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ABSTRACT

General Matrix Multiplication (GEMM) is a key subroutine in high-

performance computing. While the mainstream linear algebra li-

braries can deliver high performance on large and regular-shaped

GEMM, they are inadequate for optimizing small and irregular-

shaped GEMMs, which are commonly seen in new HPC applica-

tions. Some of the recent works in this direction have made promis-

ing progress on x86 architectures and GPUs but still leave much

room for improvement on emerging HPC hardware built upon the

ARMv8 architecture.We present LibShalom, an open-source library

for optimizing small and irregular-shaped GEMMs, explicitly target-

ing the ARMv8 architecture. LibShalom builds upon the classical

Goto algorithm but tailors it to minimize the expensive memory ac-

cessing overhead for data packing and processing small matrices. It

uses analytic methods to determine GEMM kernel optimization pa-

rameters, enhancing the computation and parallelization efficiency

of the GEMM kernels. We evaluate LibShalom by applying it to

three ARMv8 multi-core architectures and comparing it against five

mainstream linear algebra libraries. Experimental results show that

LibShalom can consistently outperform existing solutions across

GEMM workloads and hardware architectures.
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1 INTRODUCTION

General matrix multiplication (GEMM)1 is a fundamental build-

ing block for high-performance computing (HPC) applications -

from traditional scientific simulations to emerging deep learning

workloads. While GEMM optimization is a heavily studied field,

existing linear algebra libraries mainly target GEMM operating on

large matrices with regular shapes (i.e., when both dimensions of a

matrix are more or less the same) [3, 7, 23, 56, 59].

Due to the diversity and the evolving nature of HPC workloads,

the size and shape of the input matrices of a GEMM kernel can vary

depending on the application algorithm used and input data. For ex-

ample, new scientific simulation algorithms in computational fluid

dynamics (CFD) like finite element methods and wave equations

often adopt GEMM implementations operating on small matrices to

achieve scalable performance on modern multi-core systems [28].

For example, the implementation of CP2K [28], a popular molec-

ular dynamics simulator, extensively uses GEMMs performed on

matrices of sizes 5 × 5 and 23 × 23. As another example, kernels

of the Nek5000 high-order solver for CFD heavily rely on GEMMs

computing on 8×8 matrices. In addition to these conventional HPC

applications, new HPC workloads like deep learning and machine

learning methods are often built upon small GEMM kernels [28].

Some of these data analytic algorithms also need to operate on

irregular-shaped matrices [14, 32] where the magnitude of both ma-

trix dimensions has a significant difference. For example, GEMMs

used by the convolution kernels of the ResNet deep neural network

[27] computes on matrices with one dimension equal to 64 while

the other is greater than 3000.

These new HPC workload characteristics challenge how we op-

timize GEMM computation. Although the traditional linear algebra

libraries like OpenBLAS [59] and BLIS [56] can deliver near-optimal

performance on large and regular-shaped GEMMs, they often give

poor performance on small-sized GEMMs. This is an issue reported

by recent studies [28] on the x86 architecture and observed in our

evaluation on ARMv8 platforms (Section 3). As we will show later

in the paper, while OpenBLAS can deliver over 70% of the peak

performance on large GEMMs, it gives less than 20% of the peak

performance on some representative small and irregular-shaped

GEMMs. As small and irregular-shaped GEMMs are now common

in HPC, there is a critical need to optimize such workloads.

§Equal contribution
*Corresponding author
1GEMM is a matrix-multiply-accumulate operation, defined as C = 𝛼A · B + 𝛽C,
where A and B are matrix inputs, 𝛼 and 𝛽 are scalar inputs, and C is a pre-existing
matrix which is overwritten by the output. Following the naming convention of linear
algebra libraries, in this work, matrix A is denoted as a𝑀 ×𝐾 matrix with𝑀 rows
and 𝐾 columns, matrix B is sized of 𝐾 × 𝑁 , and C is sized of𝑀 × 𝑁 .



Recently, efforts have been made to optimize small GEMMs [28]

on CPUs or irregular-shaped GEMMs on GPUs [12]. BLASFEO was

among the first attempts to optimize small and irregular-shaped

GEMMswithin a single framework [17, 18].While delivering promis-

ing results on x86 and GPU architectures, existing solutions are

inadequate for optimizing small and irregular-shaped GEMMs on

the ARMv8 based CPU architecture. As we will show in the paper,

existing approaches leave much room for performance improve-

ment on ARMv8 multi-cores due to their strategies of data packing

(that maps the input matrix elements to a linear buffer), processing

edge cases of matrix elements and parallelization. Since multi-core

CPUs built upon the ARMv8 architecture and instruction set are

quickly emerging as an alternative to the x86-based HPC hard-

ware [38, 44], it is highly attractive to have a library dedicated to

optimizing small and irregular-shaped GEMMs on ARVMv8 [52].

This paper presents LibShalom2, an open-source BLAS library

designed to optimize small and irregular-shaped GEMMs onARMv8

multi-cores. As a departure from existing BLAS libraries, LibShalom

takes different approaches for data packing, edge-case processing

and parallelization. Like mainstream BLAS libraries, LibShalom

builds upon the classical Goto GEMM algorithm [22], but it tailors

this algorithm for optimizing small and irregular-shaped GEMMs

on ARMv8. Unlike existing solutions that process data packing and

GEMM computation in a sequential manner, LibShalom leverages

the SIMD instruction hide memory latency by carefully overlapping

memory accesses incurred by data packing with computation oper-

ations within a GEMM kernel. Unlike conventional BLAS libraries

that always apply data packing, LibShalom determines, at runtime,

if data packing is beneficial by taking into consideration the input

matrix size and the GEMM computation mode. We show how sim-

ple yet effective analytic models can be developed to determine the

GEMM loop tiling parameters to enhance instruction scheduling,

cache locality and efficiency of parallelization and edge-case pro-

cessing. We show that our analytical methods, in combination of

our new, carefully optimized micro-kernel implementations, lead to

significantly better performance over existing BLAS libraries when

processing small and irregular-shaped GEMM on ARMv8.

Results. We demonstrate the benefit of LibShalom by applying

it to three representative ARMv8 multi-core CPUs, Phytium 2000+

[16], Kunpeng 920 [4] and ThunderX2 [34]. We evaluate LibShalom

on both small and irregular-shaped GEMMs as well as computa-

tion kernels from real-life applications. We compare it against five

GEMM libraries that have an optimizing back-end for ARM archi-

tectures [1, 18, 28, 56, 59]. We show that LibShalom consistently

outperforms the competing schemes across hardware architectures,

GEMM workloads, computation modes for both single-threaded

and parallel executions. We showcase that, despite being a library-

based approach, LibShalom can outperform techniques built upon

just-in-time compilation [28]. The result is a new way for imple-

menting and optimizing kernels for small and irregular-shaped

GEMMs.

Contributions. The technical contributions of this paper are:
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Figure 1: A typical implementation of GEMM.

• It demonstrates how the memory accessing overhead of data

packing can be hidden with computations through SIMD

instructions and scheduling (Section 4).

• It presents a new way to implement the GEMM computa-

tion kernels that achieves better performance over existing

solutions (Section 5).

• It shows how analytical methods can be developed to de-

termine the GEMM kernel optimization parameters for the

ARMv8 architecture (Sections 4, 5 and 6).

Online material. We provide our code, test programs and full

result data sets online at: https://github.com/AnonymousYWL/

LibShalom.

2 BACKGROUND

2.1 Problem Scope

Our work focuses on optimizing GEMM performed on small and

irregular-shaped matrix inputs on ARMv8 CPUs. We consider a

GEMMmatrix input to be small if two of its dimensions (𝑀 ,𝐾 , or𝑁 )

are of a similar size that can fit into the last-level data cache (LLC)

of the CPU. By contrast, an irregular-shaped matrix is where one

dimension is significantly smaller than the other, e.g., a 64× 50, 176
convolutional kernel in a deep neural network [41]. This type of

matrices is also known as tall-and-skinny matrices [12, 15]. The

dimensions here usually refer to𝑀 and 𝑁 dimensions, and the 𝐾

dimension is usually not considered [12, 39]. While recent efforts

have been made to optimize small and irregular-shaped matrix

multiplications, current solutions mainly target x86 architectures

or GPUs. It remains unclear how small and irregular-sized GEMMs

can be best optimized on emerging ARMv8 multi-core CPUs. Our

work aims to close this gap.

2.2 General Matrix Multiply Algorithm

Figure 1 gives a high-level overview of the Goto GEMM algo-

rithm [22] used by mainstream linear algebra libraries, includ-

ing OpenBLAS [59] and BLIS [56]. The algorithm computes C =

𝛼A · B + 𝛽C by first partitioning and packing matrices 𝐴, 𝐵, and 𝐶

into submatrices, so that matrix multiplications can be performed



on the submatrices to improve cache locality. The process of parti-

tioning, packing and computing is performed within nested loops

outlined in Figure 1, described as follows.

Partitioning. The outermost loop (L1) of Figure 1 groups 𝐶 and 𝐵

along the column direction into submatrices of sizes 𝑀 × 𝑛𝑐 and
𝐾 × 𝑛𝑐 respectively. The second level loop (L2) partitions 𝐴 into

submatrices on the column dimension of size𝑀 ×𝑘𝑐 . It also further
partitions the 𝐾 ×𝑛𝑐 submatrix of 𝐵 into row panels of size 𝑘𝑐 ×𝑛𝑐 .
Essentially, the outermost two loops translate matrix multiplication

A ·B to a panel-to-panel multiplication (GEPP). Then, the third level

loop, L3, partitions the𝑀 × 𝑘𝑐 panels of 𝐴 into𝑚𝑐 × 𝑘𝑐 blocks, and
partitions a𝑀 × 𝑛𝑐 submatrix of 𝐶 into row panels of size𝑚𝑐 × 𝑛𝑐 .
The choice of 𝑚𝑐 and 𝑛𝑐 is important for maximizing the cache

locality after the packing stage, described next.

Data packing. The outermost two loops of the GEMM algorithm

packs the 𝑘𝑐 × 𝑛𝑐 panel of 𝐵 into a linear buffer, 𝐵𝑐 . The algorithm

will try the largest panel size while the entire 𝐵𝑐 can be stored in the

last level data cache [47]. Similarly, at loop L3, the algorithm packs

submatrices of𝐴 generated at this loop level to a linear buffer𝐴𝑐 to

fit into the L2 data cache. Data packing is vital for achieving high-

performance GEMM by reducing memory access latency through

cache locality optimization [26, 33]. However, as we will show later,

the existing packing implementation is ill-suited for processing

small and irregular-shaped matrices on ARMv8 multi-cores.

Kernel.Matrix multiplication is performed at the kernel level using

a three-level loop, known as general block-times-panel multiply

(GEBP) in BLAS. The kernel updates an 𝑚𝑐 × 𝑛𝑐 panel of 𝐶 by

calculating the outer product (via dot to vector multiplications)

of a block of 𝐴𝑐 of size 𝑚𝑐 × 𝑘𝑐 and a panel 𝐵𝑐 of size 𝑘𝑐 × 𝑛𝑐 .
Specifically, the outermost loop of the kernel (L4) partitions a block

𝐵𝑐 into slivers (i.e., micro-panels) of 𝑘𝑐 × 𝑛𝑟 and the second-level

loop of the kernel (L5) partitions a block 𝐴𝑐 into slivers of𝑚𝑟 × 𝑘𝑐 .
Micro-kernel. The innermost loop of the GEBP kernel performs a

sequence of updates of an𝑚𝑟 × 𝑛𝑟 sub-block of 𝐶 using an𝑚𝑟 × 1
column sub-sliver of 𝐴𝑐 and a 1 × 𝑛𝑟 row sub-sliver of 𝐵𝑐 . This

innermost loop is also known as the micro-kernel in BLIS [56].

Edge cases. When the matrix size is not a multiple of the micro-

kernel size (e.g., 𝑀 is not a multiple of𝑚𝑟 , or 𝑁 is not a multiple

of 𝑛𝑟 ), we have to process the remaining elements outside the

partitions. Existing approaches either pad the matrices with zeros

to match the kernel size [56], or use another dedicated routine to

process the remaining edge elements [59].

3 MOTIVATION AND OVERVIEW

Existing GEMM libraries like OpenBLAS [59] and BLIS [56] are de-

signed to optimize GEMM operating on large matrices. While they

can obtain near peak hardware performance on large matrices, they

deliver low performance on small and irregular-shaped matrices.

A few libraries like BLASFEO [18] offer certain optimizations for

small GEMMs but do not take full advantage of a multi-core design

and the workload characteristics. As concrete examples, we evalu-

ate the GEMM performance of four representative linear algebra

libraries, OpenBLAS, BLIS, ARMPL [1] and BLASFEO, on Phytium

2000+, a 64-core ARMv8 multi-core [11, 16, 54].
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(a) Small GEMM on Phytium 2000+
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(b) Irregular-shaped GEMM on Phytium 2000+

Figure 2: GEMM performance on (a) small square and

(b) irregular-shaped matrices on the ARMv8-based

Phytium 2000+ processor. Existing libraries are ineffec-

tive in processing small or irregular-shaped GEMMs.

3.1 Motivation Results

In Figure 2, we normalize the measured performances (FLOPS) to

the theoretical peak CPU computational performance.

Small-sized GEMM. Figure 2a shows the GEMM performance on

square matrices (i.e.,𝑀 = 𝑁 = 𝐾 ), and we see that existing GEMM

libraries also give poor performance when the matrix size is small3.

For example, even the best-performing library only achieves around

60% of the peak performance when the matrix size is 32. By contrast,

they can achieve over 80% of the CPU peak performance when the

matrix size is 256 or larger.

Irregular-shaped GEMM. Figure 2b shows the performance of

irregular-shaped GEMMs when we fixed 𝑁 and 𝐾 to 10, 000 while

varying𝑀 . Matrices of this scale and size are often seen in scientific

simulation kernels like high-order FEM codes and sparse direct

solvers using super-block [28]. For this type of GEMM matrices,

the highly optimized BLIS library can achieve 70% of the peak

performance when 𝑀 is 4096. However, all libraries deliver less

than 40% of the peak performance when 𝑀 is smaller than 128.

When𝑀 = 16 and 𝑁 = 50000, a representative setting for certain

neural network workloads [29, 30], all evaluated libraries achieves

less than 25% of the theoretical CPU peak performance.

3.2 Optimization Opportunities

As can be seen from the motivation results, there is much room

for improvement for small and irregular-shaped GEMM on ARMv8

multi-cores, and none of the test libraries is effective at both small

3Since BLASFEO is designed to optimize GEMM on matrices that can entirely fit into
the L2 data cache [17, 18], it is excluded from irregular-shaped GEMM in Figure 2b.



and irregular-shaped matrices. After close examinations, we iden-

tify three missing opportunities of current linear algebra libraries.

First, although the packing overhead is small (< 3%) on large

matrices [45], it can account for 50% of the execution time for small

GEMMs (e.g., when 𝑀 = 32 in Figure 2) and cannot be ignored.

Existing GEMM libraries always pack data even when it is not ben-

eficial to do so. When the packing overhead outweighs the benefit

small-sized GEMMs, existing solutions give a poor performance.

Secondly, we observe around 10% drop in the FLOPS when pro-

cessing edge cases for small-sizedmatrices. This performance degra-

dation is observed for all testing GEMM libraries, regardless of

which of the two edge case strategies described in Section 2.2 is used.

While the overhead of handling edge cases is negligible for large ma-

trices (less than 1% of the execution time when𝑀 = 𝑁 = 𝐾 = 5000),

the cost can be significant for small and irregular-shaped matrices.

Thirdly, we found that the existing parallelization scheme for

GEMM is ineffective for irregular-shaped matrices. For example,

when performing GEMM on matrices of sizes 𝑀 = 32, 𝑁 = 𝐾 =

10000, OpenBLAS and BLIS only deliver 6% and 14% of the peak

performance on Phytium 2000+. This is because when distributing

the work across parallel threads, they ignore the workload charac-

teristics of irregular-shaped GEMMs [43], creating many edge cases

to be processed. These edge cases in turn bring in extra overhead

that could otherwise be avoided.

3.3 Overview

In light of these observations, our work aims to design a better ap-

proach for packing, handling edge cases and parallelization, specif-

ically targeting small and irregular-shaped GEMMs on the ARMv8

architecture for HPC. To this end, we develop LibShalom, an open-

source optimizing library for small and irregular-shapped GEMM.

Following the common practice of low-level systems libraries, Lib-

Shalom provides APIs in C and C++ to be used by the applications,

but implements its underlying GEMM kernels in assembly for per-

formance reasons.

GEMMmodes. Like most BLAS libraries [1, 17, 56, 59], LibShalom

supports four types of GEMM kernels, NN, NT, TN and TT. Here,

𝑇 and 𝑁 respectively stand for a transposed and not transposed

matrix. For example, GEMM for matrices A · B under the NT mode

means matrix 𝐵 is transposed (T) but matrix 𝐴 is not (N).

Algorithm implementation.Algorithm 1 outlines the LibShalom’s

GEMM implementation under the NNmode. Like mainstream BLAS

libraries, our implementation follows the Goto algorithm described

in Figure 1, but introduces several optimizations. Firstly, LibShalom

removes the always-executed packing steps, i.e., converting matri-

ces 𝐵 and 𝐴 to linear buffers 𝐵𝑐 and 𝐴𝑐 , respectively from Figure 1.

For cases that needed to be packed, we perform packing at themicro-

kernel level rather than the kernel level. Secondly, we exchange the

𝐿2 loop and the 𝐿3 loop from Figure 1 to yield a more contiguous

access on matrix 𝐴, and use loops 𝐿1 and 𝐿3 for parallelization

(Section 6). Note that we mainly use the outer-product formulation

(scalar-vector multiplication) at the micro-kernel, which has greater

computation-to-memory ratio (CMR) than the inner-product for-

mulation (vector-vector multiplication), to update matrix 𝐶 . Here,

the CMR is computed as the ratio of arithmetic instructions to mem-

ory load and store instructions (see Section 5.2.1). A larger CMR

Algorithm 1: NN mode GEMM implementation

Input:Matrix𝐴,𝐵, Buffer 𝐵𝑐
Output:Matrix𝐶

1 for 𝑗 𝑗 = 0→ 𝑁 step = 𝑛𝑐 do
2 for 𝑖𝑖 = 0→𝑀 step =𝑚𝑐 do
3 for 𝑘𝑘 = 0→ 𝐾 step = 𝑘𝑐 do
4 for 𝑗 = 0→ 𝑛𝑐 step = 𝑛𝑟 do
5 if size(𝐵)>𝐿1 then
6 for 𝑘 = 0→ 𝑘𝑐 step = 1 do
7 𝐶 (𝑖𝑖 : 𝑖𝑖 +𝑚𝑟, 𝑗 𝑗 + 𝑗 : 𝑗 𝑗 + 𝑗 + 𝑛𝑟 )+ = 𝐴(𝑖𝑖 :

𝑖𝑖 +𝑚𝑟 ;𝑘𝑘 + 𝑘) × 𝐵 (𝑘𝑘 + 𝑘, 𝑗 𝑗 + 𝑗 : 𝑗 𝑗 + 𝑗 + 𝑛𝑟 ) ;
8 𝐵𝑐 (𝑘, 0 : 𝑛𝑟 ) = 𝐵 (𝑘𝑘 + 𝑘, 𝑗 𝑗 + 𝑗 : 𝑗 𝑗 + 𝑗 + 𝑛𝑟 )
9 for 𝑖 =𝑚𝑟 →𝑚𝑐 step =𝑚𝑟 do
10 for 𝑘 = 0→ 𝑘𝑐 step = 1 do
11 𝐶 (𝑖𝑖 + 𝑖 : 𝑖𝑖 + 𝑖 +𝑚𝑟, 𝑗 𝑗 + 𝑗 : 𝑗 𝑗 + 𝑗 + 𝑛𝑟 ) =

𝐴(𝑖𝑖 + 𝑖 : 𝑖𝑖 + 𝑖 +𝑚𝑟,𝑘𝑘 + 𝑘) × 𝐵𝑐 (𝑘, 0 : 𝑛𝑟 )

12 else
13 for 𝑖 = 0→𝑚𝑐 step =𝑚𝑟 do
14 for 𝑘 = 0→ 𝑘𝑐 step = 1 do
15 𝐶 (𝑖𝑖+𝑖 : 𝑖𝑖+𝑖+𝑚𝑟, 𝑗 𝑗+ 𝑗 : 𝑗 𝑗+ 𝑗+𝑛𝑟 ) = 𝐴(𝑖𝑖+𝑖 :

𝑖𝑖+𝑖+𝑚𝑟,𝑘𝑘+𝑘)×𝐵 (𝑘𝑘+𝑘, 𝑗 𝑗+ 𝑗 : 𝑗 𝑗+ 𝑗+𝑛𝑟 )

indicates that more arithmetic instructions are available to overlap

with memory accesses to hide the memory latency.

Roadmap. In the following sections, we present the three key

optimizations of LibShalom for minimizing the overhead of small

and irregular-shaped GEMMs, by redesigning the kernel (Section

4), micro-kernel (Section 5) and parallelization strategy (Section 6).

Without losing generalization, we describe our approach under the

NN and NT modes using single-floating point (FP32) operations.

However, our optimizations are equally applicable to the other

GEMM modes and double-floating points (FP64), which all are

supported by LibShalom. We also assume the matrices are stored

in the row-major format in our discussions.

4 GEMM KERNEL DESIGN

4.1 Design Principals

For kernel computation A · B, existing BLAS libraries convert each

matrix to a linear buffer at the packing stage, regardless of the

mode (N or T) and the matrix size. Our insight is that packing is

unnecessary for small matrices or those being sequentially accessed

in the micro-kernel because they can be accessed in a cache-friendly

manner. For example, as matrix 𝐴 is accessed rows by rows under

the NNmode, the cache prefetching mechanism can largely hide the

main memory access latency. For this reason, it is unnecessary to

pack a large matrix𝐴 and pay the potentially expensive cost of data

packing. For scenarios where packing the matrix can be profitable,

LibShalom tries to overlap the memory loads and stores incurred

by packing with computation instructions inside the micro-kernel

(Section 5.3). Therefore, LibShalom only performs packing when

❶ the data cannot be accessed continuously in the micro-kernel

(i.e. cache-unfriendly), or ❷ the CMR of the micro-kernel is too low

to hide the memory latency without packing.

4.2 NN Mode Packing Strategy

Depending on the size of matrix 𝐵, we apply two packing strategies

in the NN mode, described as follows.
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Figure 3: Kernel design using the FP32 NN kernel mode as a

working example.

No packing. If the size of matrix 𝐵 is smaller than the L1 data cache

(i.e., 𝑠𝑖𝑧𝑒 (𝐵) < 𝐿1 at line 12 of Algorithm 1), we skip the packing

step. Instead, we go straight to divide matrix𝐴 into multiple tiles of

size𝑚𝑟 ×𝐾 , and then update matrix𝐶 at lines 13 - 15 in Algorithm 1.

Packing large B. If matrix 𝐵 is larger than the L1 data cache ca-

pacity, we pack the tiled 𝐵 into a linear buffer, 𝐵𝑐 , and, at the same

time, we update parts of matrix 𝐶 in first distributed loop (lines

6ś8 of Algorithm 1). Our algorithm utilizes the fused-multiply-add

(FMA) instructions4 to perform the outer-product computation at

line 7 of Algorithm 1. As the FMA instruction can be executed con-

currently with independent load and store instructions (thanks to

out-of-order instruction scheduling), we use it to hide the packing

overhead when packing matrix 𝐵 at line 8 of Algorithm 1. After

packing, 𝐵𝑐 is used to update the𝑚𝑟→𝑚𝑐 rows of𝐶 during lines 9 -

11 in Algorithm 1. With a carefully designed micro-kernel (Section

5.3), we ensure that the number of CPU cycles for executing the

FMA instructions can hide the overhead for filling 𝐵𝑐 . Furthermore,

since our kernel reuses 𝐵𝑐 across computation iterations for the

second distributed loop at lines 9 - 11 in Algorithm 1, we increase

the chance for 𝐵𝑐 to be kept in the L1 data cache.

Packing choice. For the scenarios where both matrices 𝐴 and 𝐵

exceed the L1 data cache size, we will pack 𝐵 instead of 𝐴. Our

design choice can be justified using Figure 3. From the diagram, we

see that for any given row of 𝐴, the CPU can continuously access

the 0→𝑘𝑐 elements within the same row. By contrast, the CPU

can only do so for the 0→𝑛𝑟 elements at each row of 𝐵. Since our

implementation uses a small 𝑛𝑟 (12 or 6; see Section 5) to promote

the use of the vector registers, accessing to a none-packed, large 𝐵

would exhibit poor cache locality. For this reason, we prioritize the

packing of the matrix 𝐵 at the NN mode. Because accessing matrix

𝐴 is nearly continuous, we do not pack 𝐴 even it is the only matrix

that is larger than the L1 data cache at the NN mode.

4.3 Other Kernel Modes

In the NT mode, we always pack matrix 𝐵 because computation is

performed on the transposed (T) matrix where elements cannot be

accessed along the 𝑁 dimension with aligned vectorization instruc-

tion. This is depicted in Figure 3 where the continuously stored 𝑛𝑟

elements of 𝐵 are transposed to be stored at discontinuous memory

locations (assuming the row-major storage). The outer-product is

ineffective under this setting, because this formulation requires

at least one of the 𝑀 dimension of 𝐴 and the 𝑁 dimension of 𝐵

to be continuously stored in memory. To meet this requirement,

4The FMA instruction computes 𝑎 × 𝑏 + 𝑐 using one single rounding step.

Algorithm 2:Main micro-kernel of all modes

// Main micro-kernel of all modes

1 for 𝑘 = 0→ 𝑘𝑐 step= 4 do
2 (𝑉 0 −𝑉 6) ← 𝐴(0 : 6, 𝑘 : 𝑘 + 3) ;
3 (𝑉 7 −𝑉 9) ← 𝐵𝑐 (∗, 0 : 11) ;
4 (𝑉 11 −𝑉 31) ← FMA (𝑉 0 −𝑉 6) [0] , (𝑉 7 −𝑉 9) /* scalar-vector multiply

*/

5 ...;

6 (𝑉 7 −𝑉 9) ← 𝐵𝑐 (∗ + 3, 0 : 11) ;
7 (𝑉 11 −𝑉 31) ← FMA (𝑉 0 −𝑉 6) [3] , (𝑉 7 −𝑉 9)

LibShalom chooses to pack elements from matrix 𝐵 to a linear

buffer 𝐵𝑐 so that matrix elements are stored in continuous memory

space. Here we also overlap computation and packing. Similarly, for

the TT mode, we pack matrix 𝐴 as accessing to matrix 𝐵 is nearly

continuous (like how we access matrix 𝐴 in the NN mode). Like

the NN mode kernel, we use the FMA instruction to concurrently

update parts of matrix 𝐶 while preforming data packing.

5 MICRO-KERNEL DESIGN

LibShalom has three types of micro-kernels, designed to minimize

memory access latency and edge case processing. The first type of

micro-kernels is the main routine for computing A · B, correspond-
ing to lines 10-11 of Algorithm 1. The second type of micro-kernels

is used at the initialization stage to perform packing while updating

parts of matrix 𝐶 . This corresponds to lines 6-7 of Algorithm 1 at

the NN mode. The third type of micro-kernels is used to process

the edge cases; see Section 2.2.

5.1 Design Principals

Our micro-kernel implementations aim to maximize the CMR,

as prior studies have shown that optimizing this metric is im-

portant for small and irregular-shaped GEMM to achieve high-

performance [28, 30]. We achieve this by taking advantages of the

instruction parallelism of GEMM and the vector registers of the

ARMv8 architecture, which provides 32 128-bit-wide vector regis-

ters (referred to as 𝑉 0 −𝑉 31). The key challenge here is to find the

right loop tiling parameters,𝑚𝑟 and𝑛𝑟 , to best utilize the vector reg-

isters to maximize the CMR. To this end, we use analytic methods to

determine the tiling parameters for the three types of micro-kernels,

described in the next subsections. We remark that our distributed

micro-kernel design is different from OpenBLAS [59] and BLIS [56]

where the packing step and micro-kernel are completely separated

like Figure 1.

Working example. In the following subsections, we describe our

micro-kernel design using the FP32 NN kernel mode depicted in

Figure 3 as a working example. However, our design methodology

is equally applied to other kernel modes and FP64 GEMMs.

5.2 Main Micro-kernel

5.2.1 Optimization constraints. For the NN mode micro-kernel, as

show in Figure 3, we need𝑚𝑟 , 𝑛𝑟/ 𝑗 and𝑚𝑟 × 𝑛𝑟/ 𝑗 vector registers
to store elements from matrices 𝐴, 𝐵, and 𝐶 respectively, where 𝑗

is 4 and 2 for FP32 and FP64 GEMM respectively. In addition, like

[47], we reserve one vector register to prefetch the elements of 𝐴

or 𝐵. To make sure that the matrix elements can fit into the number
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of available vector registers (i.e., 31),𝑚𝑟 and 𝑛𝑟 have to satisfy:
{

𝑚𝑟 + 𝑛𝑟𝑗 +
𝑚𝑟×𝑛𝑟

𝑗 ⩽ (32 − 1)
𝑛𝑟% 𝑗 = 0

(1)

Since each vector register stores 𝑗 elements, we wish to set 𝑛𝑟 to

be a multiple of 𝑗 , i.e., 𝑛𝑟% 𝑗 = 0, so that we do not waste a vector

register to store fewer than 𝑗 elements from matrix 𝐵.

5.2.2 Optimization goal. In our NN mode micro-kernel, vector

registers store elements of matrix 𝐵 are released after exiting from

the current iteration. By contrast, vector registers for storing matrix

𝐴 elements will be freed every 𝑗 iterations after all the 𝑗 elements on

the 𝐾 direction (e.g., 1, 2, 3, 4 in Figure 3 for FP32 GEMM) have been

used. Therefore, for every 𝑗 iterations, we need𝑚𝑟 load instructions

to load elements frommatrix𝐴. Additionally, we need 𝑛𝑟 = 𝑛𝑟/ 𝑗 × 𝑗
loads to fetch elements from matrix 𝐵. For computation, we apply

the scalar-vector FMA instruction to𝑚𝑟×𝑛𝑟 matrix elements, which

translates to 2 ×𝑚𝑟 × 𝑛𝑟 computational operations as each FMA

instructions contains two operations, addition and multiplication.

Putting it together, the average CMR of our micro-kernels is:

𝐶𝑀𝑅 =

2 ×𝑚𝑟 × 𝑛𝑟
𝑚𝑟 + 𝑛𝑟 (2)

5.2.3 Solving the equations. To find an integer value of 𝑚𝑟 and

𝑛𝑟 that can maximize the CMR, we apply the Lagrange multiplier

method [25] to solve the constraints defined in Equation 1 with the

goal to maximize the CMR defined in Equation 2. This gives us𝑚𝑟 =

7 and 𝑛𝑟 = 12 to use in our main micro-kernel implementation for

the ARMv8 architecture. Not only NN mode, but we also use micro-

kernel of this size for other mode GEMMs. The general process is

shown in Algorithm 2.

5.3 Micro-kernel for Packing

The packing micro-kernel (lines 6-8 of Algorithm 1) will only be

invoked if the relevant matrix is larger than the L1 data cache.

5.3.1 Medium-sized matrix. If matrix 𝐵 is larger than the L1 data

cache but smaller the LLC, we only need to pack the 𝑛𝑟 elements

of 𝐵 used in the current iteration of micro-kernel; after that, the

elements that are continuous with these 𝑛𝑟 elements would be

prefetched into the data cache.

5.3.2 Larger and Irregular-shaped matrices. We now describe how

we pack matrices that cannot fit into the LLC cache.
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Figure 5: Micro-kernel for FP32 NT mode packing.

NN mode. To reduce cache and TLB misses, when accessing the

0→𝑛𝑟 elements of 𝐵 at the current iteration of 𝑗 loop in Algorithm 1,

we pack the next batch of elements of 𝐵 as required by the next

iteration into another part of the linear buffer, 𝐵𝑐 in line 8 of Algo-

rithm 1. This is because when these elements are used in the next

iteration of the 𝑗 loop, cache and TLB misses may occur frequently.

As we iterate over this micro-kernel, we pack more elements into

𝐵𝑐 . As a result, we will have already packed 𝑡 ×𝑛𝑟 of such elements

when executing the 𝑡𝑡ℎ iteration of 𝑗 loop, where 𝑡 = 0, 1, 2...𝑛. Note

that𝑚𝑟 and 𝑛𝑟 in the packing kernel are set to the same values as

the main kernel (i.e.,𝑚𝑟 = 7 and 𝑛𝑟 = 12 for FP32). In implementa-

tion, we set 𝑡 to be 0 and 1 for small and irregular-shaped GEMMs,

respectively. This means that the former only performs step 1 in

Figure 4 in each iteration, while the latter performs steps 1 and 2.

Algorithm 3:Micro-kernel for NT mode data packing

1 for 𝑗 = 0→ 12 step= 3 do
2 for 𝑘 = 0→ 𝑘𝑐 step= 4 do
3 (𝑉 0 −𝑉 6) ← 𝐴(0 : 6, 𝑘 : 𝑘 + 3) ;
4 (𝑉 7 −𝑉 9) ← 𝐵 (0 : 2, 𝑘 : 𝑘 + 3) ;
5 (𝑉 10 −𝑉 31) ← FMA (𝑉 0 −𝑉 6) , (𝑉 7 −𝑉 9) /* vector-vector

multiply */

6 (𝑉 7 −𝑉 9) scatter to 𝐵𝑐 (𝑘 : 𝑘 + 3, 𝑗 : 𝑗 + 2)
7 Reduce (𝑉 10 − 𝑣31) to𝑉 10. [0] −𝑉 31. [0];
8 Store to𝐶

NT mode. In this case, 𝐵 is not continuous in the 𝑁 dimension,

which affects the use of the 7 × 12 main micro-kernel to update the

𝑚𝑟→𝑚𝑐 rows of𝐶 . To overcome it, we design a 7× 3 packing micro-

kernel for NTmode GEMM, as show in Figure 5. In the computation

process, we use the inner-product formulation to update 𝐶 , and

the processor accesses 𝐴 and 𝐵 along the 𝐾 dimension. In each

iteration, we use seven loads to fetch the elements of 𝐴 to V0 − 6,
and use three loads to fetch the elements of 𝐵 to V7−9. The packing
micro-kernel performs 21 (7 × 3) vector-vector FMAs to produce 84

(4×21) elements, which are stored in V10-31. At the same time, four

elements of V7-V9 are scattered to 𝐵𝑐 , and the distance between the

elements is 12. Additionally, the elements in the same position of

vectors are scattered to adjacent positions. For example, in Figure 5,

the distance between 0 and 1 in the same vector is 12 elements, but

0 in different vectors are next to each other in 𝐵𝑐 . At the end of the

micro-kernel, the four elements of V10-31 need to be reduced to one

as using vector-vector FMAs. To get a complete 𝐵𝑐 , we need to call

packing micro-kernel four times (12/3). The micro-kernel uses the

same 7 × 𝑘𝑐 tiled matrix 𝐴, but uses different 3 × 𝑘𝑐 tiled matrix 𝐵.
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Figure 6: OpenBLAS’ 8×4 edge-case processingmicro-kernel

(a) and a better instruction schedule used by LibShalom (b).

The storage format of 𝐵𝑐 is the same as that of Figure 4. The general

process of packing micro-kernel is shown in Algorithm 3, where the

vector-vector FMAs and scatter instructions occur interchangeably.

TN and TT modes. Following the discussion in Section 4.3, for

TN mode, we apply the same strategy used for the NT mode to

pack matrix 𝐴. Similarly, for TT mode, we apply the strategy used

for the NN model to pack matrix A, depending on its size.

We want to highlight that our implementation interleaves the

memory load and store instructions required in the packing step

with FMA computation instructions like Figure 6. This is the key

difference between LibShalom and all existing GEMM implemen-

tations (like OpenBLAS and BLASFEO), where the packing and

micro-kernel routines are executed in a sequential order. As we

show later in the paper, by overlapping packing with the computa-

tion instructions, LibShalom gives significantly better performance

for small and irregular-shaped GEMMs.

5.4 Edge Processing Micro-kernel

Our edge-case processing kernel adapts the OpenBLAS implemen-

tation [59], but enhances it with better instruction scheduling de-

signed for small and irregular-sized GEMM. Considering the Open-

BLAS 8 × 4 edge micro-kernel for ARMv8 architectures shown in

Figure 6a, this implementation has two drawbacks on the ARMv8

architecture. Firstly, it fails to hide the memory latency with com-

putation instructions. That is, the load instructions are scheduled

in a batch fashion. Secondly, there is no sufficiently large instruc-

tion distance between two dependent instructions. As illustrated in

Figure 6b, our implementation overcomes these two drawbacks by

prefetching the matrix elements required by the current iteration

in the previous one and insert the load instructions between FMA

instructions to hide the latency. Our experimental results show that

this strategy significantly improves the OpenBLAS implementation.

5.5 Other Hardware Architectures

Our approach is generally applicable and can be easily ported to

other architectures. All our discussions so far target the 128-bit vec-

tor register supported by our evaluation platforms. Some new ARM-

based many-cores, like the FUJITSU ARMv8-based A64FX [40] and

future ARMv9 processors (e.g., NVIDIA Grace) support the latest

ARM Scalable Vector Extension (SVE) [2]. This extension allows

the CPU implementation to choose a vector length that is any

multiple of 128 bits between 128 and 2048 bits. Our approach can

be applied to a longer vector length with an revised 𝑚𝑟 and 𝑛𝑟

computed according to the available number and length of vector

registers. In addition to ARM-based CPUs, our techniques can also

be ported to modern x86 architectures with vectorization exten-

sions and FMA-like instructions. Doing so will require changing

the constraints of Equation 1 to match the hardware parameters to

derive𝑚𝑟 and 𝑛𝑟 . Furthermore, to adapt to different cache sizes, we

can adjust the values of𝑚𝑐 , 𝑛𝑐 and 𝑘𝑐 [33]. Other than these param-

eter adjustments, we believe our analytical methods and instruction

scheduling optimizations can remain unchanged.

6 PARALLELIZATION METHODS

Small-sized GEMM is typically executed with a single thread, but

irregular-shaped GEMM can benefit from parallel execution. Lib-

Shalom applies a static work partitioning scheme to parallelize

irregular-sized GEMM by using the fork-join operating system prim-

itives. By default, we use all available cores of the CPU. For a CPU

with 𝑇 cores, we will spawn 𝑇 parallel threads.

6.1 Work Partitioning

To ensure work balance among parallel threads, LibShalom adopts

a two-level parallelization strategy. It first divides matrix 𝐶 into a

grid of sub-blocks, where each thread updates one of the sub-blocks.

Since we partition the work across 𝑇 parallel threads, each parallel

thread will perform 𝑀×𝐾
𝑇𝑚
× 𝑁×𝐾

𝑇𝑛
computation operations for A · B.

Similarly, the number of memory accesses required by each parallel

thread is 𝑀×𝐾𝑇𝑚
+ 𝑁×𝐾𝑇𝑛 , where𝑇𝑚 and𝑇𝑛 are the number of threads

(or cores) assigned to the𝑀 and 𝑁 dimensions respectively, where

𝑇𝑚 ×𝑇𝑛 = 𝑇 . Therefore, the CMR for updating a sub-block is:

𝐶𝑀𝑅 =

𝑀 × 𝑁
𝑀 ×𝑇𝑛 + 𝑁 × 𝑇

𝑇𝑛

(3)

Like our main micro-kernel design (Section 5.2), we wish to

maximize the CMR. By applying the inequality of arithmetic and

geometric mean method, we have:

𝐶𝑀𝑅 ≤ 𝑀 × 𝑁
2 ×
√
𝑇 ×𝑀 × 𝑁

(4)

where both sides of the equation will equal if 𝑀 × 𝑇𝑛 =
𝑁×𝑇
𝑇𝑛

. In

other words, when 𝑇𝑛 =

√

𝑇×𝑁
𝑀 , CMR would reach its maximum

value. By taking into consideration the overhead of the packing

micro-kernel, we take the up-bound value of𝑇𝑛 , i.e.,𝑇𝑛 = ⌈
√

𝑇×𝑁
𝑀 ⌉,

to maximize the CMR. We note that 𝑇 𝑚𝑜𝑑 𝑇𝑛 = 0 to ensure the

number of cores can be equally divided among parallel threads. For

example, for parallelzing GEMM with 𝑀 = 2048 and 𝑁 = 256 on

a 64-core processor, we would set 𝑇𝑛 = 4, which leaves us with

𝑇𝑚 = 16 (as 𝑇𝑚 ×𝑇𝑛 = 𝑇 ). To minimize the thread synchronization

overhead, we choose to parallelize two outer loops of the GEMM

kernel (i.e., 𝐿1 and 𝐿3 in Figure 1) , instead of the inner loops [19].



Table 1: Hardware evaluation platform

Phytium 2000+ KP920 ThunderX2

Peak perf. (FP32 GFLOPS) 1126.4 2662.4 1280

Number of Cores 64 64 32

Frequency 2.2 GHz 2.6 GHz 2.5 GHz

L1 cache 32KB 64KB 32KB

L2 cache 2MB 512KB 256 KB

L3 cache None 64MB 32MB

RAM 64 GB 64 GB 64 GB

7 EXPERIMENTAL SETUP

7.1 Evaluation Platforms

Hardware.Weevaluate LibShalom on three representative ARMv8

multi-core architectures: Phytium 2000+ [16], Kunpeng 920 (KP920)

[4] and ThunderX2 [34]. Table 1 lists the specification of the hard-

ware platforms used in our evaluation. Note that on Phytium 2000+,

the L2 cache is shared between a cluster of four cores, while on

KP920 and ThunderX2, the L2 cache is private to a processor core.

Systems software. Our evaluation platforms run Linux kernel

version 4.19.46. We compile the benchmarks using gcc version

8.2.1 with the "-O3" compiler option. LibShalom uses OpenMP to

parallelize irregular-shaped GEMMs.

7.2 Workloads

We evaluate LibShalom by applying it to both small and irregular-

sized matrices. The size (𝑀 × 𝑁 × 𝐾 ) of the small matrices ranges

from 8× 8× 8 to 120× 120× 120, which are the typical matrix sizes

seen in applications like scientific simulation workloads like SeisSol

[8] and Nekbox [6]. The𝑀 or 𝑁 of the irregular-sized matrices used

in our evaluation ranges from 32 to 256. These types of irregular-

sized matrices are commonly seen in convolution neural networks

(CNN) [37, 41]. Like prior work [29], we initialize the matrices by

populating them with random floating-point numbers (0 to 1). In

addition to the synthetic matrix inputs, we also apply LibShalom

to the computational kernels from CP2K (an open-source molecular

dynamics simulator) [28] and the VGG CNN [30]. We report the

results for running GEMMunder the NN and NTmodes, but we also

observe similar performance trends under the TN and TT modes.

More experimental results can be found on the project website [5].

7.3 Competitive Approaches

We compare LibShalom against five GEMM libraries that have

a back-end specifically tuned for ARMv8. These include Open-

BLAS [59], BLIS [56] and ARMPL [1], which are designed to opti-

mize large GEMM, as well as LIBXSMM [28] and BLASFEO [18],

which specifically target small-matrix GEMM. Note that LIBXSMM

uses just-in-time (JIT) compilation to optimize the GEMM kernel

on the underlying architecture and uses a code cache to minimize

the compilation overhead across different runs of the same kernel.

Unless stated otherwise, we always run LIBXSMM on the target

GEMM kernel to warm up its code cache so that the JIT compila-

tion overhead is not included in its execution time measurement.
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Figure 7: Small GEMMs on our evaluation platforms.

We also note that ARMPL is the official ARM performance library,

which is heavily optimized for BLAS by ARM.

7.4 Evaluation Methodology

For small-sized GEMM, we measure the single-threaded perfor-

mance because the small matrix size does not benefit from parallel

CPU execution. This is standard practice when processing small-

sized matrices where parallelism is achieved by running multiple

GEMM kernels to process independent matrices. For irregular-sized

matrices, we report the multi-threaded performance using all the

cores of a CPU. Note that because BLASFEO does not support multi-

threaded execution, it is excluded from the irregular-sized matrix

experiments to ensure fairness.

Performance report. We run each GEMM kernel 10 times and

report the geometric mean of the runtime. We show the variations

across different runs as a min-max bar.

8 EXPERIMENTAL RESULTS

8.1 Single-threaded Small GEMM

In this experiment, we show the FP32 throughput for running small

GEMMs on the NN and NT modes. We also observe similar trends

for TN and TT modes. We also note that we obtain similar perfor-

mance when applying LibShalom to double-precision workloads,

where the throughput is roughly half of the FP32 performance

across all test methods.

Figure 7 shows the GEMM performance by first warming up

the cache - a typical scenario where the small matrices data has

been preloaded into a certain level cache before launching the

GEMM kernel. This is the evaluation methodology adopted by
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Figure 8: Small GEMMs starting with a cold cache.

the source publications of LIBXSMM [28] and BLASFEO [18]. In

this scenario, LibShalom consistently outperforms the competing

methods across benchmarks and evaluation platforms. The advan-

tage of LibShalom is noticeable on smaller matrices. For example,

when𝑀 = 𝑁 = 𝐾 = 8, LibShalom delivers 2× higher throughput
than BLASFEO, the best-performing alternative approach. We note

that this GEMM kernel size is widely used in scientific simulation

algorithms, including the NekBox CFD solver [28]. When the ma-

trix size increases to 120, LibShalom still gives at least 5% (up to

10%) higher throughput compared to the alternative approach. This

benefit mainly comes from the optimized micro-kernels used by

LibShalom. We also observe that LibShalom gives higher perfor-

mance for GEMM running on the NN mode than that of the NT

mode, especially on smaller sized matrices. This is because, unlike

in the NT mode, NN mode GEMM under LibShalom does not pack

matrices that can fit into the L1 data cache; see Section 5. Overall,

LibShalom gives the highest throughput across the matrix settings

by giving 1.05 ∼ 2× higher throughputs across hardware platforms

and manifests more significant advantages on smaller matrices.

Figure 8 shows the results when the GEMM kernel was launched

from a cold cache where the matrix data are not presented in the

data cache. In this evaluation scenario, LibShalom demonstrates a

similar performance trend as Figure 7, outperforming alternative

schemes on most of the test cases. On a few matrix sizes, Lib-

Shalom does not give noticeable advantages over BLASFEO - the

best-performing alternative method. These matrix sizes are a (or

nearly) multiple of BLASFEO’s 8 × 8 micro-kernel; as such, there is

no or little edge-case processing overhead incurred by BLASFEO,

where our edge-case optimization does not demonstrate a benefit.

Nonetheless, LibShalom delivers the highest overall throughout

and outperforms other schemes for most of the matrix settings.

8.2 Parallelized Irregular-shaped GEMM

Figure 9 shows the results on irregular-shaped GEMM using all the

CPU cores for parallelization on Phytium 2000+. Due to the space

constraint, we show the results under the NT mode, but we observe

similar performance trends in other modes. Like prior work [42],

we set 𝐾 to a sufficiently large number (5000 in our evaluation) to

drive the last run data out of the last level data cache to avoid the

artificially good performance due to a hot data cache across multiple

runs. Note that we omit the results of LIBXSMM and BLASFEO in

this experiment as they are tuned for small GEMMs and give a poor

performance on irregular-shaped GEMMs.

LibShalom significantly outperforms the alternative approaches

across our evaluation platforms, yielding on average 1.8× perfor-
mance improvement over the second-best performing method, BLIS.

The performance benefit of LibShalom tends to be more signifi-

cant for smaller matrix sizes (i.e., when 𝑀 or 𝑁 are smaller). For

example, in Figure 9, for GEMMs with 𝑀 = 32, LibShalom gives

2.6𝑥 higher GFLOPS over BLIS. This is largely due to the more

efficient packing strategy adopted by LibShalom when processing

small matrices. LibShalom also demonstrates better performance

over OpenBLAS and ARMPL because its parallelization strategy

can minimize the overhead of processing edge cases. Although

ARMPL is an official BLAS library developed by ARM for parallel

GEMMs, it delivers lower performance compared to LibShalom.

Once again, LibShalom’s advantage is greater when𝑀 and 𝑁 are

small, suggesting that LibShalom is highly effective in handling

irregular-shaped matrices.

Figure 10 reports irregular-shaped GEMMperformance on KP920

and ThunderX2 under NN and NT mode. Compared with the best-

performing baseline, LibShalom improves the performance by 1.6×
and 1.3× respectively, on average on KP920 and ThunderX2. We

also observe that LibShalom gives higher performance for irregular-

shaped GEMM running on the NT mode than that of the NN mode.

This is because, unlike in the NT mode, the elements of 𝐵 can-

not be continuously accessed along 𝐾 dimension under NN mode.

Overall, LibShalom is generally applicable and can deliver portable

performance across representative ARMv8 processors.

8.3 Scalability

Figure 11 shows the scalability when performing an irregular-

shaped GEMM kernel of {𝑀 ×𝑁 ×𝐾}={64× 50176× 576} from the

VGG convolutional neural network [29]. The results are normalized

to the performance obtained by the single-threaded OpenBLAS

execution. As can be seen from the diagram, LibShalom not only

outperforms other approaches but also exhibits the best scalabil-

ity as the number of threads used increases. And the maximum

speedup is 49× for Phytium 2000+, 82× for KP920, and 35× for

ThunderX2.

8.4 L2 Data Cache Locality

In this experiment, we measure the L2 data cache miss count using

the hardware performance counter. The experiment was performed

on an irregular-shaped, NT mode GEMM with input matrix sizes

of 𝑀 = 64, 𝑁 = 50176, where 𝐾 ranging from 576 to 3744, with

a step of 128. The setting ensures that the data required by the

GEMM kernel can fit into the L2 data cache in an ideal scenario.
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Figure 9: Performance of irregular-shaped GEMM on Phytium 2000+ under the NT mode (𝐾 = 5000).
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Figure 10: Irregular-shaped GEMMs on KP920 (top row) and ThunderX2 (bottom row) under NN and NT mode (𝐾 = 5000).
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Figure 11: Scalability on the VGG irregular-shaped GEMM.

Hence, a good GEMM routine should have low L2 data cache misses.

The results are shown on KP920 and ThunderX2, because we can

access the performance counter through the Linux perf profiler

on these two platforms. Figure 12 shows the reduction of L2 cache

misses using the OpenBLAS measurement as the baseline - the

higher the reduction is, the better L2 cache locality an approach

has. LibShalom experiences the least frequent cache misses across

all matrix sizes, representing around 20% reduction in the cache

misses on KP920. This is because LibShalom chooses to not pack
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Figure 12: Reduction of the L2 data cache misses over Open-

BLAS for irregular-shaped NT mode GEMMs.

matrix𝐴 under the NT mode; instead, it exchanges loops 𝐿2 and 𝐿3

in Figure 1 to improve the locality when accessing matrix 𝐴 within

the GEMM kernel. By eliminating the memory loads and stores

introduced by data packing, LibShalom improves the computation

kernel’s cache locality, leading to less frequent cache misses.
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Figure 13: Breakdown of Optimizations on single-threaded

irregular-shaped GEMM on three platforms.

8.5 Breakdown of Optimization Techniques

In this experiment, we measure how the proposed packing and

edge-case-processing optimizations contribute to performance im-

provement. Here, we use OpenBLAS as a baseline to show the

speedup contribution brought by each of the two optimization

techniques. The experiment was performed on single-threaded

irregular-shaped, NT mode GEMM. In the experiment, we fix 𝑁

and 𝐾 to the VGG CNN kernel size of 50,176 and 576, but we vary

𝑀 from 20 to 100 with a step of 20.

As can be seen from Figure 13, our data packing optimization

can have a significant contribution to performance improvement

because this technique can overlap the expensive memory accesses

with computation through FMA instructions. Our optimizations

also demonstrate various degrees of benefits on different architec-

tures. When𝑀 = 20, our two optimizations give a 1.25x and 1.6x

improvement on Phytium 2000+ and KP920 respectively. The reason

for the more noticeable advantage on KP920 over Phytium 2000+

is described as follows. KP920 runs a higher clock frequency over

Phytium 2000+ (2.6 GHz vs 2.2 GHz), and it has more FMA units, al-

lowing KP920 to execute more arithmetic instructions per time unit.

In other words, KP920 requires more intensive FMA instructions

than Phytium 2000+ to keep FMA units busy. It is more difficult

for OpenBLAS’ implementation strategy to achieve a good CMR

to hide the memory latency on a faster CPU where our approach

gives stronger benefit.

8.6 Evaluation on Application Kernels

In this evaluation, we apply the tested methods to the GEMM ker-

nels extracted from real-life application workloads. In the first

experiment, we apply each approach to the FP64 small GEMM

kernels from the CP2K simulation package [9]. The matrix sizes

involved range between 4 − 32 [28]. As can be seen from Figure 14,

LibShalom gives the best performance across matrix sizes and eval-

uation platforms. Once again, LibShalom demonstrates noticeable

advantages when the input matrices are small. For example, it gives

up to 2× improvement over LIBXSMM for the input matrix sizes

(𝑀 ×𝑁 ×𝐾 ) is 5× 5× 5. Considering LIBXSMM uses a just-in-time

compilation back-end to aggressively optimize the GEMM compu-

tation, this is an impressive improvement obtained by LibShalom

as a library-based solution.

In the second experiment, we evaluate the irregular-shaped

GEMM performance using the typical FP32 convolutional kernels

from the widely-used VGG16 image classification network [29, 30].

Like prior work [29], we consider five convolution layers from

VGG16, namely conv1.2, conv2.2, conv3.3, conv4.2 and conv5.2 of

VGG16. These kernels perform GEMM on matrice sizes of𝑀 = {64,
128, 256, 512, 512} × 𝑁 = {50176, 12544, 3136, 784, 196} × 𝐾 = {576,
1152, 2304, 4608, 4608}, where the 𝑁 dimension of the matrices

are significantly larger than𝑀 . In this experiment, we use all the

CPU cores to execute a GEMM kernel. The results are given in

Figure 15. Once again, LibShalom consistently outperforms all

alternative approaches across GEMM kernels and evaluation plat-

forms. LibShalom’s advantage is significant for certain kernels, like

conv1.2 and conv5.2, where it improves the second-best-performing

approach by up to 1.6x.

9 RELATED WORK

High-performance linear algebra libraries are a vital component

of the HPC systems software stack. A range of linear algebra or

so-called BLAS libraries were developed to optimize the execution

of linear algebra kernels, including GEMMs [1, 3, 56, 59]. Most of

these BLAS libraries are designed to optimize GEMM operating on

large and regular-shaped matrices.

Recent studies report that many new HPC workloads use small

GEMM to exploit fine-grained parallelism for better scalability

[17, 28]. Other works also highlight the importance of optimizing

irregular-shaped GEMMs seen in machine learning workloads [29,

36]. Recent works target optimizing small GEMMs on x86 [28]

or irregular-shaped GEMM on GPUs [12, 39]. Some of these tech-

niques have been integrated into deep learning frameworks [20, 21].

However, as we have shown in the paper and our prior work [52],

existing approaches give a sub-optimal performance on the ARMv8

architecture, leaving much room for improvement.

BLASFEO is designed to optimize both small and irregular-shaped

GEMMs. It provides two optimization routines [17, 18]. The first

covert the input matrices to the panel-major format to improve

the cache locality. The second selectively packs the input matrices

based on some pre-defined heuristics. For example, it does not pack

a small matrix 𝐴. Likes existing BLAS libraries, BLASFEO performs

data packing and computation sequentially. It also does not sup-

port parallel execution of irregular-shaped GEMMs. LibShalom

overcomes these limits by overlapping the memory access instruc-

tions introduced by data packing with computations and provides

a highly optimized kernel for parallel execution.

LIBXSMM uses JIT code compilation technology to generate

assembly code for small GEMMs [28]. This technique allows ag-

gressive instruction-level optimization. LIBXSMM uses code cache

to reuse the compilation results to reduce the overhead of JIT.

However, it is designed to optimize tiny GEMM kernels where

(𝑀𝑁𝐾)1/3 <= 64. We empirically show that LIBXSMM is ineffec-

tive for optimizing the commonly used small GEMMs where the

matrix sizes do not fit its design scope. Our experimental results

show that despite being a library-based approach, LibShalom is

able to outperform LIBXSMM across GEMM workloads and evalua-

tion platforms.

10 CONCLUSIONS AND FUTUREWORK

We have presented LibShalom, an open-source library for opti-

mizing small and irregular-shaped GEMMs on ARMv8 multi-cores.
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Figure 14: Small FP64 GEMM performance on CP2K kernels.
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Figure 15: Performance of FP32 irregular-shaped GEMM kernels from the VGG convolutional neural network.

LibShalom determines if data packing is beneficial, and when pack-

ing is deemed necessary, it uses the FMA SIMD extension to hide

the non-trivial data packing overhead through instruction sched-

uling. We show how simple analytical models can be developed

to derive the tuning parameters of a GEMM kernel. We evaluate

LibShalom by applying it to small and irregular-shaped GEMMs

on three ARMv8 multi-core architectures and compare it against

five mainstream BLAS libraries. Experimental results show that

LibShalom delivers consistently better overall performance across

all hardware evaluation platforms.

In the future, we will look into how to extend our optimization

techniques to sparse matrix computation [10, 11, 31, 55]. Another

interesting direction is to open up the kernel parameters to allow

an auto-tuning framework to search for the optimal parameters

for optimizations like instruction scheduling and compiler options

[13, 24, 35, 46, 48ś51, 53, 57, 58]. Our future work will consider

integrating our techniques with a performance tuning framework

to fine-tune the kernel parameters.
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