use the

planning request adapter in Moveit to modify the trajectory

created by the sampling algorithm in OMPL. The initial mo-

tion plan generated by OMPL is optimized by CHOMP/

STOMP to generate a new motion planning trajectory. In this

process, we set STOMP/CHOMP as the post-process of an

algorithm of OMPL and use the planning pipeline which

chains a motion planner (OPML) with post-processing

(STOMP/CHOMP) stages and benchmark the result.

With the continuous increase of a large number of different

types of planning algorithms, the evaluation of different algo-

rithms, the fitness of different scene, and the comparison of

different algorithms are still one of the distressing problems

for scholars who study this field. In the past two decades, a

large number of motion planning algorithms have been devel-

oped. M. Elbanhawi andM. Simic conducted a general review

of sampling-based planner and a comprehensive survey of the

ever-growing work body in the sampling-based planner [32].

Although they have considered all aspects, they did not con-

duct actual benchmarking and did not propose related infor-

mation about benchmarks. It is difficult for novices and ex-

perts to compare which type of problem these different algo-

rithms are suitable for.

When most motion plans are developed, there are corre-

sponding benchmarkings. In the early, Baltes J. researched a

benchmark kit for mobile robots, which provided a quantita-

tive measure of the mobile robot’s ability to perform specific

tasks [33]. And through benchmarking, the path and trajectory

tracking control and accuracy of the mobile robot, static path

planning, and dynamic path planning capabilities were tested.

The benchmarking can also be used as simple games.

Including them in robotic games will allow researchers to

increase their chances of evaluating their work without having

to purchase expensive or specialized equipment. At the same

Int J Adv Manuf Technol



time, in the path planning of humanoid robots, the well-known

“narrow passage” problem [34] associated with stochastic

programming is considered. A benchmark system was pro-

posed in [35] for comparing different sample-based motion

planners in OMPL. The framework of this benchmark is very

easy to access and use, and the benchmarks in the system can

be downloaded and run for new sample-based motion plan-

ning algorithms. But it does not contain any information about

the optimized planner. The benchmark system is based on the

open-source framework of Moveit! [36]. Based on previous

work, M. Moll, I. A. Sucan, and L. E. Kavraki proposed a

benchmark infrastructure in 2015 that is not aimed at any

specific benchmark problems, measurement standards, or

planning procedures [37]. The infrastructure is a universal

and extensible benchmarking, which can help researchers eas-

ily analyze and visualize reproducible benchmarking results.

But the basic structure of the benchmarking is integrated with

OMPL, and no other planners are benchmarked, especially

without any optimization-based motion planning. This bench-

mark is also the benchmark framework used in this article,

which benchmarking OMPL, CHOMP, STOMP, and sample

planners optimized by CHOMP/STOMP. Although the

benchmarking is a broad and general software framework,

other different motion planning algorithms and OMPL exten-

sions algorithm are still to be studied. In this paper, we aim to

fill this gap.

3 Motion planning benchmarking
and optimization

In this paper, we propose a framework of planning adapters to

combine sampling-based planning algorithms (PRM [18],

RRT, LazyPRM [24], and RRTConnect [21] in OMPL) with

optimization-based algorithms (CHOMP and STOMP), and

these algorithms can be used in a pipeline to produce robust

motion plans. For example, the pipeline of a motion plan may

be an initial plan established by OMPL, and then optimized

through STOMP to generate a better path. In this section, we

will introduce the methods used in this article, different mo-

tion planners, and their corresponding libraries (see

Appendix).

3.1 Sampling-based motion planning algorithm
library-OPML

Among the sampling-based motion planning algorithms, the

RRT algorithm, PRM algorithm, LazyPRM algorithm, and

RRT-Connect algorithm in OMPL are chosen. Both RRT

and PRM are the most classic and basic algorithms in motion

planning, so optimizing them may have obvious effects,

which is beneficial to the experiment. Since it is uncertain

whether the optimization algorithm is better for the basic

algorithm or the improved algorithm, so we have also ana-

lyzed and researched the two algorithms of LazyPRM and

RRTConnect. RRTConnect is one of the most efficiently im-

proved algorithms. From above, it is noted that the RRT-

Connect algorithm compensates for the low growth efficiency

of the single tree of the RRT species and the problem of tree

node redundancy through the use of bidirectional-tree oppos-

ing growth strategies and connect operations. However, some

problems in RRT still exist, and RRTConnect still has these

shortcomings in algorithm performance: (1) The problem of

lack of directionality in tree expansion still exists; (2) As tree

nodes increase, its search area is gradually reduced. The prob-

ability that the location point is selected as the sampling point

also gradually decreases, that is, the guiding effect of the

search area on the tree is weakened, and it is easy to cause

the tree expansion to stagnate. Therefore, the RRT-Connect

algorithm has much room for improvement.

Besides, RRT algorithms still have many shortcomings in

the path search: (1) It is only a single tree growing from the

initial point to the target point, and the algorithm efficiency is

low; (2) Using uniform random sampling, although avoiding

the algorithm from falling into the local optimum, the path

obtained is not optimized enough due to the lack of direction-

ality in the expansion of the random tree; (3) All points that

meet the collision constraint are added to the tree as q_new,

but some of the q_new may not be far apart, which is not very

helpful to generate a new path, resulting in redundancy of

nodes on the random number and making the tree too large

and too much nodes, and cause the efficiency of the

SelectNearestNeighbor function to drop significantly; (4)

Although the algorithm can find a path to the target node, it

takes a long time for collision constraint detection and node

connection caused by tree node redundancy, and the algorithm

has extremely poor performance in the face of real-time plan-

ning problems.

3.2 Motion planning algorithm based on trajectory
optimization

3.2.1 CHOMP

CHOMP is an algorithm to iteratively improve the quality of

the initial trajectory through functional gradient technology

and optimize the smoothness and obstacle avoidance. It makes

many motion planning problems simple and trainable. This

approach can be used in high-dimensional space motion plan-

ning, while avoiding obstacles and generating smoother mo-

tion planning. It can solve motion planning queries in different

scenes and locally optimize feasible trajectories to improve

trajectory quality, which is a simple variational strategy for

achieving good trajectories.

The algorithm is mainly based on two cores: (1) gradient

information is often available and can be computed

Int J Adv Manuf Technol



inexpensively; (2) trajectory optimization should be invariant

to parametrization [28]. On the basis of these two principles, a

motion planning algorithm is designed to generate high-

quality trajectories for complex robot systems with multiple

degrees of freedom, which can smoothly eliminate unneces-

sary motions and avoid collisions. While most high-

dimensional motion planners divide trajectory generation into

different planning and optimization stages, the algorithm uses

the covariant gradient and functional gradient methods in the

optimization stage to design a motion planning algorithm

based entirely on trajectory optimization. CHOMP can quick-

ly react to the surrounding environment and pull out the in-

feasible trajectory from the collision, while optimizing dy-

namics such as joint speed and acceleration. It can quickly

converge to a smooth collision-free trajectory and can be ex-

ecuted efficiently on the robot.

Although CHOMP can avoid obstacles in most cases. But

if the trajectory is incorrectly guessed in the initial state, the

algorithm will fall into a local minimum. Due to its gradient-

based nature, CHOMP usually fails to find a solution or

returns to a sub-optimal solution after falling into a local min-

imum, resulting in planning failure. OMPL can effectively

alleviate this problem. In the experimental part, we will try

to use the trajectory generated by OMPL as the initial trajec-

tory of CHOMP and implement CHOMP optimization on this

trajectory through the motion planning pipeline.

3.2.2 STOMP

STOMP uses a stochastic trajectory optimization framework,

which is an optimization-based motion planner. It will gener-

ate smooth and conflict-free motion planning trajectories in a

short time. This method relies on noise trajectories to explore

the space around a possible but not necessarily feasible initial

trajectory, and then combines these trajectories into a lower

cost updated trajectory. The cost function includes general

cost, control cost, obstacle cost, and smoothing cost.

STOMP mainly optimizes the combination of obstacle cost

and smoothing cost. In each iteration of random trajectory

optimization, a series of randomly optimized trajectories with

noise trajectories will be generated. The newly generated tra-

jectory is used for simulation to determine its cost, and the

candidate solution is updated by its cost. In the whole process,

this method does not need to use gradient information,

and it can get a certain optimization through general

constraints and additional non-smooth costs. This meth-

od can directly generate high-quality trajectories or op-

timize the formed trajectories.

This method also uses a cost function similar to CHOMP,

but compared with CHOMP, its optimizationmethod can han-

dle general cost functions without gradients. As mentioned

above, due to gradient-based reasons, CHOMP may fall into

a local minimum, and STOMP can overcome this problem

through its randomness and get better optimization. OMPL

is very suitable as the initial trajectory of CHOMP for optimi-

zation; STOMP and CHOMP have a similar cost function, so

we reasonably speculate that OMPL as the initial trajectory of

STOMP will also have a good optimization effect which also

has been approved in our experiment.

3.3 Motion planning pipeline

In Moveit!, use the motion planner to plan the unknown en-

vironment with obstacles. In the experimental part, we will

introduce in detail the detailed process of Moveit! for robot

motion planning. In this part, we will talk about motion plan-

ning pipeline of Moveit!. In some scenarios, some per-

processing motion plan requests or post-processing motion

plan requests are needed to process the motion planning. In

this case, it can help us connect per-processing, motion plan-

ner, and post-processing in pipeline. The complete motion

planning pipeline includes motion planner and plan request

adapters, as shown in Fig. 2.

As shown in Fig. 2, motion planner contains the OPML,

CHOMP, STOMP, and other motion planning algorithms

mentioned earlier. Planning request adapters (pre-

p r o c e s s i n g ) i n c l u d e F i x S t a r t S t a t e - B o u n d s ,

FixWorkspaceBounds, FixStartStateCollision, Fix-

StartStatePathConstraints, AddTimeParameterization,

CHOMPOptimizerAdapter, and STOMPSmoothing-

Adapter. Their functions are FixStartStateBounds is used to

repair the initial limit of joint; FixWorkspaceBounds sets the

default size of the workspace; FixStartStateCollision is re-

sponsible for repairing the collision configuration file;

FixStartSta-tePathConstraints is responsible for finding the

posture that satisfies the constraints as the initial state of the

robot; Add-TimeParameterization can perform speed and ac-

celeration constraints for the space trajectory, and add speed,

acceleration, time, and other parameters to each trajectory

point; CHOMPOptimizerAdapter: Use CHOMP algorithm

for trajectory optimization; STOMPSmoothingAdapter: Use

STOMP algorithm for random trajectory optimization. The

planning pipeline implements the following three functions:

(1) automatically instantiate a planner plug-in; (2) automati-

cally instantiate a set of planning request adapters,

allowing per-processing of planning requests or post-

processing of planning; and (3) combining the planner

with the plan requests that the adapters are grouped

together in a serialized manner.

3.4 Motion planning benchmarking

The benchmarking package provided by Moveit! is used to

perform benchmarking on motion planning algorithms and

aggregate/draw statistics in combination with OMPL

Planner Arena. The metrics of the current motion planning

Int J Adv Manuf Technol



algorithm is used by the robotic arm through the box plot. The

benchmarking database are uploaded to OMPL Planner Arena

to display interactive results. These results can help us com-

pare different motion planners in the same environment, and

also help us compare the same algorithms in different envi-

ronments, so as to determine the most suitable motion plan-

ning algorithm for specific motion planning problem.

4 Experiment results

4.1 Experimental environment

All the experiments in this paper are on VMware virtual ma-

chines with 16G RAM and quad-core Intel i7-9750H CPU@

2.60GHz. This virtual machine has 6G RAM, 40G storage

space, and the system Ubuntu 16.04. Because ROS and

Moveit! involved in this experiment need to be used based

on Ubuntu, and currently on Ubuntu 16.04, ROS and

Moveit! support more complete versions.

4.2 Motion planning benchmarking

4.2.1 Robot for benchmarking

In this experiment, the robot used is Franka Panda. It is a

collaborative robot arm, developed by FRANKA EMIKA.

Panda has 7 DOF with torque sensors in all seven axes; the

arm can delicately manipulate objects and accomplish com-

plex tasks. And each joint of Panda is equipped with strain

gauges, which can detect minor collisions to avoid injury to

people, and is suitable for high-precision 3C industries, such

as assembly aSnd inspection.

4.2.2 Benchmarking scenarios

In this experiment, we mainly designed 3 different

benchmarking scenarios:

Narrow tunnel scene The first experimental environment is a

narrow tunnel as shown in Fig. 3. It is a classic scene in the

motion planning benchmarking. Due to the narrow passage

and limited space, many classic motion planning algorithms

are not necessarily applicable. In this experiment, we imple-

mented pipelines on the traditional sampling-based motion

planning algorithm and the optimization-based algorithm.

The narrow tunnel is a very good obstacle avoidance environ-

ment for testing the optimized algorithm. This scene has only

one query, that is, the start state (green) and goal state (orange)

of the robotic arm are at both ends of the channel. There are

two ways for the robot arm to complete the motion planning,

one is to reach the other side of the board through a narrow

tunnel; second, it does not pass the tunnel; it takes a long path

time for the arm to bypass the board. In this experimental

scene, it is possible to judge whether the algorithm used passes

through a narrow tunnel and completes the motion planning

by running time, thereby judging the motion planning algo-

rithm whether found the shortest way.

Industrial workshop scenes The second experimental scene is

an industrial workshop as shown in Fig. 4. In industrial work-

shops, workers need to assemble many different parts every

day. They pick the parts they need from the box containing the

parts and place them on the workbench for assembly. If the

process of selecting and searching can be completed by a

robotic arm, it will save time and the human operator can

concentrate on assembling, reducing the workload, and im-

proving work efficiency. In this scene, two different queries

are mainly involved: (1) the robotic arm picks up parts from

the box on the second floor of the parts table and brings them

to the workbench. The complexity of the benchmarking scene

Fig. 2 Motion planning pipeline

Fig. 3 Narrow tunnel

Int J Adv Manuf Technol



is low. As long as the robot arm does not touch the obstacles

near the workbench, the motion planning can successfully

make the robot arm from the second layer of the parts table

to the workbench. (2) The robotic arm selects parts from the

first layer of the parts table and brings the parts to the work-

bench. Although the query looks very similar to the first que-

ry, it is a little complex than the first, because it is necessary to

avoid not only obstacles on the workbench but also obstacles

on the parts table.

Library scene The last scene is the library environment as

shown in Fig. 5. The workload of the library is very large,

and the staff needs to organize the books every day. This

includes sorting out the books returned by readers, sorting

them, and putting them back on the shelves. This is a heavy

workload, especially in libraries with a lot of people. If we use

robotic arms to classify and place different types of books,

then it will reduce people’s workload to a large extent and

improve work efficiency. In this scene, three different queries

are set: (1) The robotic arm moves the arm from under the

table to the top of the table. This query is mainly designed for

when the book is accidentally dropped on the ground, and

how putting the books back on the desktop after they dropped

on the ground when they are collected. The motion planning

must avoid collisions between the robotic arm and the desk

and the bookshelf. The scene is relatively low in complexity,

with fewer obstacles and not dense. (2) The robotic armmoves

from the table to the bookshelf. This query is mainly for

collecting and sorting the books and putting them back to

the corresponding position on the bookshelf. The scene is

highly complex, and it is necessary to avoid collisions with

bookshelf spacers and tables. (3) The robotic arm moves from

the third level of the bookshelf to the second level of the

bookshelf. This query is mainly reflected in the operations

needed to organize the bookshelf. The scene is highly com-

plex and needs to move from two narrow spaces. The above

three experimental scenes are good for a reasonable evaluation

of the motion planning algorithm.

Multiple sets of data against different planning metrics are

obtained. We need to analyze these data and find a better

motion planning algorithm in the scenario. Besides, the above

three scenarios only include the motion planning of the robot

arm without the gripper, so the pick and place of the items are

not implemented. In future work, it can be integrated. It is

Fig. 4 The queries of industrial

workshop

Fig. 5 The queries of library scene

Int J Adv Manuf Technol



noted that the main results/findings are based on motion plan-

ning which are prior grasping tasks, so including the grasping

in the system will not affect the results.

4.2.3 Benchmarking metrics

This experiment measures the performance, reliability, and

quality of the paths generated by all planners via the following

metrics: (1) Solve (%): it indicates the percentage of motion

planners finding solutions to the current query in the current

scene. The higher the value, the higher the probability that the

planner finds a solution, that is, the better the performance of

the motion planner. (2) Path plan time (s): It is the path run-

ning time planned by the motion planner. This value is another

way to test the length of the path. The shorter the running time,

the shorter the path planned by the motion planner, and the

better the quality of the path generated by the motion planner.

(3) Path smoothness: It represents whether the trajectory gen-

erated by the motion planner is smooth. If the trajectory is

smooth, the smaller the metric, the better the performance

and reliability of the motion planner. This value is calculated

from three consecutive path points and the angle formed be-

tween them. The closer the value is to 0, the more the trajec-

tory tends to be a straight line. (4) Path clearance (m): It rep-

resents the average value from the path point on the trajectory

generated by the motion planner to the nearest obstacle or

invalid state value. If the value is larger, it proves that the

motion planning path is far away from obstacles and invalid

states, and it also indicates that the quality and reliability of the

path generated by the motion planner are higher. (5) Total

time (s): It refers to the time it takes for the entire motion

planning algorithm to find a feasible solution. It includes plan

time, interpolation time, simplification time, and process time.

The smaller the metric, the better the performance of the mo-

tion planner.

4.2.4 The process of benchmarking

The experiment contains scene design, motion planner selec-

tion, planning adapter setting, and benchmarking. In each

scene, benchmarking the different queries is required, and

each query is described and analyzed. The benchmarking per-

formed 50 times planning for each motion planning algorithm

and collected its data. If the single path planning time exceeds

10.0s, the motion planning will be stopped, and the planning

failure will be marked. First, we configure the motion planner

parameters and benchmarking parameters, and then run the

benchmarking to benchmark the currently configured scene

and motion planner. Get the corresponding database. Then

we uploaded the database through the OMPL Planner

Arena; the visual data results shown by box plots are obtained.

5 Results

There may be outliers in the obtained data set, so we have no

way to evaluate this set of data in the form of an average. The

median better interprets the average level of the data set with

outliers, so the median is used in this experiment to better

describe the data information of each data set. All the original

results of the experiment are submitted in Appendix.

5.1 Narrow space (tunnel)

Table 1 shows that, in this scenario, the resolution rate of the

original algorithm is almost 100%, and only the CHOMP

Table 1 Tunnel benchmarking

results Planners Solve

(%)

Path time

(s)

Path smoothness Path clearance Total time (s)

PRM 100 0.0600 0.228 0.0412 0.061

RRT 100 0.0438 0.198 0.0351 0.045

LazyPRM 100 0.0465 0.201 0.0412 0.048

RRTConnect 100 0.0372 0.208 0.0362 0.041

CHOMP 0 - - - -

STOMP 100 0.2063 0.013 0.0343 0.211

PRM-CHOMP 84 0.1462 0.075 0.0365 0.380

RRT-CHOMP 74 0.1300 0.055 0.0360 0.389

LazyPRM-CHOMP 78 0.1320 0.083 0.0395 0.377

RRTConnect-CHOMP 78 0.1310 0.048 0.0340 0.372

PRM-STOMP 100 0.1410 0.036 0.0410 0.168

RRT-STOMP 100 0.1210 0.028 0.0371 0.144

LazyPRM-STOMP 100 0.1250 0.030 0.0374 0.150

RRTConnect-STOMP 100 0.1120 0.037 0.0388 0.140

Int J Adv Manuf Technol



algorithm fails. In the original algorithm, the path time of

RRT, LazyPRM, and RRTConnect is relatively short. After

optimizing through the CHOMP algorithm, the success rate of

the algorithm is reduced. Our reasonable guess may be that the

CHOMP algorithm is trapped in a local minimum so the mo-

tion planning fails. Trajectory time can generally represent the

length of the planned path. It can be seen from the trajectory

time that motion planning algorithms based on sampling can

find a shorter path through the tunnel, while the STOMP al-

gorithm cannot find a shorter path through the tunnel, so the

trajectory time is longer. Secondly, it can be seen that the time

of the trajectory generated based on the optimized sampling

algorithm is greater than the original time.

Regarding the smoothness, the optimized sampling algo-

rithm has been significantly improved. Although there is a gap

with the smoothness of STOMP, it has provided a fairly good

motion planning trajectory. Since this scene is tested for the

narrow space, the clearance of this set of data is basically

unchanged. In terms of total time, the sampling algo-

rithm based on optimization takes longer than the orig-

inal sampling algorithm, but it is worth noting that the

sampling algorithm based on optimization takes less

time than the STOMP algorithm.

It can be seen from the above that in a narrow space scene,

after CHOMP optimization, the success rate of the algorithm

will decrease, but the trajectory quality is better than the orig-

inal trajectory quality. The sampling-based algorithm opti-

mized by STOMP has a high success rate, and the quality of

the trajectory is greatly improved compared with the trajectory

generated by the initial algorithm, and it also improves that the

STOMP algorithm cannot find a shorter planned path through

the tunnel. In the tunnel scene, we recommend to use any

sampling algorithm and optimize the STOMP trajectory.

5.1.1 Industrial

a. The first floor parts box to table query:

In this query, the original algorithm PRM, RRTConnect,

and STOMP all have a good problem solving rate. As shown

in Table 2, the RRT-Connect algorithm takes extremely short

time and can generate the shortest trajectory, but its trajectory

quality is not very good. After the optimization of the

CHOMP algorithm, the success rate of the sampling algorithm

is greatly reduced, and the smoothness of the trajectory is

greatly improved. After the basic sampling algorithm is opti-

mized by the STOMP algorithm, the success rate is almost

unchanged, but the quality of the generated trajectory has been

significantly improved. Under the query of this scenario, the

optimal solution algorithm is the RRTConnect-STOMP algo-

rithm, which can generate a shorter trajectory with better qual-

ity in a relatively short time.

b. The second floor parts box to table query:

In this query, the problem solving rate of RRT, PRM, and

STOMP in the original algorithm is still the highest. As shown

in Table 3, the success rate of the algorithm obtained after

CHOMPoptimization has been reduced a lot, resulting in unstable

algorithm. However, after the optimization of the STOMP algo-

rithm, although its success rate is slightly reduced, it is always

within an acceptable range. The trajectory generated by the

STOMP algorithm is the best trajectory among all benchmarking

algorithms. Not only is the generated trajectory the shortest path,

but it also has a fairly good quality. Although the sampling-based

algorithm also has a significant improvement after optimization,

the STOMP algorithm solution is more excellent under the query

of this scene, so STOMP is the best solution algorithm under the

query of this scene.

Table 2 Industrial_FTT

benchmarking results Planner Solve

(%)

Path time (s) Path smoothness Path clearance Total time (s)

PRM 100 0.87 0.29 0.046 0.89

RRT 26 0.98 0.32 0.051 10.0

LazyPRM 46 0.60 0.30 0.070 10.0

RRTConnect 100 0.064 0.34 0.044 0.068

CHOMP 0 - - - -

STOMP 94 0.17 0.051 0.163 0.19

PRM-CHOMP 64 0.99 0.050 0.046 1.70

RRT-CHOMP 16 0.26 0.070 0.053 10.0

LazyPRM-CHOMP 32 0.54 0.050 0.049 10.0

RRTConnect-CHOMP 64 0.175 0.070 0.045 0.47

PRM-STOMP 92 0.74 0.083 0.158 0.83

RRT-STOMP 28 0.70 0.077 0.128 10.0

LazyPRM-STOMP 42 0.98 0.072 0.140 10.0

RRTConnect-STOMP 96 0.12 0.075 0.160 0.16

Int J Adv Manuf Technol



5.1.2 Library

a. Under table to on table query:

Under the query in the library scene, we can see from

Table 4 that all the original algorithms except CHOMP can

complete the task satisfactorily. This is because the complex-

ity of the query is relatively low. The quality of the trajectory

produced based on the sampling algorithm is not as good as

the STOMP algorithm. However, the time of the trajectory

generated by the STOMP algorithm is longer, which is much

longer than the trajectory generated by the sampling algo-

rithm. After the optimization of the CHOMP algorithm based

on the sampling algorithm, its success rate has decreased,

requiring a long path time, and the generated trajectory need

a long process time, that is not the shortest path, but its trajec-

tory quality has been improved. After the sampling algorithm

is optimized by the STOMP algorithm, its success rate is still

100%. The path time of the generated path is shorter than that

of the original STOMP algorithm, indicating that the path is

shorter. The path time of the generated path is shorter than that

of the original STOMP algorithm, indicating that the path is

shorter, and the quality of the path has also been greatly im-

proved. Therefore, in this query, we recommend using a sam-

pling algorithm optimized by the STOMP algorithm.

b.Table to bookshelf query:

Table 3 Industrial_STT

benchmarking results Planner Solve

(%)

Path time (s) Path smoothness Path clearance Total time (s)

PRM 100 0.48 0.28 0.067 0.49

RRT 18 1.48 0.29 0.080 10.0

LazyPRM 68 0.11 0.27 0.072 1.0

RRTConnect 100 0.041 0.26 0.062 0.046

CHOMP 0 - - - -

STOMP 98 0.06 0.032 0.182 0.067

PRM-CHOMP 44 0.36 0.076 0.080 1.15

RRT-CHOMP 16 0.21 0.122 0.076 10.0

LazyPRM-CHOMP 36 0.17 0.148 0.079 1.14

RRTConnect-CHOMP 58 0.146 0.080 0.077 0.42

PRM-STOMP 90 0.45 0.080 0.164 0.63

RRT-STOMP 36 0.95 0.071 0.153 10.0

LazyPRM-STOMP 64 0.25 0.076 0.162 0.62

RRTConnect-STOMP 96 0.11 0.066 0.161 0.14

Table 4 Library_DTU

benchmarking results Planner Solve

(%)

Path time (s) Path smoothness Path clearance Total time (s)

PRM 100 0.043 0.48 0.093 0.046

RRT 100 0.029 0.44 0.064 0.032

LazyPRM 100 0.026 0.36 0.071 0.028

RRTConnect 100 0.019 0.41 0.081 0.022

CHOMP 0 - - - -

STOMP 100 0.115 0.05 0.186 0.119

PRM-CHOMP 80 0.129 0.18 0.088 0.45

RRT-CHOMP 62 0.125 0.12 0.080 0.47

LazyPRM-CHOMP 70 0.121 0.14 0.088 0.42

RRTConnect-CHOMP 80 0.115 0.16 0.075 0.41

PRM-STOMP 100 0.078 0.058 0.143 0.082

RRT-STOMP 100 0.065 0.063 0.153 0.07

LazyPRM-STOMP 100 0.069 0.052 0.139 0.075

RRTConnect-STOMP 100 0.053 0.072 0.149 0.058

Int J Adv Manuf Technol



In this query, it can be seen from Table 5 that RRTConnect

has the best success rate, the shortest trajectory, and the most

time-saving among the basic algorithms, but its trajectory

quality is very poor and is not recommended. If the shortest

path is considered, it is recommended to use the original RRT-

Connect algorithm, and the trajectory produced is the shortest

path. If the path quality is considered, PRM-STOMP is most

recommended in this query. Its success rate is only 78% and

the trajectory quality is high, but its long trajectory is not the

shortest path. If considering the overall situation, it is recom-

mended to use the RRT-STOMP algorithm, all metrics of

which are normal and acceptable values, and the resulting

trajectory is also excellent. In the data of the original

algorithm, it can be seen that the usually stable STOMP algo-

rithm has also been affected by the complexity of the scene,

and the success rate is only 54%. This also leads to a decrease

in the optimization performance of the STOMP algorithm,

which reduces the success rate of the sampling algorithm after

STOMP optimization.

c.Move book from the third floor to the second floor on the

bookshelf query:

As shown in Table 6, the complexity of the query is very

high, so that the original algorithm has the problem of plan-

ning failure. Only the PRM and RRT-Connect algorithms

have a higher success rate. STOMP has also been greatly

affected, and its success rate is only 32%, which also leads

Table 5 Library_TTB

benchmarking results Planner Solve

(%)

Path time (s) Path smoothness Path clearance Total time (s)

PRM 100 0.71 0.098 0.094 0.85

RRT 26 0.32 0.076 0.118 10.0

LazyPRM 58 0.50 0.098 0.101 2.51

RRTConnect 100 0.044 0.158 0.073 0.049

CHOMP 0 - - - -

STOMP 54 0.25 0.043 0.171 0.71

PRM-CHOMP 70 0.78 0.047 0.098 1.25

RRT-CHOMP 10 0.29 0.049 0.127 10.0

LazyPRM-CHOMP 44 0.48 0.046 0.104 0.65

RRTConnect-CHOMP 68 0.14 0.082 0.071 0.45

PRM-STOMP 78 1.25 0.037 0.149 1.67

RRT-STOMP 16 0.28 0.021 0.134 10.0

LazyPRM-STOMP 50 0.32 0.028 0.140 3.0

RRTConnect-STOMP 68 0.33 0.050 0.130 0.65

Table 6 Library_ B3TB2

benchmarking results Planner Solve

(%)

Path time (s) Path smoothness Path clearance Total time (s)

PRM 92 1.2 0.32 0.38 1.24

RRT 66 0.1 0.30 0.36 1.3

LazyPRM 60 0.75 0.40 0.41 5.0

RRTConnect 100 0.038 0.31 0.47 0.041

CHOMP 0 - - - -

STOMP 32 0.68 0.11 0.178 1.6

PRM-CHOMP 50 0.77 0.19 0.042 1.35

RRT-CHOMP 48 0.61 0.135 0.036 1.35

LazyPRM-CHOMP 16 0.2 0.275 0.132 10.0

RRTConnect-CHOMP 46 0.132 0.125 0.037 0.98

PRM-STOMP 40 2.0 0.07 0.168 3.80

RRT-STOMP 30 1.4 0.08 0.145 3.81

LazyPRM-STOMP 30 1.2 0.07 0.151 10.0

RRTConnect-STOMP 38 0.75 0.07 0.137 2.60

Int J Adv Manuf Technol



to a greatly reduced success rate of the optimized algorithm.

Through the comparison of the data in the table, the most

suitable motion planning algorithm used in this scenario is

the RRTConnect.

6 Conclusions

In this paper, we have studied the robot motion planning

benchmarking and optimization based on motion planning

pipeline. Six queries in three different scenes have been ex-

plored, and the most suitable algorithm has been proposed for

the query. The planning algorithms studied include PRM,

RRT, LazyPRM, RRTConnect in OMPL, CHOMP,

STOMP, and the new algorithm obtained by OMPL with

CHOMP and STOMP in pipeline, respectively. Through ex-

perimental results, it is found that in most scenes, the quality

of the trajectory generated by the sampling algorithm after

STOMP optimization is better than the quality of the trajectory

generated after CHOMP optimization, and the success rate is

higher, the time to find the better path is short, and it is easy to

find the better path. When executing queries with lower com-

plexity in many scenes, sampling-based algorithms optimized

by STOMP are the best solutions, such as RRTConnect-

STOMP and PRM-STOMP. But in more complex scene,

STOMP algorithm has received a serious impact. This situa-

tion leads to a decrease in the success rate of its trajectory

generation, and the optimization effect is greatly reduced or

even worse than the original sampling algorithm. In the high-

complexity scene, only the best sampling-based algorithm

RRTConnect can successfully generate a shorter motion

trajectory.

The trajectory generated by the sampling algorithm is also

optimized through the planning adapter and use the planning

pipeline which chains one motion planner of OMPL with

STOMP/CHOMP. Through experiments, we found that in

general scenes, both STOMP and CHOMP are very effective

in optimizing the algorithm, and STOMP has a better effect.

But in more complex scenes, the optimization effect is not as

good as the original algorithm.

In future work, we will consider optimizing the parameters

based on the sampling planner in OMPL to study whether the

optimized trajectory effect has some improvements. This ex-

periment only uses some of the more common sampling-

based optimization, we have not studied all sampling-based

algorithms. Also, attempts based on sampling algorithms can

be broadened, and more sampling-based planning algorithms

and even improved sampling-based motion planning algo-

rithms can be studied and benchmarking. The same is true

based on optimization planning algorithms. Since only

CHOMP and STOMP were tested, other optimization algo-

rithms were not tested. Besides, we will try other prevailing

optimization algorithms to optimize the sampling-based

planning algorithm. CHOMP and STOMP are good optimi-

zation algorithms, they can also form better planning trajecto-

ries independently. In the future, we can also try to use

optimization-based algorithms as pre-processing for other al-

gorithms. Regarding motion planning pipeline, there is only

one pre-processing or one post-processing in this paper. In the

future, multiple planning adapters before and after the motion

planning algorithm can be approached, using a variety of dif-

ferent motion planning algorithms to optimize the existing

sub-trajectories. For example, after the RRT algorithm, per-

form STOMP optimization and CHOMP optimization. In this

experiment, we only analyze and compare the basic indicators

in motion planning, while different indicators can be applied

in the future work. For more cluttered scenarios, the applica-

bility and adaptability of the motion planning pipeline and

optimization will need to be explored further.

Supplementary Information The online version contains supplementary

material available at https://doi.org/10.1007/s00170-021-07985-5.

Author contribution Pengcheng Liu contributes to the conception and

design of the work and critical revisions of the article, Shuai Liu drafts

the article and conducts the experiments and related analysis.

Data availability The data that support the findings of this study are

available from the corresponding author, P Liu, upon reasonable request.

Code availability The code that supports the findings of this study is

available from the corresponding author, P Liu, upon reasonable request.

Declarations

Competing interests The authors declare no competing interests.

References

1. Overview — Franka Control Interface (FCI) documentation.

https://frankaemika.github.io/docs/overview.html. Accessed 19

Oct 2020

2. Robots/PR2 - ROSWiki. http://wiki.ros.org/Robots/PR2. Accessed

24 Oct 2020

3. Shyam RA, Lightbody P, Das G, et al (2019) Improving local

trajectory optimisation using probabilistic movement primitives.

In: 2019 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE, pp 2666–2671. https://doi.org/10.

1109/IROS40897.2019.8967980

4. Liu P, Yu H, Cang S (2018) Geometric analysis-based trajectory

planning and control for underactuated capsule systems with visco-

elastic property. Trans Inst Meas Control 40:2416–2427

5. Huda MN, Liu P, Saha C, Yu H (2020) Modelling and motion

analysis of a pill-sized hybrid capsule robot. J Intell Robot Syst.

https://doi.org/10.1007/s10846-020-01167-3

6. Liu P, YuH, Cang S (2018) Optimized adaptive tracking control for

an underactuated vibro-driven capsule system. Nonlinear Dyn 94:

1803–1817

7. Liu P, Yu H, Cang S (2018) Trajectory synthesis and optimization

of an underactuated microrobotic system with dynamic constraints

and couplings. Int J Control Autom Syst 16:2373–2383

Int J Adv Manuf Technol

https://doi.org/10.1007/s00170-021-07985-5
https://frankaemika.github.io/docs/overview.html
http://wiki.ros.org/Robots/PR2
https://doi.org/10.1109/IROS40897.2019.8967980
https://doi.org/10.1109/IROS40897.2019.8967980
https://doi.org/10.1007/s10846-020-01167-3


8. Liu P, Yu H, Cang S (2019) Adaptive neural network tracking

control for underactuated systems with matched and mismatched

disturbances. Nonlinear Dyn 98:1447–1464. https://doi.org/10.

1007/s11071-019-05170-8

9. Barraquand J, Latombe J-C (1990) A Monte-Carlo algorithm for

path planning with many degrees of freedom. In: Proceedings.,

IEEE International Conference on Robotics and Automation.

IEEE, vol. 3 pp 1712–1717. https://doi.org/10.1109/ROBOT.

1990.126256

10. Kavraki L, Latombe J-C (1994) Randomized preprocessing of con-

figuration for fast path planning. In: Proceedings of the 1994 IEEE

International Conference on Robotics and Automation. IEEE, vol.

3 pp 2138–2145. https://doi.org/10.1109/ROBOT.1994.350966

11. LaValle SM (1998) Rapidly-exploring random trees: a new tool for

path planning. Technical Report No. 98-11 (Iowa State Univ.,

1998)

12. Sucan IA, Moll M, Kavraki LE (2012) The open motion planning

library. IEEE Robot Autom Mag 19:72–82

13. Ratliff N, Zucker M, Bagnell JA, Srinivasa S (2009) CHOMP:

Gradient optimization techniques for efficient motion planning.

In: Robotics and Automation, 2009. ICRA’09. IEEE International

Conference on. IEEE, pp 489–494. https://doi.org/10.1109/

ROBOT.2009.5152817

14. Kalakrishnan M, Chitta S, Theodorou E, et al (2011) STOMP:

Stochastic trajectory optimization for motion planning. In: 2011

IEEE international conference on robotics and automation. IEEE,

pp 4569–4574. https://doi.org/10.1109/ICRA.2011.5980280

15. Barraquand J, Latombe J-C (1991) Robot motion planning: a dis-

tributed representation approach. Int J Robot Res 10:628–649

16. Kavraki L, Latombe J-C (1994) Randomized preprocessing of con-

figuration space for path planning: articulated robots. In:

Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS’94). IEEE, vol. 3 pp 1764–1771.

https://doi.org/10.1109/IROS.1994.407619

17. Amato NM, Wu Y (1996) A randomized roadmap method for path

and manipulation planning. In: Proceedings of IEEE international

conference on robotics and automation. IEEE, vol. 1 pp 113–120.

https://doi.org/10.1109/ROBOT.1996.503582

18. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996)

Probabilistic roadmaps for path planning in high-dimensional con-

figuration spaces. IEEE Trans Robot Autom 12:566–580

19. Amato NM, Song G (2002) Usingmotion planning to study protein

folding pathways. J Comput Biol 9:149–168

20. Fox D, Burgard W, Kruppa H, Thrun S (2000) A probabilistic

approach to collaborative multi-robot localization. Auton Robot 8:

325–344

21. Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach

to single-query path planning. In: IEEE International Conference on

Robotics and Automation, 2000. Proceedings. ICRA ’00. pp 995–

1001 vol.2. https://doi.org/10.1109/ROBOT.2000.844730

22. Ettlin A, Bleuler H (2006) Randomised rough-terrain robot motion

planning. In: 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE, pp 5798–5803. https://doi.

org/10.1109/IROS.2006.282390

23. LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees:

progress and prospects. Algorithmic Comput Robot New Dir 5:

293–308

24. Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In:

Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia

Proceedings (Cat. No. 00CH37065). IEEE, pp 521–528. https://doi.

org/10.1109/ROBOT.2000.844107

25. Karaman S, Frazzoli E (2010) Incremental sampling-based algo-

rithms for optimal motion planning. Robot Sci Syst VI 104(2)

26. Zhang L, Manocha D (2008) An efficient retraction-based RRT

planner. In: 2008 IEEE International Conference on Robotics and

Automation. IEEE, pp 3743–3750. https://doi.org/10.1109/

ROBOT.2008.4543785

27. Kim D, Kwon Y, Yoon S (2018) Adaptive lazy collision checking

for optimal sampling-based motion planning. In: 2018 15th

International Conference on Ubiquitous Robots (UR). IEEE, pp

320–327. https://doi.org/10.1109/URAI.2018.8442203

28. Zucker M, Ratliff N, Dragan AD et al (2013) Chomp: covariant

Hamiltonian optimization for motion planning. Int J Robot Res 32:

1164–1193

29. Osa T (2020) Multimodal trajectory optimization for motion plan-

ning. Int J Robot Res 39:983–1001

30. He K, Martin E, Zucker M (2013) Multigrid CHOMP with local

smoothing. In: 2013 13th IEEE-RAS International Conference on

Humanoid Robots (Humanoids). IEEE, pp 315–322. https://doi.

org/10.1109/HUMANOIDS.2013.7029993

31. Magyar B, Tsiogkas N, Brito B et al (2019) Guided stochastic

optimization for motion planning. Front Robot AI 6:105

32. Elbanhawi M, Simic M (2014) Sampling-based robot motion plan-

ning: a review. IEEE Access 2:56–77

33. Baltes J (2000) A benchmark suite for mobile robots. In:

Proceedings. 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2000)(Cat. No.

00CH37113). IEEE, vol. 2pp 1101–1106. https://doi.org/10.1109/

IROS.2000.893166

34. Xia Z, Chen G, Xiong J, et al (2009) A random sampling-based

approach to goal-directed footstep planning for humanoid robots.

In: 2009 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics. IEEE, pp 168–173. https://doi.org/10.

1109/AIM.2009.5230019

35. Cohen B, Şucan IA, Chitta S (2012) A generic infrastructure for

benchmarking motion planners. In: 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, pp 589–

595. https://doi.org/10.1109/IROS.2012.6386228

36. Chitta S (2016) MoveIt!: an introduction. In: Robot operating sys-

tem (ROS). Springer, Cham, pp 3–27

37. Moll M, Sucan IA, Kavraki LE (2015) Benchmarking motion plan-

ning algorithms: an extensible infrastructure for analysis and visu-

alization. IEEE Robot Autom Mag 22:96–102

Publisher’s note Springer Nature remains neutral with regard to jurisdic-

tional claims in published maps and institutional affiliations.

Int J Adv Manuf Technol

https://doi.org/10.1007/s11071-019-05170-8
https://doi.org/10.1007/s11071-019-05170-8
https://doi.org/10.1109/ROBOT.1990.126256
https://doi.org/10.1109/ROBOT.1990.126256
https://doi.org/10.1109/ROBOT.1994.350966
https://doi.org/10.1109/ROBOT.2009.5152817
https://doi.org/10.1109/ROBOT.2009.5152817
https://doi.org/10.1109/ICRA.2011.5980280
https://doi.org/10.1109/IROS.1994.407619
https://doi.org/10.1109/ROBOT.1996.503582
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/IROS.2006.282390
https://doi.org/10.1109/IROS.2006.282390
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/ROBOT.2008.4543785
https://doi.org/10.1109/ROBOT.2008.4543785
https://doi.org/10.1109/URAI.2018.8442203
https://doi.org/10.1109/HUMANOIDS.2013.7029993
https://doi.org/10.1109/HUMANOIDS.2013.7029993
https://doi.org/10.1109/IROS.2000.893166
https://doi.org/10.1109/IROS.2000.893166
https://doi.org/10.1109/AIM.2009.5230019
https://doi.org/10.1109/AIM.2009.5230019
https://doi.org/10.1109/IROS.2012.6386228

	Benchmarking and optimization of robot motion planning with motion planning pipeline
	Abstract
	Introduction
	Related works
	Motion planning benchmarking and optimization
	Sampling-based motion planning algorithm library-OPML
	Motion planning algorithm based on trajectory optimization
	CHOMP
	STOMP

	Motion planning pipeline
	Motion planning benchmarking

	Experiment results
	Experimental environment
	Motion planning benchmarking
	Robot for benchmarking
	Benchmarking scenarios
	Benchmarking metrics
	The process of benchmarking


	Results
	Narrow space (tunnel)
	Industrial
	Library


	Conclusions
	References


