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A method for low-cost, low-impact insect tracking

using retroreflective tags

Michael Thomas Smith✯ Michael Livingstone ❸ Richard Comont ❹

Abstract

1. Current methods for direct tracking of individual bee movement behaviour have several limitations. In

particular, the weight and size of some types of electronic tag may limit their use to larger species. Radars and

other electronic systems are also often large and very expensive to deploy. A tool is needed that complements

these electronic-tag methods. In particular one that is simple to use, low-cost, can have a high spatial resolution

and can be used with smaller insects.

2. This paper presents a candidate method that uses retroreflective tags. These are detected using a camera

with a global electronic shutter, with which we take photos with and without a flash. The tags can be detected

by comparing these two photos. The small retroreflective tags are simple and light-weight, allowing many bees

to be tagged at almost no cost and with little effect on their behaviour.

3. We demonstrate this retroreflector-based tracking system (RTS) with a series of simple experiments: Training

and validation with a manually positioned tag; case studies of individual bees; tracking multiple bees as they

forage in a garden; use of real-time monitoring to allow easy re-observation to enable a simple floral preference

experiment; and a very brief experiment with 3D path reconstruction (integrating two devices). We found we

could detect bees to a range of about 35 m with the current configuration.

4. We envisage the system will be used in future to increase detection rates in mark-re-observation studies;

provide 3D flight path analysis; and for automated long-term monitoring. In summary, this novel tracking

method has advantages that complement those of electronic-tag tracking which we believe will lead to new

applications and areas of research.
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1 Introduction

Tracking individual bees in the wild can provide ecologists and neuroethologists with valuable information, helping

them, for example, to investigate foraging (Saville et al., 1997), search strategies (Reynolds et al., 2007), orientation

flights (Capaldi et al., 2000) and other aspects of cognition (Capaldi and Dyer, 1999) and can help researchers find

nests (Kennedy et al., 2018). Our ability to track and detect individuals as they forage and explore the landscape

is fundamental to our understanding of bee behaviour and ecology. The aim of this work is to provide a simple,

low-cost, low-impact method for precision tracking of bees in the field.

We briefly review current methods for insect tracking, to motivate this paper’s approach. We set aside indirect

methods, such as ‘mark and recapture’. Although the most simple, it is reportedly often biased by the location of

the observers (Schaffer, 1997) and suffers from very low detection rates, due to the size of the foraging area involved

(Schaffer, 1997). We instead focus on direct-tracking methods.

Azimuthally-scanning harmonic radar has been used to track flying insects for over twenty years (e.g

Osborne et al., 1999; Charvat et al., 2003; Cant et al., 2005; Wolf et al., 2014; Milanesio et al., 2016) and has been

vital for many discoveries, from forage search strategies (Reynolds et al., 2007) to orientation flights (Capaldi et al.,

2000). These results were achieved due to its impressive range of several hundred metres (Osborne et al., 1996).

See Riley and Smith (2002) for more technical details of its design. The technique’s main shortcoming is that the

equipment is very large, very expensive1 and bespoke, making it inaccessible to most researchers (O’Neal et al.,

2004), particularly in low-income countries. Precision typically is of the order of several metres (Cant et al., 2005),

which is not sufficient for some applications. Low-power, mobile, direction-only detectors (e.g. using the popular

Recco Rescue System, http://www.recco.com/) have also been used, with range reported as 13 m (Lövei et al.,

1997), 40 m (Langkilde and Alford, 2002), 50 m (Roland et al., 1996) or 60 m (Psychoudakis et al., 2008). On tag

size: Osborne et al. (1996) were able to tag and track Apis mellifera with 12 mg tags, and Chapman et al. (2004)

report that 1 mg tags have been used to track tsetse flies.

Very high frequency (VHF) radio transmitters have also been used to track bumblebees (and butterflies) over

even larger ranges than harmonic radar (Hagen et al., 2011; Fisher et al., 2020), with the support of a light aircraft.

This approach requires a battery powered (200 mg) transmitter to be attached to the bee, leading to significant

effects on bee behaviour (Hagen et al., 2011) and largely impossible to use with many insects. For comparison, the

median weight of Bombus terrestris subsp. audax workers is only about 250 mg (Connolly and Moffat, 2015). Many

of these electronic direct-tracking methods require an antenna to be attached to the insect, making it difficult to use

with smaller insects, or those which need to access narrow spaces (such as burrowing insects or those which enter

sympetalous flowers).

Other methods: Radio-frequency identification (RFID) tags have also been used, although these typically

require the insect to be within 3 cm of the sensor (Nunes-Silva et al., 2019). Another recent electronic-tag alternative,

1STOPVESPA (2019, p31) suggest it cost their project e100,000 to construct.
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with energy harvested from the insect’s wing beats has been developed. This still has a somewhat heavy and

complicated payload for the insect to carry (Shearwood et al., 2017), and has a range similar to the method described

in this paper. Others have used lidar to track untagged bees (Bender et al., 2003) although this requires a very

carefully prepared site and does not allow individual targets to be tracked. Abdel-Raziq et al. (2021) suggest the

orientation of the sun could be used to infer flight path using an on-board sensor, using dead-reckoning, although

the paper only has simulated data. Non-electronic tags have been used with other insects: Chemiluminescent tags

have been used in dark environments (Spencer et al., 2017), and metal foil and metal detectors (Piper and Compton,

2002) for hidden insects.

A few previous papers have used retroreflective tags to track insects: Rennison et al. (1958) used reflective

paints to search for Tsetse flies, at night, using a torch. Riley and Edwards (1994) experimented with retroreflective

tags for green leafhoppers (Nephotettix spp.) in an unlit indoor test. Zanen and Cardé (1999) used them in a

wind-tunnel to track the orientation of gypsy moths. Recent work explores the potential to use retroreflectors (at

very close range) to image the insect using lasers and galvanometer motors (Vo-Doan and Straw, 2020).

In this paper we describe a low-cost method for detecting and tracking insects in the field using small retrore-

flective markers. Unlike the above cited retroreflector papers, we use a camera with a global electronic shutter

and a flash: enabling it to work in sunny conditions and work over a greater range. The light-weight, simple tags

mean there is likely to be less impact on bee behaviour than the electronic tags mentioned earlier. The range is

limited to about 35 m line-of-sight, so we do not envisage it being a complete replacement for harmonic radar and

VHF radio tracking, but anticipate it can provide a very useful method in the ecologist’s toolkit. For example, the

imaging accuracy can allow the precise flower being visited to be identified. A few example applications include:

tracking bees that are potentially too small for electronic tagging, supporting re-observation studies to increase

re-observation rates, 3D flight path analysis, and for automated long-term monitoring and tracking. We anticipate

further applications to develop as the method matures.

2 Materials and Methods

2.1 Overview

The Retroreflector-based Tracking System (RTS) was developed using commercially available components and

is simple to construct. The onboard software required is provided as open source python modules. See the

supplementary for details.

Its operation is simple: A camera and flash are mounted on an elevated platform. Pairs of photos are taken,

with and without the flash. A retroreflector attached to the bee reflects the flash’s light back towards the camera.

The non-flash photo is subtracted from the flash photo. A bright dot will remain on the photo after the subtraction,
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indicating where the retroreflector is. This bright dot can be followed if multiple photo-pairs are taken. Various

additional steps, described later, are required to reduce the false positive rate. This algorithm is run in real-time on

the system’s onboard raspberry pi computer, and the results are both saved internally and made available via a web

interface hosted onboard allowing the field-worker to find the detected bee in real-time (using a mobile phone’s

browser, for example).

2.2 Bee Capture and Tagging

Over the course of the project we successfully tagged over 100 bees, and found this of similar technical difficulty to

tagging in normal reobservation studies. After capture we used cold-induced narcosis to immobilise the bees for

tagging (see Supplementary for more details).

We used a retroreflector with fabric substrate (from a hi-vis jacket) and cut it approximately to 8× 4mm (we

adjust the size depending on the size of the insect). This weighed about 5 mg.2 Using tweezers we folded it in half

and spread the ends of the two halves apart, so the reflector has a small ridge. This helped the RTS detect the

bee from a wider range of angles. Using tweezers to hold the reflector by the ridge we applied a small amount of

cyanoacrylate adhesive (Loctite superglue) to the reflector and affixed it to the thorax of the insect. We cut small

notches in each tag prior to attachment, to allow later unique reidentification of each bee by a human observer.

The species of wild bees were identified during tagging by the field-worker (using Edwards and Jenner, 2018)

and later confirmed (from photos) by the other authors.

2.3 The System

Several iterations of the RTS have been constructed. Here we describe the most advanced. The system’s overall cost

was about ↔820, of which ↔630 was the camera and lens (2020 prices). Figure S1a in the supplementary illustrates

the prototype used.

Computer The system used a raspberry pi for controlling the flashes and camera and for processing and saving

the camera output (Pi 4 model B, Raspberry Pi Foundation).

Camera and Lens The most important aspect of the camera (the monochrome 2064× 1544 GCC2062M, smartek)

was that it must have a global electronic shutter. This allowed for very brief exposures (e.g. 25 µs) just covering

the duration of the flash. A standard machine vision 2 megapixel lens was used (Kowa LM5JCM 2/3” 5 mm F2.8

C-mount, Kowa American Corp.)

Flash Two or four flashes were used (TT560, Neewer, set to 1/16 power), either configured to fire in unison or

sequentially. In the former the flash power was greater, thus potentially increasing the range of the system, but in

the latter the system could take more photos as the flashes could sequentially recharge.

2This can be made lighter if required by removing the fabric on the reverse of the reflector.
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2.4 Algorithm and Software

2.4.1 Overview

To find a retroreflective tag in the photographs requires some image processing. At its simplest, the algorithm needs

to (a) align the flash and no-flash photos together, (b) subtract the no-flash photo from the flash photo, (c) find the

brightest point. This simple algorithm is fairly successful, however we found false positives were being frequently

detected. For a reobservation study in which a true positive is relatively rare, the false positive rate needs to be

very low to avoid masking the rare true positive events.

We found false-positives (FPs) had a variety of causes. The most common were moving bright objects or features.

These include the pattern of leaves and branches moving against the relatively bright sky leading to bright dots

appearing and disappearing regularly in the subtracted image. Similarly reflective objects such as lamp posts, plant

pots etc, often had reflections which led to bright pixels in the subtracted image. Humans or other animals moving

within the scene could also lead to differences in the flash/no-flash photos. We also found occasional near-camera

(out of focus) particles (possibly wind-carried seeds or pollen) were being brightly illuminated by the flash.

A three stage approach was taken to remove various types of FP event. First, rather than just subtract the

non-flash photo, this photo is maximum-dilated (see supplementary) to ensure that small movements in the location

of bright spots will still lead to them being cancelled in the flash photo. For example, a bright flower moving in the

wind, or the dots of sky visible through a tree, can move between the two photos. The camera itself may also move

slightly. By dilating the no-flash photo these bright dots will still be subtracted from their counterparts in the flash

photo.

Second, some objects such as litter, a swinging bird-feeder, street signs, or other reflective objects do produce

a bright reflection, which will appear in the flash/no-flash subtracted image. We handle this by noting that

foraging bees rarely remain in the same location for long. Thus by combining (finding the maximum of) previous

flash/no-flash subtractions, and then subtracting this from our current flash/no-flash image, we remove all the

stationary sources of reflection.

Third, some objects may still appear, even in this resulting image. Examples include motes of pollen or

wind-transported seed, or other moving retroreflectors such as car number plates etc. The retroreflective tag is far

smaller than a pixel so leads to a very concentrated bright ‘blob’ of just a few pixels. Most other false positives that

remain at this point are typically considerably larger. We use a machine learning classifier to identify and remove

these remaining false positive targets.

2.4.2 Classifier Training

To collect training and validation data, we visited two locations (and used several camera orientations) over five

days. We used a retroreflector on the end of a one-metre bamboo cane. We took photos of the reflector at various
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distances up to 40 m, holding the reflector at different heights. We labelled 812 images. In each we specified the

location of the retroreflector (easily identified as we could visually inspect the image and find the field-worker

holding the cane). We also automatically found another 7,000 maximums in the difference images that were not the

retroreflector. We then used six features (see below) associated with each of these points to train a (linear kernel)

support vector machine (Chang and Lin, 2011) to distinguish between the two classes.

2.4.3 The Algorithm

The algorithm for detecting the tag in the photos consists of the following steps:

1. Capture: Regularly (between every 0.25 to 6 seconds) a set, Si, of photos are taken. These sets we index:

i = 1..n. We assume we are searching for the bee in the latest set, Sn. Within each set, Si, there is one photo

with the flash (Fi) and at least one without (NF
(1)
i ,NF

(2)
i ...). These are typically all taken within 2 ms of

each other. We typically take the no-flash photo(s) first (to ensure the flash is not lit). Later, during analysis,

we found a single no-flash photo was sufficient.

2. Alignment: A coarse or approximate alignment may be necessary within and between pairs of images if the

RTS’ platform is not stable (for example on the tethered balloon). This can be done using a standard library

(OpenCV) or for translation-only we found a convolution of a low-resolution version of the image provided

very fast coarse-alignment.

3. Subtraction (for current set Sn): For the current set, Sn, we maximum-dilate, DM (·), (see supplementary)

each of the non-flash photos, which is then subtracted from the flash photo. The minimum pixel values,

An, over these subtracted pairs is computed (where the min operator is per pixel), so for pixel k, [An]k =

minj

[

[Fn −DM (NF(j)
n )]k

]

4. Subtraction (for all previous sets Si, i ∈ 1..n− 1): For each previous set, Si, we do not dilate either image, we

just subtract each of the non-flash photos from the flash photo. The maximum pixel values, Bn, over all these

subtracted pairs, from all the previous sets, is computed (where the max operator is per pixel), so for pixel k,

[Bn]k = maxi∈1..n−1 maxj

[

[Fi −NF
(j)
i ]k

]

. The maximum per set can be cached as it is used repeatedly.

5. Overall subtraction: We apply the maximum-dilate operation to the maximum subtraction image, Bn, from

the previous sets and subtract this from the current difference image to give us our resulting search image,

Rn = An −DM (Bn).

6. Finding Candidate Patch Features: We now find the brightest points in the search image. We iteratively

find the location of the maximum pixel p in Rn: p = argmaxk[Rn]k. For this maximum point we record six

features:

❼ The value of the maximum, [Rn]p
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❼ The value of the maximum pixel from Fn −NF(1)
n in a 7× 7 patch centred on the maximum pixel, p.

❼ The background mean: The average of the 40× 40 patch surrounding the maximum pixel, p, excluding a

central 7× 7 square, from Fn −NF(1)
n .

❼ The maximum of wider surrounding points: We find the maximum pixel value of 8 evenly-spaced pixels

placed in an 8× 8 square around p, from Fn −NF(1)
n .

❼ The maximum of closer surrounding points: We find the maximum pixel value of 8 evenly-spaced pixels

placed in an 4× 4 square around p, from Fn −NF(1)
n .

❼ Centre sum: The sum of pixel p and its four neighbours, from Rn.

These simple features are chosen to distinguish between true tags and other sources of maxima in the resulting

image. These non-tags typically have a greater spatial extent which these heuristics are chosen to detect. We

then delete a 15× 15 square centred on p, and repeat the search for candidate patches. Typically we generate

20 candidate patches.

7. We finally use these six features to query a support vector machine classifier, previously trained on manually

generated and labelled data. This gives a score/confidence for each of these candidate patches. We select a

threshold depending on the application.

2.5 Applications

To provide a demonstration of the RTS being used, we ran a series of simple experiments.

The first, a simple tracking experiment, recorded the time bees were detected around different flower patches in

a garden (Section 3.3.1).

In the second, we investigate floral preference (Section 3.3.2). Individual floral preference is a well known feature

of Bombus sp. (e.g. Wilson and Stine, 1996). We wished to test whether or not individual bees have a preference for

particular flowers in our study (compared to their species’ average). When the system detected a bee, a field-worker

found and identified the individual bee (and the flowers it was foraging on). Contingency tables were constructed

for each species, to test for forage preference at the level of individuals.

In the third experiment, a 3D flight path reconstruction experiment was conducted (Section 3.3.3). A single RTS

can only resolve a tag’s location to a vector, which passes through the camera, and with a direction determined by

the tag’s position in the photo. If the same bee is tracked simultaneously using two tracking systems placed at

different locations, the flight path of the bee can be reconstructed by combining this series of vectors. We provide

more details of this approach in the supplementary.
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2.6 Field Sites

For the evaluation phase we used Site A (53◦22′16.6′′ N, 1◦30′49.7′′ W) and Site B (53◦22′16.7′′ N, 1◦30′45.1′′ W).

These are both on a quiet suburban private road in Sheffield, UK, with a backdrop of buildings, trees, parked cars

and plants. We used these with the aim of providing a relatively challenging environment for the RTS during the

evaluation. The tracking system was mounted approximately 1.5 m above the ground at these locations. The case

studies were conducted at: Site C, an experimental ornamental urban meadow in Sheffield (53◦22′46.2′′ N, 1◦26′09.7′′

W); Site D, a small wild-flower area in part of the University of Sheffield’s landscaped campus (53◦22′17.9′′ N,

1◦30′26.1′′ W); Site E, a garden on the edge of the small, rural town of Minchinhampton, Gloucestershire, UK

(51◦42′34.8′′ N, 2◦10′31.0′′ W); Site F, a garden in the village of Chedworth, Gloucestershire, UK (51◦47′51.2′′ N,

1◦55′03.7′′ W). At Site D the tracking system operated resting on a step-ladder at the top of a bank, approximately

3 m above the height of the mini-meadow. At Site E we placed the tracking system on a flat roof, so it was raised

approximately 2.5 m above the ground. At Site F it was placed on a step ladder (1.5 m above the ground).

The 3D reconstruction experiment, at Site G, was on a lawn at another part of the University of Sheffield

campus, surrounded by trees and a nearby small allotment (53◦22′21.5′′ N 1◦30′08.4′′ W). The two tracking systems

were approximately 1 m above the ground.

3 Results

3.1 Detection Range Evaluation

The supplementary includes both a calculation of the theoretical range and an empirical evaluation of tag detection

for different distances, at Site A and Site B. To summarise, we found that the RTS worked to approximately 35 m.

Using all four flashes and a threshold that achieved a false positive rate of zero (for the data collected) we detected

17/25 tags at 30 m and 1/18 tags at 39 m. These results are sensitive to the presence or absence of objects that

generate false positives, the size and orientation of the reflector and the ambient daylight.

3.2 Case Studies

Before looking at tracking, floral preference and 3D trajectories, it is worth looking at the detection of single, tagged

bees, as these case studies provide simple, clear examples of the utility of the RTS. Further discussion and results,

including the use of a tethered balloon platform, are in the supplementary.

3.2.1 First field trial: Bumblebee re-observed in pine tree

Our first field trial (12:00-13:00 BST, 20 June 2020) with the current RTS was with a wild worker Bombus terrestris

which we caught foraging in a mini-meadow area at Site D (Figure 1e). It was tagged (Figure 1a & 1b) and released.
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a.

*

#

b. c.

d.

e. 5m at + and x

10mm

Figure 1: a. Tagging bees in the field using an icebox of salt/ice, a marking pot with mesh at both ends (∗) and an
electric fan (△). b. Tagged Bombus terrestris. c. The same bee having been detected in the pine tree. d. Image
from tracking system, with the bee detected (#) and examples of other reflections: a lifebuoy cover (�) and the
retroreflective material on a traffic cone (◦). e. The pine tree where the tagged bee was detected (+) and the
tracking system (×).
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a.

5mm

b.

d.

5mm

c.

Figure 2: Newly tagged Apis mellifera (a) and Megachile sp. (b). c. The Apis mellifera later found foraging on a
Echinops ritro. d. The Megachile sp. later found foraging on a Dahlia sp. flower.

We monitored the wild-flower area at the site, with the tracking system, anticipating the bee would return to the

forage. However the system unexpectedly found it 3 m above the ground in a pine tree, 33 m from the tracking

system (Figure 1c & 1d).

Figure 1d illustrates reflections from other objects (a lifebuoy cover and the retroreflective material on a traffic

cone). Although both of these objects reflected the flash, they were stationary, and so were cancelled by subtracting

previous image pair differences (step 5 in Section 2.4.3). They would also have been removed by the classifier due to

their extent and shape.

3.2.2 Megachile sp. and Apis mellifera Tagged and Re-observed

In Sections 3.3.1 and 3.3.2 most of the bees tagged were Bombus spp., however (at Site E) we did also find and tag

a Megachile sp., foraging on a yellow Dahlia sp. See Figure 2b. The floral preference experiment below involved

using the tracking system to quickly find the tagged bees and then manually uniquely identify the individuals. On

two occasions the tagged Megachile sp. was re-identified using the system, once on the same area of Dahlia as it was

originally foraging on (Figure 2d), and once on a nearby Verbena bonariensis. This case study demonstrated that

the retroreflectors can be used on smaller bees than Bombus spp. At Site F we tried tagging four Apis mellifera but

with less success due to the species’ relatively small thorax. However using the RTS we found one of them, 210

minutes later, foraging on the same patch of Echinops ritro that we caught it on originally (Figures 2a and 2c).
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Figure 3: The paths of bees detected using the RTS. Each line represents one track (some colours may appear
similar but this does not imply the bee was the same). Foraging area extended from 8 m to 15 m from the tracking
system. The plants available for forage are labelled.

3.3 Applications

3.3.1 Tracking Foraging Bees

At Site E, we successfully tagged approximately 25 wild bees. They were caught and tagged largely at random,

but with a slight selection preference towards tagging a variety of species (see Section 3.3.2 for species list). The

tagging took place on 2 August 2020 and 3 August 2020. We ran the RTS on 2 August 2020 (cumulatively for

66 minutes between 11:36 and 19:04 BST), 3 August 2020 (for 82 minutes between 17:07 and 18:29 BST) and 5

August 2020 (cumulatively for 55 minutes between 11:57 and 14:15 BST). Most of this time it was being used to

locate bees for the floral preference study (see Section 3.3.2) but data was recorded over a cumulative time of 3

hours, 23 minutes. In that time the system stored 1,303 flash photo pairs and acquired approximately 418 confirmed

detections. These were semi-autonomously merged into 36 tracks (median length, 7 detections, min = 1, max =

45). These are plotted in figure 3. Some of the tagged bees will be responsible for several of these tracks. Besides
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Plant Detection events Percentage Normalised Percentage
Clematis 4 1% 2%
Rosa 2 1% 0%
Salvia 2 1% 1%

Solidago 10 3% 9%
Crocosmia 0 0% 0%
Pelargonium 1 0% 1%
Rudbeckia 0 0% 0%

Alstroemeria 2 1% 1%
Acanthus 15 5% 10%
Phlox 52 16% 22%

Verbena bonariensis 13 4% 9%
Campanula 2 1% 1%

Dahlia 64 19% 15%
Nepeta 139 42% 26%

Verbascum 25 8% 3%
Fuchsia 0 0% 0%

Table 1: Number of times a tag was detected in proximity to each flower species over the 3 hours 23 minutes.
Normalising performed by dividing count by patch area in photo.

providing an example of how one can use the system for monitoring high-resolution foraging behaviour we also

used the raw data to investigate the time spent on various foraging resources. Importantly this approach allows an

automatic allocation of foraging time. We segmented the image into plant species. Figure 3 illustrates the plants

available for forage and their locations. Table 1 shows the time spent on each plant type. We normalised by the

visible area for each plant species. The results in the table suggest that there is a considerable preference for time

spent foraging on Nepeta, Dahlia and Phlox.

3.3.2 Floral Preference

We ran a simple experiment over the three days to investigate floral preference (again using Site E). We left the

system running over a cumulative 11 hours (intermittently from approximately 11:30 BST until 17:30 BST on each

day). While it was running the field-worker was largely occupied by other activities, however, the system would

alert him via a sound from the mobile phone web interface to the detection of a bee. The web interface would

show a cross marking the recent location of the bee, allowing him to quickly find the bee and take photos (using a

standard camera) for later unique identification (using the shape of the tag).

Overall 19 tagged bees were re-observed and identified using this approach, 50 times (nine B. terrestris, four B.

hortorum, three B. pascuorum, one B. lucorum/terrestris, one B. lapidarius, one Megachile sp.), consisting of a

mix of queens and workers. For each reobservation the unique bee and its forage were recorded. Not all bees were

recorded that were detected - some left before the field-worker reached their location, or sometimes multiple bees

were detected simultaneously.

We grouped those uniquely identified by species of bee, and constructed contingency tables (bee ID vs flower

species, see Table 2). We excluded observations in which a previous observation for the same bee was within 10
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Bee Id.
#23 #30 #6 #7

Fuchsia ‘Garden News’ 1 0 0 0 1
Nepeta sp. 0 0 2 1 3

Stachys byzantina 0 4 0 0 4
1 4 2 1 8

Bee Id.
#32 #1 #4 #36 #18 #21 #22 #27 #28

Nepeta 5 0 0 0 1 0 0 1 0 7
Salvia ‘Hot Lips’ 0 0 0 0 0 0 0 0 4 4

Verbena bonariensis 0 0 0 0 0 1 0 0 0 1
Agapanthus africanus 1 1 0 0 0 0 0 0 0 2
Dahlia ‘Bishop of York’ 2 0 0 1 1 3 2 0 0 9

Stachys byzantina 0 0 1 0 1 0 0 0 0 2
8 1 1 1 3 4 2 1 4 25

Table 2: Contingency tables for individual bee flower visits for B. hortorum (upper table) and B. terrestris (lower
table). Other species had fewer than four visits each.

minutes, to avoid correlations due to temporal proximity. We wished to test whether bees have individual preferences

for particular flower species. If individuals had no floral preference we would expect no interaction in the contingency

table: the expected proportion of visits to a given flower should be the same for all unique bees (this was our null

hypothesis). We note that in practice, preferences might be driven by caste, subspecies differences, or temporary

environmental differences. However, as a simple test to demonstrate the RTS it should suffice.

Clearly the expected and observed numbers in the cells of these contingency tables are small, so the χ2 test is

inappropriate. We instead used the Exact Fisher Test.3 We only had enough samples to perform this analysis for

two species, We found for both Bombus hortorum (p < 0.01) and Bombus terrestris (p < 0.001) that there were

significant individual preferences for particular forage species beyond that expected by chance (i.e. if the individuals

of the same species had the same preference for each plant type).

3.3.3 3D flight trajectory

A final brief experiment used two RTS to compute the flight path of a bee (Figure 4b), to demonstrate this as a

possible application. We used a single Bombus terrestris subsp. audax commerical nest (Biobest, standard hive, no

cotton wool, containing about 80 workers) and tagged workers using the retroreflective tags. We placed the nest at

Site G and positioned two RTS units facing the nest, approximately 15 metres from the nest and from each other.

The nest had been open for a couple of days, so the workers had been foraging and had gained familiarity with the

landscape. We started photographing with two RTSes as we saw workers depart (Figure 4d). The bee we successful

tracked flew briefly North but turned South East (Figure 4a) and quickly accelerated (to a recorded speed of about

6 ms−1), gradually climbing to an approximate height of 2.5 m (Figure 4c) before leaving the field of view of one of

3
M ×N contingency implementation thanks to Noutahi (2018), using Markov chain Monte Carlo (MCMC) sampling to compute the

p-value.
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Figure 4: Reconstructed 3D flight trajectory. a. top-down projection of flight path. Orange line and crosses, the
estimated observation locations. Red line and circles, fitted path with markers each second. Blue crosses, landmarks.
b. 3D perspective projection. Dashed red line and circles, estimated observation locations. Blue line and circles,
fitted path with markers each second. Crosses and vertical lines, various landmarks. Red lines indicate vectors
centred on the two cameras, each associated with an observation. Ground plane grid squares 1× 1 metres. c. Height
of bee during flight. d. Photo taken from new pi 4 tracking system. The researcher and nest are in the foreground a
tagged bee is illuminated and visible near the centre of the frame. The ‘small tree’ landmark is the tree to the right
of the image.
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the cameras. We failed to record other flights mainly due to problems with the nest (possibly due to the absence of

cotton wool). This should be considered a proof-of-concept experiment.

4 Discussion

Researchers have developed several methods to directly track individual bees. Most of these methods use an

electronic tag, either producing an active radio signal or passively providing a radar reflection. Retroreflective tags

have also been explored, typically in dark environments and/or at close range. The RTS described in this paper

works at greater range and in daylight, using such tags, thanks to two innovations. First is the use of a camera flash

combined with a global electronic shutter. This massively reduces the ambient light detected while also providing

a very powerful light source. Second is the algorithm devised to remove false positives by both comparing with

previous photos and classifying using previous training data. The main disadvantage of the approach, compared to

the radar and VHF tags, is the method’s limited range of about 35 m. However, its advantages complement those

methods: The system can provide very precise tracking data (in 2d or 3d) allowing visits to individual patches of

flowers to be identified, for example. It is low cost compared to the other methods. Finally, the tag itself is very

small and simple, and does not require the aerial of the electronic devices. In our brief experiment we found no

evidence of behaviour change (although care must be taken if using cotton-wool as insulation in an artificial hive).

The majority of bee species in the UK would probably find the electronic tags too cumbersome. Given that we

were able to tag and track an Apis mellifera, it is likely that the retroreflective tag could be used with many other

species of bee of around this size.

We found the initial experiment, tagging a forgaing Bombus terrestris (Section 3.2.1) and using the RTS to later

detect the bee, was particularly convincing as to the method’s effectiveness. The pine tree would not have been a

location we would have looked for the bee, if trying to re-observe during a transect. Even if the bee had returned to

the wild-flower area, finding it manually would have been laborious and unreliable. The simplicity and effectiveness

of the detection demonstrates the benefits the system can bring to re-observation studies in particular.

The tagging of Apis mellifera and Megachile sp. in Section 3.2.2 demonstrate an important capability, as

these are considerably smaller than the Bombus spp. tagged elsewhere. The smaller retroreflectors used do reduce

detection range, but not as severely as one might expect. This we speculate is due to the 1/d4 relationship in signal

strength. For example, the tag on the Apis mellifera probably has only 4 mm2 visible, compared to a typical tag

on a Bombus sp. that might have up to 20 mm2 visible. The reduced size is equivalent in terms of simple signal

strength to a 33 per cent reduction in distance (e.g. if the RTS works to 30 m with the large tag, it will work to

about 20 m with the smaller tag). The Apis mellifera was detected approximately 16 m from the RTS, which fits

this hypothesis.

Anecdotally, field studies often are limited by field-worker time. Section 3.3.1 demonstrated the system’s
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capability to perform detection and tracking automatically. To compare our results with anecdotal forage preference

estimates, we asked the owner of the garden to recall the top three plant species over August 2020 they felt were

most popular with bumblebees. They suggested: Nepeta, Dahlia and Verbascum. This fits quite closely with our

results but with Phlox instead of Verbascum. This suggests that the automatic monitoring results reflect plausible

foraging activities.

To move beyond single case-studies, we performed a simple floral preference experiment (Section 3.3.2) and

demonstrated the automatic monitoring and tracking that the system can provide. We also demonstrated in a

proof-of-concept experiment how one can combine data from two systems to infer the bee’s flight path in 3D (Section

3.3.3).

There is a considerable range of experiments and research questions that could be supported with this technology,

we just mention a few and then discuss future improvements to the underlying method.

4.1 Future Experiments

First, the most obvious initial use is as part of a standard mark-reobservation study, to increase the detection rate.

The system could also be left to run autonomously for long periods, further increasing the rate of reobservation.

Goulson (2003) wrote that ‘In more typical, patchy landscapes the mark-reobservation method seems to be of little

use without a huge team of observers to search for bees.’ We propose that a small number of these tracking systems

deployed at different locations can play the role of this ‘huge team’.

Second, many bees only forage within 100-300 m of the nest (Gathmann and Tscharntke, 2002). Given the

low cost of the tracking system, we envisage that one could monitor a useful portion of the foraging range of such

doorstep foraging species, by distributing several tracking systems over much of the plausible area likely to be

visited.

Third, we found the 3D path reconstruction was relatively simple to achieve with this system, and is likely to be

a method of considerable interest to neuroethology, as it allows one to record in considerable detail initial learning

flights, and investigate how modifications to the environment lead to changes in behaviour, allowing inference to

be made around the cognitive processes involved in the bee’s navigation and perception. Ideally more than two

tracking systems should be used together, to further refine the path, and providing some redundancy to the data

(see ‘Tracking in three dimensions’ on p420 in Dell et al., 2014; Straw et al., 2011).

Fourth, the RTS can remain in a fixed location, monitoring part of the landscape for considerable periods (with

provision of electricity being its only limit). We suggest long-term floral preference studies could easily be conducted.

We also noticed anecdotally that in our data we would often see several bees foraging at the same time, then have a

period with none. We wonder if this is chance, or due to cyclic patterns in nectar depletion or possibly due to slight

changes in the environment (temperature or wind). The high spatial resolution could also allow many individual

flowers to be monitored for tagged bees, simultaneously.
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Finally, the system’s low cost, small size, ease of deployment and simplicity of use will give more researchers

greater access to direct-tracking. For example, early nest finding could be achieved by tagging a foraging queen

and tracking her back to the nest. One might best achieve this with the harmonic radar or VHF radio tags, but

access and use of these tools is quite limited. Anecdotally we have noticed how queen bees, like workers, return on a

similar path (or ‘bee line’) regularly to a forage patch. One could move or distribute the tracking system(s) along

this path to eventually discover the nest.

4.2 Future Improvements

We first note that some simple hardware improvements, such as mounting on a rotating platform (which we

experimented with previously) and using a slightly telephoto lens and a Fresnel flash lens could considerably increase

the area scanned, potentially to about 1 hectare.

The next methodological improvement we are investigating is the potential for unique bee identification by

combining the retroreflectors with colour filters to allow a colour camera to uniquely identify different tagged bees.

Further refinement could be achieved by adding additional filters to the camera flashes. This will allow, for example,

the floral preference study to have been run without field-worker intervention.

Although tagging bees with the retroreflective labels is relatively simple, it might be possible to tag all the bees

using retroreflective powder, using the technology described in Osborne et al. (2008) for mass-marking.

The capacity to take 4 photos each second suggests that we should use the sequence of images to improve the

detection and tracking accuracy (both in 2D and 3D). Future work should investigate the use of Bayesian approaches

for such integration. A particle filter is probably an appropriate method as the dimensionality of the domain is

low and the state space is non-linear with a multimodal posterior. In 3D the particle filter would be particularly

effective as the likelihood function will consist of distributions along various vectors (each associated with a bright

pixel in a photo).

Finally, building on our earlier work using alternative platforms, we found that, as the tracking system is fairly

lightweight it can be used with drones, balloons and 10 m masts. Each of these has its own advantages, in particular

one might envisage combining this with work such as Le et al. (2017), tracking the tagged bee with a unmanned

aerial vehicle (UAV), allowing the evaluation of landscape features as corridors or barriers to bumblebees.

4.3 Conclusion

We have presented a novel method for tracking bees using small, light-weight retroreflective tags, using low-cost

equipment. This method complements electronic and indirect tracking tools, for example it allows tracking of smaller

bees than harmonic radar or VHF radio. We anticipate the Retroreflector-based Tracking System will support a

wide range of ecological research.
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Supplementary Material

Capture and Tagging

A foraging bee is captured using a butterfly net (Watkins & Doncaster), placed in a marking cage (Watkins &

Doncaster), with a mesh lid at both ends, and placed in either a freezer or ice box (containing ice and salt) to

induce narcosis to enable tagging to take place. A small 12 V, 8 cm computer fan, powered with a 9 V battery, is

used to ventilate the marking cage, which we found helped reduce the bee’s temperature quickly. Although a widely

used approach, we note that issues do exist with immobilising bees using cold (or carbon dioxide, CO2) (Poissonnier

et al., 2015). We were also able to attach a tag without cold or CO2 using a standard queen marking tube with

plunger for the Bombus terrestris in the Aerial Platform section later in the supplementary. However, the tube

mesh limits us to very small tags and we found it more likely to result in failed tagging.

Hardware Notes

To aid replication we elaborate below on several aspects of the hardware design that we found were necessary for

successful operation. Figure S1a illustrates the prototype tracking system.

Choice of camera Initial versions of the system used a consumer compact camera (PowerShot SX210, Canon) in

which access to the memory card was controlled by connecting or disconnecting the USB power lines from a raspberry

pi. Triggering was via a mechanical actuator and flash control was via decoupling the connected slave-triggered

flash. We more recently have been using the MV-CA032-10GM (HIKROBOT) camera successfully (2048× 1536).

Flash and power The TT560 has a 35 mm full power guide number of 38 m although was used at 1/16 power.

Several other low-cost flashes were also used successfully (including the YN560-II, Yongnuo). The choice of 1/16

was determined empirically while also optimising the exposure duration. It was the point at which a reduced signal

to background became apparent. We found somewhat variable brightness in the images however, suggesting either

the flash power or the timing of the flash or camera trigger can vary slightly.

Electromagnetic pulse protection Each flash (and its trigger cable) was wrapped in aluminium thermal insulation

tape and then electrically insulated with a layer of duct tape. Without this, the electromagnetic pulse from the

flash-bulb caused the other flashes to also trigger. This did not matter when using the flashes in a combined

approach but was necessary for sequential triggering.
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a

c d

b

Figure S1: a. The complete tracking system. In the foreground are the two flashes and the camera. Mounted on the
back is the raspberry pi and the AA battery packs. b. Screenshot of part of the web interface illustrating real-time
target tracking. The yellow crosses with circles are the locations where the system has confidently found the tags.
The candidate locations it checked are marked with blue circles (mainly included to support algorithm development).
The lower image is simply the central portion of the image, used to ensure the lens is focused (only really necessary
after the system’s initial construction). c. A tagged Apis mellifera, d. A tagged Bombus lapidarius.
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Filter Earlier in the project we used a near-ultraviolet colour glass filter (50x50 mm, 390 nm Band-pass, Knight

Optical) based on the observation that most light impinging our camera will be from foliage, which reflects little

light at the blue/violet end of the visible spectrum. However, we found that most false positives and noise were

caused by non-foliage objects, so this filtering did not help and also caused an inevitable reduction in signal strength.

Platform For the experiments in this paper we used a simple step ladder or a convenient building to provide

elevation. Previously we have explored the use of a 10 m guyed mast (portable folding aluminium telescopic mast,

damsu.co.uk), a tethered helium balloon (giant cloudburst chloroprene balloon, balloons.co.uk) and a multirotor

UAV. The UAV may have future impact as a method for continuously following the target but has a very limited

battery life. The balloon can remain in place longer but can only be used in very calm conditions. The mast is

shorter and less flexible but provides stable images allowing more accurate tracking. We would suggest a 2 m or 3

m photography light stand as an ideal platform in future providing a good compromise. Later in the supplementary

we describe in more detail the tethered balloon experiments.

Costs A brief note on costs, to emphasise the relative low-cost nature of the system, overall it cost about ↔820.

The electronic-shutter camera and lens were the most expensive components at ↔630. All other items came to about

↔190. We are experimenting now with a lower resolution camera (MV-CE013-50GM, HIKROBOT, 1280× 960)

which costs ↔205. If this works the unit cost would be about ↔400. The retroreflectors and glue are almost free

(<↔0.02/bee).

Software Notes

Other components The implementation of the detection algorithm also checks for broken or skipped frames and,

by comparing average brightness, it checks whether the flash has fired or if it has failed (e.g. due to a low flash

battery) warns the user. It also looks for large movements (e.g. if the camera is moved) and avoids using images

from before the movement in the algorithm above. Finally, in step 4 of the algorithm in Section 2.4.3, rather than

compare with all previous images we typically just use images from the last 9 photo-pairs, to save time and memory.

Deployment Two python modules have been written to collect and analyse the camera images in real-time on-board

the tracking system. The full code is available to download and use from github.1 Besides the detection described

above, the software also controls the flashes and camera, saves the data to the memory card and can control a

servo if mounted on a rotating platform. Finally it provides a web (and API) interface to the system, allowing

field-workers to control many aspects of the system (either from a smartphone or laptop). Figure S1b shows an

example of the web interface (accessed from a phone). These include the flash configuration and frequency, the

detection threshold, etc. The interface also displays the current (and previous) images and targets found (if any)

and produces an audio alert on detecting a retroreflector. The system either provides a hotspot or uses a local

hotspot (e.g. generated by a smartphone). Other services include high-precision (<2ms error) synchronisation of

1https://github.com/lionfish0/bee_track and https://github.com/lionfish0/retrodetect.
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the datetime onboard using the phone or laptop’s clock, so multiple systems used in 3D flight path reconstruction

can have accurate datestamps on their images.

Choice of Classifier Given the low number of dimensions and what is likely to be a relatively simple decision

boundary, it is likely that most classifiers will perform well. At the time of writing, sklearn (the widely used python

library for machine learning) was not easily used with python 3.x on the raspberry pi, and so we used the stand-alone

libSVM (Chang and Lin, 2011).

The maximum-dilate operation, DM (·)

In the algorithm we use the maximum-dilate operation on either non-flash photos NF
(j)
i or on previous subtraction

results Bn. The reason is that in both a non-target bright object may have moved a small amount between the two

images being subtracted, either due to image misalignment or due to physically moving, e.g. a flower moving in the

wind. We still need to ensure this object is ‘cancelled’ when the one image is subtracted from another. Ideally then

we wish to use for subtraction an image (generated by the DM (·) function) in which each pixel is the maximum

value of all pixels within a certain distance w. Specifically, if A = DM (B) then,

[A]p = max
q,|q−p|2≤w

[B]q. (1)

Computing this exactly takes a few seconds on the raspberry pi. So for efficiency we compute an approximation.

First the image is downscaled by 10 in each direction, but each pixel in the new image is the maximum of the

10× 10 grid of original pixels. We then perform the exact calculation, in (1), on this reduced image, before scaling

back. This gives a slightly pixelated result to the image being subtracted, but is sufficiently accurate for the system

to function.

3D flight path reconstruction

The final experiment used two RTS to compute the flight path of a bee, to demonstrate this as a possible application.

After placing the two RTS, nine unique landmarks were identified in the photos from the two systems, and used to

place the two cameras in 3D. Specifically, the orientation of the cameras was manually chosen and so was fixed in

the model, however the relative positions of the two RTS was optimised inside the model. Ideally the two vectors

associated with each landmark should intersect. However aberration, slight mislabelling and other factors can lead

to small discrepancies. The model RTSes are placed to minimise the error. The distances between landmarks are

known allowing us to calibrate the model.

When accessed through the web interface, the RTS software automatically requests the date and time during

initialisation and sets its internal clock. Given the low-latency of the wifi connection to the mobile phone or laptop,

the two tracking systems should have a relative accuracy of within 2 ms.
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Reconstructing the flight path is not simply a matter of triangulation as the photos are taken at different times.

We solve this using a simple approximation in this paper, but describe a more appropriate method for further work

in the discussion.

In the field trial, one RTS was the new system capable of 4 acquisitions per second, while the older system

only ran every two seconds. So as a simple approach, the old system’s vectors are interpolated for each of the new

system’s. Then the nearest point to these two vectors, that lies equidistant between them, is assumed to be the

bee’s location.

We finally use these coordinates as training points in three independent Gaussian processes (with the Exponenti-

ated Quadratic kernel), parameterised by time, with appropriate priors regarding plausible acceleration (specifically

a lengthscale of 1.5 s was chosen for each axis).

Evaluation

Theoretical Range and Signal

The actual range over which this system could work is difficult to compute as the main source of noise the background

landscape and ambient light. One can potentially estimate the relative effectiveness with respect to distance. The

apparent size of the reflector will fall by the square of the distance. The light it receives from the flash will also fall

by the same. Hence the signal from the reflector will fall proportional to 1/d4. Thus if one doubled the camera flash

brightness, one would only achieve a 19 per cent increase in range. This relationship is part of the radar equation.

We briefly set out a rough sketch of the physics behind the process, to help explain why the reflector is visible.

We consider the theoretical potential of the system by considering the proportion of the reflected light that is from

the flash compared to the energy from the general background. We do not consider the issue of specular reflections

which may result in brighter points than the diffuse light one would normally see in a natural environment. A

typical speedlight, taking into account inefficiencies, will release about 2.5 J of visible light energy at 1/16 power

over 50µs. We assume approximately the area illuminated by our flash is equal to the distance from the system

squared, so if the system is 30 metres from the target the flash will provide 56 Wm−2. At its brightest, sunlight can

transmit 445 Wm−2 of visible light to the Earth’s surface. If we use a 3 Megapixel camera covering the same area

as the flash, one pixel (from 30 metres) is 3 × 10−4m2. We assume the sunlight and flash light will be reflected

from the landscape in a diffuse manner, with an albedo of e.g. 0.3, so at the distance of the camera, assuming the

light is reflected in all directions equally, the reflection from the background from each pixel will provide a power

density of 0.3× (3× 10−4)× (445 + 55)/2π302 = 8.0µWm−2 for that pixel. A 10 mm2 retroreflector 30 m away will

be illuminated by the flash with 556µW. Hawkins et al. (2003) suggest that for a good retroreflector about half

the reflected energy is reflected within 0.3 degrees of the entrance angle, which at 30 m will cover an expanse of

only 0.1m2. So will have a power density of 2, 814µWm−2. Thus the pixel with the retroreflector in will return

5



(training data) Actual
Positive Negative

Predicted
Positive 90 0
Negative 14 2,456

(test data) Actual
Positive Negative

Predicted
Positive 57 1
Negative 6 1,736

Table S1: Evaluation of the RTS on labelled data. Upper tables when applied to the data used for training. Lower
table when applied to new test data (from a different location and day).

threshold<0 threshold<-1 threshold<-2
Distance Flashes TP rate FP rate TP rate FP rate TP rate FP rate
15 m 2 89% (17/19) 5% (1/19) 74% (14/19) 0% (0/19) 47% (9/19) 0% (0/19)
24 m 2 100% (16/16) 0% (0/16) 88% (14/16) 0% (0/16) 88% (14/16) 0% (0/16)
30 m 2 67% (12/18) 17% (3/18) 56% (10/18) 5% (1/18) 33% (6/18) 0% (0/18)
30 m 4 100% (25/25) 12% (3/25) 72% (18/25) 8% (2/25) 68% (17/25) 0% (0/25)
39 m 2 57% (4/7) 57% (4/7) 14% (1/7) 0% (0/7) 0% (0/7) 0% (0/7)
39 m 4 44% (8/18) 17% (3/18) 22% (4/18) 6% (1/18) 6% (1/18) 0% (0/18)

Table S2: Effect of distance and number of flashes on detection rate (TP rate = True Positive rate, FP = False
Positive rate). The rate is per image, an image can have both a true positive and a false positive (e.g. if two
locations were identified by the tracking system as being a tag). The more negative thresholds are less likely to
assign a bright spot a ‘positive’ target.

hundreds of times more power. It is important to stress that specular reflection from litter, metal objects or water

can overwhelm this ratio, leading to false positives in the image. Hence the additional processing steps we conduct

to remove these artifacts. These calculations show how, in principle, the small reflector can be detected from a

considerable distance. We next evaluate the tag empirically to confirm what range is practically possible.

Empirical Range Evaluation

To perform an evaluation we trained the classifier on a smaller subset of the images from one day and location (Site

A). We used a small 10 mm2 tag, realistically what will be visible on a bee. The classifier was used in the pipeline

to detect the retroreflector in images from a second day at Site B. The reflector in both was moved between photos

at varying locations and distances between approximately 25 m to 40 m away.

Table S1 displays a confusion matrix of the system on the training and test data. Over 90 per cent of the test

data points were correctly detected. There was one false positive, upon inspection this was caused by the bright

reflection from the watch of a passer-by.

We next reversed the training and test datasets (training using Site B and testing on the data from Site A).

The test data samples from Site A had their distances and the use of either two or four flashes recorded. Table S2

illustrates the true and false positive rate, for three choices of classifier threshold. This provides a trade-off between

detecting hard-to-spot distant bees, and avoiding false alarms. One might wish to avoid false alarms by using a
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4.95 4.60

4.51 -0.78

1.31 -1.88

-2.35 -9.69

4.99 2.21

2.36 1.20

2.25 4.72

2.39 2.12

Figure S2: Samples of true (left) and false (right) targets. The first and third column of each are 40× 40 greyscale
images (white = 5, black = 0) centred on a maximum point. The second and fourth columns are 10× 10 enlarged
images (white = 50). The value in the title is the classifier score (negative = more confident).

threshold of -2, which in this test data found zero false positives. We found that the RTS worked to approximately

35 m. Obviously the presence or absence of objects that generate false positives, the size of the reflector, the amount

of daylight and other factors are also relevant. The sudden loss of signal between 30 and 39 metres relates to the

1/d4 relationship with reflected signal strength, the 30 per cent increase in distance equates, in theory, to a 65 per

cent reduction in signal strength. We note that in this table and in later field work, where the bee was within 20 m,

the classifier did not detect the bee, as it appeared ‘too bright’. Some of the plots in Figure S2 demonstrate this.

Relatively little training data included samples with this proximity. Provisioning additional, more varied training

data will likely solve this. In our case we used an additional threshold heuristic for these very bright spots.

Aerial (tethered balloon) Platform

An early version of the RTS was deployed in September 2018 using a tethered balloon (see Figure S3b) at

approximately 15 m above the ground, to test the use of an aerial platform. This experiment was conducted at Site

C. We first tagged a Bombus terrestris male, found on a Heuchera villosa. We released the bee on the same plant.

After a period of feeding it left. Within an hour it was detected returning to the plants. Figure S3a illustrates the

detection and tracking. It was first detected above the field (at 13:12:32). It was then detected in the planting area

(at 13:13:51 and every four seconds after2). To confirm the tracked object was real and our tagged bee, we visited

the location identified by the system and found the tagged bee (figure S3c) feeding on a Sedum telephium not far

2The delay prior to this second detection was due to users infrequently attending the real-time imagery. The system at this stage did

not produce a sound when a detection occured.
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2

2018-09-15T13:12:24.099807

10m

1

2018-09-15T13:12:28.107959

87

2018-09-15T13:12:32.291098

83

2018-09-15T13:13:51.959397

7

2018-09-15T13:13:55.961120

70

2018-09-15T13:13:59.962659

52

2018-09-15T13:14:03.965476

47

2018-09-15T13:14:08.178786

8

2018-09-15T13:14:11.980108

6

2018-09-15T13:14:15.985063

a. b.

c.

Figure S3: a. Tracking tagged Bombus terrestris. Score displayed in top right of each image (over 25 indicates a
confident detection). Cross-hair size scaled by score. A returning tagged bee detected as it flew across field (second
row, left column) and settled in the planting (second row onwards). Due to wind the camera was at a problematic
angle in some of the images. b. The tracking system suspended from the tethered helium balloon. c. The tagged
bee, rediscovered using the tracking system. Note: The earlier reflectors were simple flat squares.
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from the plant upon which it was released. This provided the first demonstration that the system could detect and

track a bee.

The balloon platform was found to be unstable in even slight wind, so in 2019 and 2020, ground based platforms

were used with an additional ‘ridge’ added to the tags to ensure they remained visible from a lower elevation. The

view from the balloon platform did make it easier to localise the bee.

Effect of Tags

An important question, when applying novel tags or labels to animals for tracking, is to determine what effect the

tags have on behaviour and survival.

Our tags weigh approximately 5 mg, which is at the smaller end of the passive radio tag range - Osborne et al.

(1999) used harmonic radar tags weighing 12 mg. Other attempts vary between 1 - 20 mg (Kissling et al., 2014).

Importantly though our tags do not require an aerial. In Osborne et al. (1999) the aerial extends 16 mm and some

concern is expressed about the effect of the aerial on behaviour. The 5 mg tag compares favourably to the weight of

B. terrestris workers at 68 to 754 mg (Goulson et al., 2002). Smaller tags were used with Apis mellifera workers

which are considerably smaller, between 51 and 209 mg (Kaftanoglu et al., 2011) so the tag was still less than 10

per cent of the insect’s weight. Figure S1c shows a tagged Apis mellifera worker.

Anecdotally, we noted that, immediately after tagging, the bees would often spend a few minutes grooming.

Later, all the re-observed insects appeared to return to ‘normal’ behaviour and would be seen foraging.

The most serious issue with the tags was associated with the artificial nests of B. terrestris colonies (Biobest,

standard hive). The ridge on the tags would very frequently become entangled in the cotton-wool provided within

the hive for thermal insulation. We found the non-cotton-wool nest performed better (although may only be suitable

for the warmest parts of the year). One might also consider reducing or avoiding the ridge but this will reduce the

signal and range of the system. Conversely we saw several tagged wild bees foraging a week after tagging, suggesting

that wild bees did not have such issues in their own nests (which do not contain cotton wool).

For a more quantitative assessment of tag effect we followed a similar approach to Hagen et al. (2011), comparing

the time spent foraging of tagged and untagged bees. Our experiment was rather less powerful however, as we just

looked at foraging time on the flower patch (which probably varies more, especially as we looked at multiple flower

types) and we only recorded from when the bee is first seen. In detail: An observer arrived near the forage patch,

selected a bee and recorded the time the bee remained foraging before leaving the flower patch (recording also the

species and caste of bee, plant and whether the bee had a tag). This introduced (unbiased) additional noise to the

data, as the length of the entire foraging session was not recorded. The observer preferentially selected tagged bees,

to ensure a roughly balanced dataset. Overall 21 tagged and 19 untagged bees were recorded (respectively 9 and

6 of these were B. terrestris, 7 and 2 of these were B. lapidarius, other species had fewer samples). Considerable

variation in foraging times was present (with times recorded between 6 and 509 seconds). The samples were recorded
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at two field sites. To further increase the number of samples we would suggest more field sites should be included so

that the same bees were not being repeatedly sampled (which could artificially inflate significance, for example if

one individual happened to be very slow or fast).

Hagen et al. (2011, figure 2b) found a significant, 4 fold increase in foraging time for the tagged bees. We

did not find any significant difference between the two groups (using either Mann Whitney U or a t-test on the

log-times) either within species (e.g. B. terrestris.: r = 21 [p = 0.52] t = 0.75 [p = 0.46], B. lapidarius: r = 4 [p

= 0.46] t = 1.11 [p = 0.30]) or pooled (r = 146 [p = 0.15] t = 1.58 [p = 0.12]). Exponentiating the 95 per cent

confidence interval for the difference in log times Tagged/Untagged pooled: [0.85 - 3.66], which compares favourably

to tags used in Hagen et al. (2011), although our sample size is small. We also split the data by flower species, and

considered both separate species and pooled, but found no significant differences between the tagged and untagged

bees, in any of these tests (no correction was made for these multiple comparisons).

List of Authorities

Apis mellifera Linnaeus, 1758

Megachile sp. Latreille, 1802

Bombus lapidarius Linnaeus, 1758

Bombus terrestris Linnaeus, 1758

Bombus terrestris subsp. audax Harris, 1776

Bombus spp. Latreille, 1802

Bombus hortorum Linnaeus, 1761
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