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A B S T R A C T

Vibrational spectroscopy has produced valuable information for biomedical research owing to its label-free and
high-throughput capabilities. However, the complexity of and large number of variables of spectral datasets has
seen the increasing application of multivariate analysis (MVA) and machine learning algorithms in recent years. In
particular, the use of these techniques applied to the analysis of IR spectra of biological samples has been
demonstrated as a powerful tool for the rapid sample analysis and diagnosis of disease. In this article, we review a
variety of classification techniques employed for the analysis of infrared (IR) spectral datasets of biofluids, quoting
prediction accuracies to demonstrate their effectiveness. With the advent of new technologies, two-dimensional
infrared spectroscopy (2D-IR) has recently been applied to biomedical problems and shows potential future ap-
plications in biofluid analysis, however with complex multi-dimensional datasets there is a desire for advanced
analytical techniques. As the application of 2D-IR to biofluids and physiological protein samples is in its infancy,
large spectral datasets of biofluids suitable for classification are not readily available. It is imperative to establish
in what way 2D-IR datasets respond to pre-processing and analytical methods. For the first time we draw on the
classification techniques applied to IR datasets discussed in this review and relevant 2D-IR studies to discuss the
future of machine learning algorithms in 2D-IR spectroscopy.

1. Introduction

In recent years the application of infrared (IR) spectroscopy of bio-
fluids has shown itself to be a valuable tool owing to its label-free, non-
invasive and non-destructive qualities, as well as its sensitivity to changes
at a molecular level [1,2]. Biofluids are those within the human body and
include blood and its derivatives, saliva, urine and cerebral spinal fluid
(CSF) and while some may be more advantageous than others depending
on the disease being investigated, those that are easily obtained are often
preferred by patients over those that require a needle biopsy or surgery
[3]. Biofluids host a range of potentially diagnostic chemical markers,
and the presence or absence of certain markers or changes in their con-
centrations can be induced via contact with the organs of which the fluid
is associated with e.g. sputum – lungs, urine – kidneys, or by an associ-
ated response within the body [4,5].

Current diagnostic methodologies within healthcare typically use
antibody assays to detect the presence of specific biomarkers, however
the heterogenous nature of disease means that the broad biomolecular
detection that IR spectroscopy offers may be advantageous over single

biomarker detection [6,7]. By providing a spectral fingerprint of the
biofluid, IR spectroscopy can obtain information pertaining to a patient's
health, and studies using this technique have demonstrated its usefulness
in detecting disease [8–14] and various cancers [3,15–21] in a single,
rapid and label-free measurement.

However, the large spectral datasets acquired and the large number of
variables (wavenumbers) associated with spectral data make spectral
assignments and therefore classification of disease challenging. For this
reason, machine learning analytical methods have been employed in
order to classify datasets demonstrating their high predictive power with
spectral data of biological samples. In this review article we briefly
discuss spectral pre-processing, reviewing the effects of applying these
processes to linear absorption data when combined with classification
analysis methods as well as highlighting some of the most common
methods used for sample classification of biofluids using IR spectroscopy,
quoting prediction accuracies to demonstrate the analytical power of
each technique. Furthermore, two-dimensional infrared spectroscopy
(2D-IR) has recently been used for biofluid analysis [11,22,23]. 2D-IR
spectroscopy utilises ultrashort laser pulses to spread the vibrational
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spectrum over two frequency axes which provides a spectral map
correlating excitation and detection frequencies [24,25]. The evolution
of spectral features can also be monitored by altering the timing between
pulses, providing additional spectral information as a function of time
such as energy transfer pathways or solvation dynamics [24,26]. With
these extra dimensions, come larger and more complex datasets and with
advancing high-throughput technologies [27–29] spectra can be ac-
quired in a matter of seconds, demonstrating the need for advanced
techniques to examine large, complex spectral datasets.

While multivariate analysis (MVA) and machine learning (ML) algo-
rithms have been shown to be successful at data classification with linear
absorption techniques which will be discussed in this review, the use of
these techniques have not yet been explored with 2D-IR for biofluid
analysis. To this end, we assess the application of MVA to 2D-IR studies,
of which there are only a few, and consider the use of MVA and ML al-
gorithms towards the classification of biofluids using 2D-IR.

2. Spectral pre-processing

Pre-processing spectral data is an integral part of multivariate anal-
ysis and is typically performed as the first analytic step to improve the
results of subsequent analysis. Studies have shown a variety of different
pre-processing steps that can be used with linear absorption spectra to
detect and remove outliers, normalise datasets and reduce spectral noise
allowing the production of a higher quality dataset thus improving the
accuracy of classification or quantification techniques [1,30–36]. Fig. 1
denotes the simplified spectral pathway with a non-exhaustive list of
pre-processing techniques.

Briefly, normalisation is used to scale spectra allowing effective direct
comparisons across a heterogeneous dataset, common methodologies
used are min-max and vector normalisation. Baselines can often fluctuate
in IR spectra owing to slight variations in sample conditions or instru-
mental factors and can be corrected for using baseline subtraction [37,
38]. Different baseline subtraction methods exist and include subtracting
a background or function from the spectrum (offset, polynomial, piece-
wise or rubberband) or by utilising spectral derivatives which removes
broad frequency effects and in turn enhances high frequency components
[1,39]. Often baseline subtraction allows spectral intensities and posi-
tions to become clearer allowing a more accurate analysis to be obtained
[36,38]. Smoothing and noise filtering are common noise reduction
techniques; Savitzky-Golay smoothing [32], principal component anal-
ysis (PCA) [40] and wavelet transformations [33] have all shown success

in minimising spectral noise allowing higher predictive power when later
analysed using MVA [29,30,35,41,42]. For a comprehensive discussion
and review of pre-processing techniques for IR spectra we refer the
reader to this publication [36].

Feature extraction and feature selection methods are often coupled
with classification models. These methodologies involve reducing the
number of input variables of a dataset which can often lead to improved
model performance and a reduced computational cost [15,43]. Feature
selections can be both supervised and unsupervised and require evalua-
tion for individual datasets. Common feature selections combined with
classification models for biofluid spectroscopy include PCA, least abso-
lute shrinkage and selection operator (LASSO), Fisher and forward
feature selection (FFS) [1,15,44,45].

The impact of water absorptions in biological spectra is a common
topic of discussion and as such different methods have been applied to
remove the water contribution from the signal [1,11,46,47]. For
example, methodologies using liquid samples may require the subtrac-
tion of a background water spectrum after acquisition [46], although this
is often a subjective process and difficulties in producing optical path-
lengths less than 10 μm have been documented [48]. Some methodolo-
gies may involve dried droplets of biofluids whereby the water content of
the fluid is decreased removing the need for water subtractions [49–51],
however drying patterns are observed which has been noted to introduce
experimental difficulties. It has recently been demonstrated that no water
subtractions, pre- or post-acquisition, is necessary for 2D-IR as the 2D-IR
signal can circumvent the water absorption overlapping the protein
amide I region. This is primarily attributed to the 4th power dependence
of the vibrational transition dipole moment on the 2D-IR signal [24],
leading to the enhancement of the few protein amide I modes relative to
the abundant yet weakly absorbing water molecules. This coupled with
the faster vibrational lifetime of the O–H bending mode of water [11,52]
allows direct measurement of the protein amide I band without the
overlapping water contribution. However small optical pathlengths are
necessary for this technique which can be hard to control from sample to
sample.

As experimental designs and set-ups differ between IR modalities and
research groups, the parameters surrounding data acquisition will also
differ and so a thorough investigation of which pre-processing steps are
necessary, and the order in which they should be applied, is required
prior to further analysis [30].

3. Classification methodologies

MVA techniques have been widely applied to study linear absorption
IR spectra of biofluids. In particular, the use of classification techniques
with biofluids has the potential to arrange spectra within a dataset into
groups, typically healthy or diseased, depending on their spectral dif-
ferences and similarities [53]. The articles reviewed here have all built
classification models using IR spectra of biofluids using either blind test
sets or cross-validation results to test the accuracy of their models. In
order to build a classification model there are 3 major steps that need to
be followed [2]. Initially the dataset is split into a test and training set,
and a model is built using the training data; this is known as the cali-
bration or training phase. Based on the articles reviewed here, between
50 and 80% of the original dataset is typically selected for the training
set. Next, the internal or cross validation stage utilises k-fold resampling
to evaluate the model, where k is the number of groups the training data
has been sub-divided into. The final step known as external validation
involves the test set being classified using the model constructed from the
training set, i.e., a blind testing phase [30,54–56].

Classification methods can be split into two major groups; supervised
and unsupervised. Supervised learning techniques are human guided and
typically work by mapping inputs to outputs. Unsupervised methods are
given no additional information and are left to find patterns in the data.
Examples of both supervised and unsupervisedmethods will be described
in detail followed by a review of their use in biofluid analysis as well as

Fig. 1. Schematic of the spectral dataset pathway. Initially a full dataset is ac-
quired which is followed by the application of selected pre-processing tech-
niques, this includes but is not limited to baseline subtraction, normalisation,
binning and smoothing, noise reduction and feature selection. The dataset is
then ready for analysis.
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an evaluation of how well each technique performs using sensitivity and
specificity or balanced accuracy results. These parameters are commonly
used when evaluating the performance of clinical tests, where the
sensitivity and specificity establishes the percentage of true positive (TP)
and true negative (TN) results, respectively.

Sensitivity¼
TP

TPþ FN
Specificity ¼

TN

TN þ FP

BalancedAccuracy¼
Sensitivityþ Specificity

2

where FN and FP denote false negatives and false positives, respectively,
and the balanced accuracy is an average of the sensitivity and specificity
results. An ideal result from a classification model is one where both
sensitivity, specificity and thus accuracy are 100%, where the technique
does not mis-diagnose any samples from one class as the other.

3.1. Supervised classification techniques

Supervised classification techniques create and train a classification
model with known representatives from each category involved in the
dataset, e.g. healthy or diseased. This can be done in one of two ways,
either by presenting example spectra of how each class is characterised or
by pre-selecting information or spectral signatures pertaining to a dataset
as representatives of a specific class prior to the analysis, fundamentally
training the model by giving the analysis method extra information to
help with the classification. Here, we focus on supervised techniques that
have been commonly used for the classification of biofluid IR absorption
spectra, which includes support vector machines, linear discriminant
analysis, random forest, k-nearest neighbours and artificial neural
networks.

3.1.1. Support vector machine

Support vector machines (SVMs) attempt to section the dataset into
distinct classes, e.g. disease and healthy, by utilising the large number of
variables presented by each spectrum to produce a line to separate these
classes which is referred to as either the decision boundary or the hy-
perplane. Kernel functions are often used to map these original obser-
vations into a new dimensional space, which allows the separation
between classes to become apparent. The data points from each class that
lie closest to the hyperplane are known as support vectors and are the
points most difficult to classify. In order to find the best hyperplane, the
separation between each decision boundary and the support vectors are
calculated and deemed best when this margin is maximised (Fig. 2) [57,
58]. As well as creating separation between classes, kernel functions also
help reduce the computational time taken for the calculation and can
increase the classification accuracy. SVMs can be used for linear or
nonlinear classification through the use of different types of kernel
functions (e.g., linear, nonlinear, radial and sigmoid).

SVM analysis has been utilised in many studies with the aim to suc-
cessfully classify biofluid samples as either diseased or healthy. The
combination of SVM analysis with a large attenuated total reflection
(ATR) Fourier transform IR (FTIR) spectroscopy study of serum has
shown success in classifying brain cancer and non-cancer spectra [18]. A
total of 724 patients were recruited and 9 spectra were acquired per
serum sample. Internal validation was performed by splitting the data
into test and training sets 51 times on a per patient basis and a prediction
was made for each spectrum in the test set based on the training set SVM
model. As there were 9 spectra for each patient, the majority result was
then used as the final prediction for each patient, determining whether
each sample is cancerous or healthy. Using this approach, the average
sensitivity and specificity across the 51 different models was found to be
93.2% and 92.0%, respectively. Next, serum spectra from the 724 pa-
tients were used to train the SVM algorithm and 104 new patients were
recruited to clinically validate the model, achieving a sensitivity and
specificity of 83.3% and 87.0%, respectively. This result while notably
reduced in comparison to the original study, is still above the quoted
threshold of 80% required to be beneficial in healthcare settings. The
authors also note that the variation of cancer types and their lack of
representation in the patient training set could lead to lower sensitivity
and specificity results produced from the clinical validation study, sug-
gesting for a binary classification that each tumour type being tested
must be well characterised in the training dataset.

SVM has also been utilised for classification of multi-class datasets.
Hands et al. have shown the use of a radial basis function (RBF) kernel
with SVM to predict brain tumour severity from the ATR-FTIR spectra of
serum samples [17]. A total of 97 patients with high grade gliomas
(50%), low grade gliomas (24%) and non-cancerous brain tumours
(26%) were used and split into test and training sets containing one third
and two thirds of the patients, respectively. This cross-validation process
was iterated three times and an average sensitivity and specificity of
93.8% and 96.5% was achieved using this method.

Few input parameters are required to perform a SVM classification
making it a favourable choice when looking to classify data compared to
other techniques, in particular for users new to classification algorithms.
However, the algorithm is known to underperform on noisy or large
datasets [59], where the number of variables is larger than the number of
samples and so may not be the best method for classifying large patient
datasets.

3.1.2. Partial-least squares – discriminant analysis

Linear discriminant analysis (LDA) is a dimensionality reduction
technique that aims to find a feature subspace that maximises the sepa-
ration between the mean of the two classes in a dataset whilst minimising
the spread within each class (Fig. 3). To find this projected subspace, JðwÞ
the following equation is used:

JðwÞ¼
ðm1 � m2Þ

2

s2
1
þ s2

2

wherem is the mean value of each class, s is the spread of the data around
the mean within each class and subsets 1 and 2 denote the two classes.

Fig. 2. Schematic of the support vector machine (SVM) for both a) linear and b)
radial datasets comprising two classes (red and blue circles). The optimal hy-
perplane is shown in green for both cases, other boundaries (grey dashed lines)
are also shown however these do not maximise the margin between the two data
classes. Black arrows in a) indicate the support vectors which are used to
optimise the hyperplane. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 3. PLS-DA pathway showing the dataset matrix, X, and class identifier, Y,
resulting in latent variables (LVs) to describe the variance between each class
which can then be used for classification.
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For the spectroscopic analysis of biofluids, the combination of partial
least squares regression and discriminant analysis (PLS-DA) is a popular
classifier [60–65]. It is sometimes also referred to as discriminant PLS
(DPLS), PLS-Linear DA (PLS-LDA) or PLSDA. There are two types of
PLS-DA algorithms, PLS1-DA which is commonly used for binary classi-
fication, i.e., a two-class problem and can also be used for a multi-class
dataset however PLS2-DA is more suitable for multi-class problems. It
is a supervised multivariate dimension reduction and classifier technique
that has shown good predictabilities of classes over numerous IR biofluid
studies of different classifiers [9,19,20,66–69].

PLS-DA produces components known as latent variables (LV) which
are projected into a new feature space and account for the spectral
variation between the classes, where the first LV accounts for the greatest
variation between the categories, the second explains the next greatest
variation and so on (Fig. 2(c)). PLS-DA using all the latent variables will
produce the same result as a linear discriminant analysis, as no data
reduction has taken place. Scores and loadings are produced by the
analysis for each LV where the loadings depict where in the spectrum the
variation is occurring and the scores provide coefficients for each sample
spectrum. The optimum number of components needed to explain the
variance between the classes and thus allow classification is found during
evaluation of cross validation models across a number of test/train iter-
ations. The ideal number of components to use will minimise the cross-
validation error and provide good classification results. As PLS is a
regression technique and will predict values between 0 (class 1) and 1
(class 2), decision rules need to be employed for the prediction of new
samples in order to assign each spectrum to a class accurately [61], and
there are few different rules that can be employed (e.g. naïve Bayes, cut
off point and boundary line).

PLS-DA has been utilised to distinguish between patients exhibiting
disease and controls from analysis of high-throughput FTIR spectra of
human plasma. Medipally et al. have shown that PLS-DA can distinguish
between controls from healthy patients and samples from patients with
prostate cancer with high a sensitivity (99%) and specificity (98.4%)
[20]. In addition, information from a scoring technique (Gleason score
(GS)) used to determine how cancerous a tissue biopsy looks, was used to
attempt to classify patient plasma samples further. However, this utilised
less data as each GS group contained on average 10 samples, a large
reduction from the 76 patients in the whole dataset and subsequently
lower sensitivities and specificities, ranging from 64.6% to 95%, were
observed.

A 2014 study of ATR-FTIR spectra of human serum aimed to identify
patients who were HIV positive (n¼ 55) from those who were HIV
negative (controls, n¼ 30) [67]. Of those who were HIV positive, 39
were undergoing anti-retroviral treatment (ART) while the remaining 16
were not on any treatment regimen. Using PLS-DA, 100% accuracy was
achieved when categorising HIV positive patients who were not under-
going ART relative to the controls, while those undergoing ART were
identified from the controls with a sensitivity and specificity of 100% and
95.2%, respectively. Furthermore, the authors classified HIV positive
patients receiving no treatment and those on ART with a sensitivity and
specificity of 83.3% and 100%, respectively. The authors note the drop to
83.3% may be due to an imbalance in the number of patient sera in each
class.

Another study, demonstrating the high predictive power of PLS-DA,
successfully categorised children and adolescents with autistic spec-
trum disorder (ASD, n¼ 30) from controls (n¼ 30) using ATR-FTIR
spectra of blood serum [66]. Test and training sets used 50% of the pa-
tients from each group and achieved a prediction accuracy of 100%,
which was attributed to clearly observable differences in the protein
regions of the ATR-FTIR spectra.

PLS-DA is a very useful analytical tool owing to its ability to separate
classes within a dataset with high predictabilities while delivering
feature information, in the form of loading plots, relevant to the largest
differences between the classes studied. While PLS-DA demonstrates a
high predictive power, a number of parameters need to be optimised by

the user in order to produce these results. Unfortunately, while per-
forming well on two-class problems, the algorithm tends to struggle and
produce poor results where a larger number of classes are involved [61,
70].

3.1.3. Random forest

Random forest (RF) is a classifier based on a collective of decision
trees and has shown promise in its analysis of data from biofluids [46,68,
71]. A single tree represents a sequence of binary steps on single variables
whereby in this scenario each variable is a wavenumber (Fig. 4) [72,73].
These decision trees are trained by iteratively making splits in the data to
find the best way to group the data, this is quantified using the Gini
impurity and gain calculations, which are measures that each decision
tree aims to minimise and determines the probability of predicting data
correctly [73]. This process is continued on subsets of data features until
a Gini gain of 0 is reached, and the data is then classified. Random
sampling with replacement (bootstrapping) is typically used in RF to
randomly assign data into each decision tree, this means that some data
may be duplicated and some will never be entered into a specific tree.
Each decision tree in the RF will only test a subset of features described
by the data, typically the square root of the number of features, in order
to introduce randomness thus making each tree unique and ultimately
improving the performance of the forest. Finally, the RF takes the ma-
jority result predicted by each tree as the final classification for each
unknown spectrum.

RF with 500 different trees was used to categorise cancer and non-
cancer in a study of serum samples from 433 patients; the serum sam-
ples were air-dried and then analysed using ATR-FTIR spectroscopy [71].
A 5-fold cross validation procedure was performed where 80% of the 2nd
derivative spectra of patient samples were used to train the RF algorithm
and the remaining 20%were used to test the model, yielding a sensitivity
and specificity up to 92.8% and 91.5%, respectively. RF analysis applied
to digitally dried serum spectra from 150 patients has been shown to
classify brain cancer and non-cancer with a sensitivity of 93.7% and
specificity of 84.0% [46]. This study demonstrates an increase in sensi-
tivity and specificity compared to the values obtained from the analysis
of the same serum samples in liquid form or air dried, providing greater
accuracy in a much quicker timeframe when compared to the analysis of
dried samples. Furthermore, a study by Cameron et al. has shown the
ability of RF to classify brain tumour sub types with accuracies greater
than 78% [68]. The authors note than with a more balanced dataset of

Fig. 4. Visualisation of a simple Random forest (RF), with n¼ 3 decision trees.
Blue circles indicate questions posed on the data to help determine its class and
red and green circles denote the class prediction. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)

S.H. Rutherford et al. Chemometrics and Intelligent Laboratory Systems 217 (2021) 104408

4



tumour type, accuracies could be improved upon.
Unbalanced datasets can be a large source of error in prediction

models and so ‘balancing’ the data can be effective in helping train a
model and different sampling methods have been utilised to help elimi-
nate bias within a model. Frequently used in prediction models are: up-
sampling, which randomly re-selects data from the minority class to in-
crease the number of samples; down-sampling, which does the opposite
and randomly selects a subset of the majority class and removes the
others in order to match the number of samples in the minority class; and,
finally, synthetic minority over-sampling technique (SMOTE) which
artificially creates ‘new’ samples from the minority class [74].

RF models have the ability to handle unbalanced datasets relatively
well, owing to the fact that each decision tree utilises bootstrapping and
so having a class imbalance within the dataset is not as important when
compared to other classification techniques, however caution should still
be taken [75]. RF models have shown success in many fields and are
known to handle large datasets well and arguably the biggest advantage
of RF is its versatility. It can be used as a tool for both regression and
classification tasks as well as being able to identify those features that are
most important and responsible for the classification [30]. However RF
models are computationally more complex than SVM and PLS-DA and
where forests contain a large number of trees, predictions can be slow
[45].

3.1.4. K-nearest neighbours

Another supervised classification technique which has shown itself
useful in the classification of biofluids is the k-nearest neighbour algo-
rithm (k-NN). Simply put, this technique assesses a user-determined
number, k, of known class neighbouring datapoints and makes a class
assignment on the new data based on the assigned categories of these
neighbours. When k¼ 1, the assigned class will be the same as that of the
single nearest neighbouring datapoint, however if k> 1 then the final
class assignment will be the majority class of the k neighbours (Fig. 5).
Often a balance needs to be met when defining k, if low values of k are
chosen, they may be subject to data outliers. It is also prudent to steer
away from large values of k, in particular values greater than the smallest
number of samples in any category as it will then prove difficult for that
category to gain a majority.

An ATR-FTIR serum patient study by Lechowicz et al., has shown
promise of k-NN to successfully determine patients with rheumatoid
arthritis from healthy controls [76]. Using the k-NN algorithm, whereby
k¼ 1, discrimination of patients was achieved with sensitivity and
specificity values of 85% and 100%, respectively. The authors note a
higher water content in the wrongly assigned serum samples and indicate
the water absorbance as a potential source of error, which results in an
overall change in absorbances across the entire IR spectrum.

Gajjar et al. have shown the potential of k-NN classification when
combined with a range of different feature selection algorithms for the
detection of ovarian and endometrial cancers [15]. A total of 90 patients
were used in this study, with an even split of 30 patients in each subset;
ovarian cancer, endometrial cancer and the control group. ATR-FTIR
spectra of both plasma and serum samples from each patient were ac-
quired and classification of cancer vs. non-cancer was attempted using
the shared control group. Using a variety of different feature selection

methods, the datasets were reduced and application of k-NN classifica-
tion produced the highest accuracy of 95� 8% for the case of ovarian
cancer using serum samples and 79.2� 18.8% for endometrial cancer
from plasma samples. Additionally, they have analysed the datasets using
different feature extraction and classification methods and note that their
study also demonstrates that no single feature extraction or classification
technique that can be considered ‘best’ as they all perform differently on
different datasets.

Whilst k-NN is theoretically a simple classification method it tends to
struggle with larger datasets, in particular when dealing with larger data
dimensions. Often, feature extraction methodologies need to be used
prior to their use with spectroscopic data and as shown by Gajjar et al.,
different feature selection methodologies can yield significantly different
results with k-NN and so careful consideration and investigations into
best practice for different datasets is necessary [15].

3.1.5. Neural networks

Advancements in artificial intelligence technologies have seen the
arrival and use of neural networks (NNs) in disease diagnosis studies [50,
77–85]. NNs are typically described as systems designed to operate like
the human brain and are often referred to as artificial neural networks
(ANNs). Typically, NNs are mapped inputs to outputs through various
‘layers’ of feature extraction and calculations and there are many
different types of NNs that can be used depending on the type of analysis
required for a given dataset [86].

Within a dataset, each wavenumber and its corresponding absorbance
is used as the input layer (xn). A mathematical function (neuron) weights
(wn) the input values (xn) and sums all products before adding a corre-
sponding bias (B) associated with that layer (Fig. 6). This value is then
sent through a threshold function to decide whether it will get passed

Fig. 5. Visualisation of a simple k-nearest neighbours with a) k¼ 1, b) k¼ 3 and c) k¼ 7 neighbours. Blue and red circles indicate data of known class and the green
circles denotes the sample being predicted. Black arrows indicate k nearest neighbours as shown inside the hollow green circle. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Representation of a neural network (NN) with three layers: input, hid-
den and output, along with linking channels between each layer. xn refers to
each input, wn the weighting assigned to each neuron and B is the bias associ-
ated with each hidden layer.
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onto a new neuron in the subsequent layer. Threshold functions known as
‘activation functions’ are utilised within NNs and these determine which
neurons become activated and passed on to the next hidden layer,
eliminating those that no longer hold useful information (Fig. 6). This
gradually reduces the neurons that propagate through the layers which
eventually results in the production of the probability of the data being in
each class. The class with the highest probability results in the final
classification. These internal layers within the network are known as
‘hidden layers’ and this is where the calculations take place before the
final classification is made in the ‘output layer’. This whole process in
known as ‘forward propagation’ and the architecture of a NN can be
adjusted so that a specific number of layers and neurons exist within each
layer.

In supervised learning, the NN inputs are mapped to known outputs.
If the algorithm does not produce satisfactory class probabilities, the
error is computed and the algorithm loops back into the network using
the known classifications to adjust the weightings, producing a more
accurate result. This process is known as ‘backpropagation’ and is iter-
ated a number of times, improving the performance of the NN each time
until it arrives at the correct classification within a given tolerance.

NNs of varying sizes have been shown to predict classes from analysis
of spectra of biofluids with a high accuracy [50,78–82,85]. In a
high-throughput FTIR study of human serum, NNs were used to identify
breast cancer from controls from analysis of spectra acquired using two
measurement modalities, transflection and transmission [79]. Samples
from a total of 193 patients were analysed and the data were split into
three groups for training, validation and testing. The architecture of the
network was investigated and included an input layer consisting of
15–200 inputs, 1–20 different hidden layers and 2 outputs corresponding
to the two classes: breast cancer or control. The optimum set-up was
found to be 46 inputs and 2 hidden layers for transmission mode, which
produced identical sensitivity and specificity of 95%. In transflection
mode, the highest sensitivity (100%) and specificity (92%) were recor-
ded using a network with 43 inputs and 3 hidden layers. Furthermore,
the breast cancer patient sera were compared against 11 other diseases,
including sepsis, Alzheimer's disease and other cancers, with a total of
3119 patients, and using NNs an average accuracy of 91% was found
across all 12 classes.

Combining ATR-FTIR spectroscopy of the saliva from type 2 diabetic
patients with NNs has allowed patients with the disease ‘controlled’ and
‘uncontrolled’ to be identified [80]. Using inputs from the 2000 -
4000 cm�1 region, 1 hidden layer with only one neuron, a 100% accu-
racy was obtained in determining controlled from uncontrolled diabetic
patients. Additionally, patients were divided into 3 sub groups based on
their blood glucose levels and the NNs again classified each patient serum
with 100% accuracy based on a leave one out cross validation.

In principle, the more data provided to a neural network the higher
predictive power it will have, however often neural networks are quoted
to require very large amounts of input data in order to produce high
prediction accuracies [77]. The use of backpropagation in the NN
framework gives the model a high degree of adaptability, allowing itself
to fix any mistakes, an advantage over other classification models.
However, the complexity of the network and amount of data provided
can have a huge impact on the amount of computational power required
and successful training of deep learning algorithms can take days or even
weeks/months to compute. The major disadvantage of NNs however is
the lack of interpretability. The ‘black box’ approach of NNs doesn't allow
the user to understand how the network has made its prediction, which
depending on the aim of the experiment may be problematic [86,87].

Overall supervised learning has been shown to yield disease classifi-
cation with high accuracies, and works are currently underway to
compare different disease states in order to hone in on disease classifi-
cation. However, supervised techniques are not always suitable, in
particular during exploratory analysis where differences between classes
are unknown and this is where unsupervised techniques may become
useful. Often the results from an unsupervised method indicate particular

features important for classification and can be used as a precursor to a
supervised method, essentially as a tool for feature extraction. Unsu-
pervised techniques may be more appropriate when the dataset is large,
but not large enough for NN and so the additional work required to input
each sample class into the chosen algorithm may be impractical.

3.2. Unsupervised classification techniques

Unsupervised methods are especially useful when the spectral dif-
ferences between groups are unknown or if a dataset is particularly large
as inputting class information can be time-consuming. The variability of
healthy biofluids is vast let alone when considering disease states which
can make classification of controls and different disease states especially
difficult. With this in mind, knowing the class of a patient sample does
not necessarily provide enough information for a machine learning al-
gorithm to define classes as there may be strong similarities and overlaps
between the categories being studied. As the class is not known to the
unsupervised algorithm, typically they tend to underperform when
compared to supervised methods. Nevertheless, for larger datasets their
lack of supervision can be advantageous. Some of the most common
unsupervised techniques used to analyse biofluids are clustering and
principal component analysis which have seen increasing use in recent
years [44,88–91].

3.2.1. Clustering

Clustering is the process of finding structures or patterns within a
dataset, which helps to define natural groups or clusters whose members
are similar allowing identification of data classes [89,90]. Essentially
clustering provides segregation of data into groups which contain similar
data within a cluster and data that is dissimilar assigned to other clusters.
There are a few basic clustering methods used in data analytics, however
the most commonly used in IR spectroscopy of biofluids are k-means
clustering and hierarchical clustering. Both K-means clustering (KMC)
and hierarchical clustering (HCA) are typically considered an unsuper-
vised classification technique however it can often be referred to as a
‘semi-supervised’ method when additional information is fed to the al-
gorithm, such as the k value, class sizes and partial labelling of data [92,
93].

KMC sorts the data into k clusters, where k is the number of classes
expected to be observed within the dataset, and aims to sort each indi-
vidual spectrum into 1 of k clusters [89,90]. By assigning k random
datapoints as cluster centres (the number of clusters must be user
defined), the Euclidean distance is then calculated between each data-
point and the k cluster centres. Each datapoint is then assigned to its
nearest cluster centre (Fig. 7(a)). Next, the average value of each data
point within each cluster is calculated allowing re-centring of the cluster
centres. This process is repeated until the spread within each cluster can
no longer be reduced with each iteration. This method is then repeated
using new random datapoints assigned as the new cluster centres. This is
done a user defined number of times and the most common result is then
used for classification.

For HCA the algorithm provides a ladder of clusters, typically dis-
played via a dendrogram (Fig. 7(b)). One of the advantages of this
method is that, unlike KMC, the number of classes does not have to be
defined prior to starting the clustering algorithm [94,95]. Hierarchical
clustering can work in one of two ways: top-down or bottom-up. In the
bottom-up approach, all datapoints belong to their own cluster, two
clusters that are similar are then merged and this process continues until
all datapoints are assigned into one cluster. The opposite is done for the
top-down approach, using differences in the dataset to split into clusters.
Many different methods can be used to measure the cluster similarity and
merge the clusters together, typically the Euclidean distance is used,
however other methods have been documented for IR analysis of bio-
fluids [96–99]. Using the dendrogram, the optimum number of clusters
for the dataset can be identified.

Both clustering methods have shown successful identification of
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biofluid classes using IR spectrosopy [50,79,91,99–101]. Using 193 pa-
tient sera from breast cancer patients and controls, Backhaus et al.
assessed the predictability of KMC analysis, where k¼ 2, using two
different modalities of FTIR; transflection and transmission [79]. The
reported sensitivity and specificity for transmission mode are 96% and
93%, and KMC analysis in transflection mode yielded slightly better re-
sults of 98% and 95%, respectively. The results quoted for KMC are
comparable to those obtained from the application of artificial neural
networks to the same dataset.

ATR-FTIR spectra of bladder wash collected during a cystoscopy were
analysed using hierarchical cluster analysis. Identical sensitivities and
specificities of 81.8% and 80.9% were obtained, irrespective of the
spectral region used, for determination of bladder cancer from controls
[91]. Poorer results were obtained from HCA of IR spectra acquired in
transmission mode of the same samples. Utilising KMC as a classification
method is relatively simple and is easy to implement owing to the single
input parameter required, k. It also has several parameters that can be
modified to adjust the performance of the algorithm. Due to the use of the
Euclidean distance in KMC, the cluster centres are highly dependent on
the selection of the initial cluster centres [102]. Both KMC and HCA are
sensitive to noisy data and outliers, which can have a big impact on their
predictability. Adaptations can be applied to the algorithm to help
overcome this, however this requires a more in-depth knowledge of the
technique. Hierarchical clustering does not require apriori information
about the number of clusters and produces a visual map (dendrogram)
showing how the data can be separated. One of the major drawbacks of
hierarchical clustering is the time taken to compute meaning that it is
rarely suitable for larger datasets [103], however the dataset can be
reduced using principal component analysis to reduce dimensionality
before the application of HCA [91].

3.2.2. Principal component analysis

Principal component analysis (PCA) aims to maximise the variance
within the dataset as a whole, and does not have any prior knowledge of
data classes (Fig. 7(c)) [40,104]. PCA reduces the dimensionality of the
data by geometrically projecting the dataset onto fewer dimensions,
known as principal components (PCs), establishing a new co-ordinate
system where the largest variance is described by the first principal
component (PC1), second largest variance described by the second PC
(PC2) and so on [104,105]. The data matrix is broken down into two
components, scores and loadings. Loadings identify which variables are

most strongly associated with each PC, identifying sources of variation
within the dataset, and scores denote the value of a sample when pro-
jected (orthogonally) onto a PC. PCA has seen increasing use for the
analysis of IR spectra of biofluids, in particular where datasets are
particularly large and spectral markers used to discriminate between
classes are unknown [13,17,20,41,91,96,97,106].

An FTIR study of plasma samples from patients with varying stages of
prostate cancer and controls, displayed clear discrimination between the
two classes when the data were analysed using PCA [20]. Moreover,
when plotting PC1 vs. PC2 the PCA algorithm was able to separate pa-
tients with prostate cancer into clusters based on cancer stage and further
proved that the age of the patients studied was not the source for the
variations observed.

In the bladder wash study, which was described above in section
3.2.1, the data obtained were also analysed using PCA and showed suc-
cessful results towards identifying bladder cancer patients from controls
[91]. PCA was applied to data acquired using two different measurement
modalities, transmission FTIR (with KBr pellets) and ATR-FTIR (with
dried wash samples), and the scores of PC1 vs. PC2 displayed clear
discrimination between samples from the cancer patients and the con-
trols. The PC loadings were then used to identify the spectral features
associated with largest variance in the dataset which were passed on to
the cluster analysis for further evaluation. PCA is often used as a feature
extraction technique and has seen success when combined with super-
vised classification techniques [41,107–109]. In doing so, the dimen-
sionality of the data is reduced allowing computation of discrimination
between classes to be faster and based on real spectral differences within
the dataset as opposed to pre-assigning the spectral differences between
classes [110].

One of the key advantages of PCA is visualisation of important fea-
tures within a dataset provided by the scores and loadings plots, allowing
interpretation of the differences within the dataset being analysed [40].
The ability of PCA to handle noisy datasets is another key advantage, by
reducing the dimensionality of the dataset, the variations due to noise
can be ignored more easily. PCA is strongly influenced by the scale of the
data and so if other data besides spectroscopic are being investigated
(e.g., protein levels) then the data must be standardised, and any cate-
gorical features must be converted into numerical values before applying
PCA. However PCA alone is typically not a strong enough classifier and is
often used a feature selection technique prior to classification analysis
[44,108,109,111].

Fig. 7. Illustration of unsupervised
classification techniques. a) Representa-
tion of k-means clustering, where two
random datapoints are assigned as clus-
ter centres (white crosses) and the
Euclidean distance is calculated between
each datapoint and the cluster centres.
The datapoint is then assigned to the
closest cluster (shown for datapoint
denoted with yellow cross). In theory,
after a number of iterations, cluster
centres will be in the centre of each class
(red and blue datapoints). b) A hierar-
chical clustering dendrogram. Initial in-
dividual data clusters are shown in red.
Horizontal green lines show the
maximum distance between a given
number of clusters, indicating the opti-
mum number of clusters for a given
dataset. c) PCA showing the first two
principal components explaining the 2
largest directions of variation. (For
interpretation of the references to colour
in this figure legend, the reader is
referred to the web version of this
article.)
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4. 2D-IR spectroscopy

2D-IR spectroscopy has been used to probe the molecular vibrations
of many systems including biological molecules and solvents and has
provided visualisations of conformational structural changes and dy-
namics of molecules [25,29,112–120]. Proof of principle studies have
shown the power and sensitivity of 2D-IR as it observes molecular
structures and changes within a system allowing identification of pro-
teins, ligands, DNA and other markers, and it has the potential to aid in
disease diagnosis [11,29,113,116,120–125]. However the use of 2D-IR to
study biofluids is in its infancy and requires development which faces
many challenges.

As the application of 2D-IR to the study of protein amide I modes in
biofluids is in the initial exploratory stages, the application of machine
learning algorithms to 2D-IR datasets is small and classification of disease
in biofluids has yet to be demonstrated. In order to assess the potential for
biofluid classification using 2D-IR it is important to consider MVA
techniques applied to 2D-IR datasets and how they compare with other
methods.

It was recently demonstrated that the 2D-IR amide I signature of
proteins dominates that of water even at sub-millimolar protein con-
centrations, in contrast to IR absorption experiments, allowing the
quantification of proteins in serum without the overlapping water ab-
sorptions [11]. The 2D-IR spectral lineshapes have been shown to be
extremely sensitive to protein secondary structure, allowing the identi-
fication of individual proteins in serum, and the ratio of albumin to
globulin proteins was determined in a model serum dataset with accu-
racies <4%. Contributions due to structurally similar individual immu-
noglobin sub-groups were also identified due to their unique spectral
lineshapes. Comparisons of the same samples analysed with FTIR spec-
troscopy show that this information is not easily retrievable from FTIR
analysis [11].

PCA has been shown to be a powerful tool for use with 2D-IR spec-
troscopy and has enabled extraction of information from 2D-IR datasets
[23,29,122]. It is important to note that prior to fit using a bilinear model
such as PCA, the data must be first altered into a suitable format, ideally
where each 2D matrix is reshaped into a single dimensional vector. In a
2D-IR serum study, the concentration of supplemented glycine in serum
was evaluated using PCA [23]. Notably, the spectral information con-
tained in the first two principal components of the PCA loading plots
produced results similar to individual 2D-IR spectra of neat serum and
glycine in H2O, respectively. Comparisons of the PCA result with trans-
mission mode FTIR data showed that while the PCA score data gave
similar linear correlations with glycine concentrations for the first two
components, it was unable to split the two major contributions (serum
and glycine) into individual loadings. PCA was also used to help establish
a detection limit using the amino acid glycine which allowed projection
to potential sensitivities for larger peptides/proteins of ~200 μM. It is
suggested that with further investigation the use of PCA with 2D-IR
spectroscopy has the potential to produce different principal compo-
nents corresponding to the peptides or proteins causing changes from
that of a healthy serum sample, whereby in an ideal scenario producing a
library of 2D-IR spectra. With PCA being an unsupervised analytical
method, the differences within each sample do not have to be highlighted
to the algorithm. In this scenario, this is highly advantageous over su-
pervised analytical methods as the composition of biofluids infamously
fluctuates depending on many factors including age, diet, stress, and
disease [101,126–129].

Biofluids primarily contain proteins, not including water, however
there are only a few 2D-IR protein studies that have been conducted in
H2O. There are many evaluations of proteins in D2O solutions which have
allowed identification of protein secondary structures producing results
similar to those achieved from more conventional techniques [120,122,
124,125], and so it is insightful to evaluate the use of MVA techniques for
2D-IR disease diagnostics on non-physiological protein studies.

The first application of PCAwith 2D-IR spectroscopy shows the ability

to quantify changes in the protein secondary structure of the messenger
protein calmodulin associated with temperature and calcium binding
[122]. Two principal components were revealed, PC1 and PC2, and
found to be independent and dependent on temperature, respectively.
Furthermore, the loading information of PC2 was found to match the
features found in difference spectra from the highest and lowest tem-
perature spectra. The calmodulin 2D-IR spectra in its calcium free or
bound form differed enough to allow identification of each system. This
binding is reported to affect only 4.7% of the protein's residues, show-
casing the sensitivity of 2D-IR spectroscopy [122]. This result also
compared positively to secondary structure assignments achieved via
circular dichroism spectroscopy.

Additionally, the use of PCA combined with analysis of variance
(ANOVA-PCA) has shown success in categorising ligand binding to DNA
sequences using 2016 different 2D-IR spectra [29]. Due to the high in-
formation content of the 2D-IR spectral dataset, Fritzsch et al. have
shown the ability of this technique to retrieve the base composition of the
12 different DNA sequences used and detect the presence of a bound
ligand, as each DNA base pair produces a distinctive 2D-IR peak pattern.
As the understanding of base couplings improve, determination of DNA
sequences may be possible via large libraries of data and MVA analysis.
Among the analytical advancements making 2D-IR suitable for biomed-
ical research, this study in particular showcases the current state of the
art in laser technologies, demonstrating rapid collection of a 2D-IR
spectrum in seconds showing that a high-throughput screening applica-
tion of 2D-IR coupled with the categorisation of a large number of
samples is possible.

Utilising singular value decomposition (SVD), Baiz et al. constructed a
library of 2D-IR spectra from 16 different proteins with known crystal
structures [120]. SVD is a matrix diagonalisation technique used to
describe a dataset in terms of principal component spectra. By utilising
the specific signatures produced by each protein secondary structure
component, e.g. α-helix and β-sheet, the SVD algorithm predicted the
fraction of each structure contained in a single protein sample, negating
the need for complex and subjective curve fitting and deconvolutions. A
leave-one-out process was performed using the remaining 15 protein
spectra, and the percentage of α-helix, β-sheet and unassigned protein
conformations were predicted. The authors compare their results and
errors using circular dichroism spectroscopy, the current standard for
protein secondary structure, and note similar errors for each structural
element between the two methods. The authors also comment that a
larger library of proteins would likely result in a decrease in the associ-
ated error. The power and sensitivity of MVA combined with 2D-IR
protein spectral datasets is encouraging, alluding to its potential high
value for their use in 2D-IR disease diagnostics.

For current investigations of biofluids using IR spectroscopy, mea-
surement, pre-analytical and analytical protocols are often varied be-
tween different research groups and no single protocol exists despite
efforts to standardise these. While the application of 2D-IR to biofluids is
still in its initial stages, it would be prudent to learn from this community
and take this opportunity to establish a protocol for the use of spectral
pre-processing and multivariate analysis methods to help eliminate the
interoperability of these processes. Initially thorough investigation of
pre-analytical techniques on a ‘basic’ 2D-IR biofluid dataset should be
performed. The methods used will likely be similar to those already
utilised in the IR spectroscopy community however the effects on a multi-
dimensional dataset may require additional study, in particular the order
in which they are applied. Multi-dimensional datasets often require
manipulation into a suitable form prior to application of analysis tech-
niques, for example a single 2D-IR spectrum exists as a 2D matrix
requiring reshaping into a single dimensional array (similar to that of a
FTIR spectrum). However, techniques have been developed for applica-
tion with data cubes (for example with 2D nuclear magnetic resonance
and mass spectrometry) which could be useful for 2D-IR datasets. Once a
pre-analytical protocol has been established, the application of different
multivariate analysis techniques can be tested. In order to standardise
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these procedures, we need to be aware of both the clinical needs and
instrumental capabilities; what information is clinically relevant and can
reproducible results be obtained quickly. This will require a rigorous
study on the limitations of each process and determination of standards
that should be adhered to in order to use these advanced analytical
techniques to produce fair and comprehensive results. Realistically,
standardised procedures will only be accepted when they are shown to be
successful time and time again, establishing the need for many studies
and their careful evaluation, a slow yet necessary development.

As with many detection technologies, the shortcoming of 2D-IR lies
with sensitivity and detection limits, and generally speaking 2D-IR is not
considered a high-sensitivity technique. However in recent years, de-
velopments in laser technologies have seen the acquisition of a single 2D-
IR spectrum in seconds, increased signal-to-noise levels resulting in lower
detection sensitives and new methodologies have been shown to mini-
mise measurement to measurement variability [22,27,28,130–134].
Further developments in technology, sample handling and microfluidics
or even surface enhancements could lead to the potential increased
sensitivity of biomolecule concentrations. This coupled with the ability of
2D-IR to circumvent water absorptions and the minimal sample prepa-
ration required, presents 2D-IR as a complementary method to IR ab-
sorption spectroscopy in the biomedical arena.

5. Conclusion

The studies discussed in this review highlight the application and
power of machine learning classification algorithms towards the analysis
of IR spectra of biofluids. However, a common remark posed by authors
in the studies mentioned express the need for larger datasets to encom-
pass a more balanced dataset, i.e., a similar number of patients in each
tested class, to help increase test accuracies. Additionally, numerous
large-scale studies would help steer vibrational spectroscopy towards
mainstream healthcare.With the arrival of 2D-IR spectroscopy to biofluid
analysis, the need to establish analytical protocols while in its infancy is
vital, and the need for strong analytical tools is essential to deal with the
large and complex datasets that 2D-IR possesses. Proof-of-principle 2D-IR
protein studies combined with MVA have shown great potential for the
analysis of biofluids with its sensitivity to small molecular changes in
large systems, and the potential to build a large spectral library which
could be used to evaluate unknown samples has been recognized. The
multidimensionality of a 2D-IR spectrum and thus the wealth of infor-
mation gives 2D-IR a strong advantage over IR absorption methods and
with this in mind the use of classification algorithms with 2D-IR biofluid
spectral datasets has an encouraging potential.
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