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Abstract

Many organisms face a wide variety of biotic and abiotic stressors which re-

duce individual survival, interacting synergistically to further reduce fitness.

Here we studied the effects of two such synergistically interacting stressors;

immunotoxicant exposure and parasite infection. We model the dynamics of

a within-host infection and the associated immune response of an individual.

We consider both the indirect sub-lethal effects on immunosuppression and

the direct effects on health and mortality of individuals exposed to toxicants.

We demonstrate that sub-lethal exposure to toxicants can promote infection

through the suppression of the immune system. This happens through the

depletion of the immune response which causes rapid proliferation in parasite
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load. In addition, high toxicant exposure can alter cellular regulation and

cause the breakdown of normal healthy tissue, from which we infer higher

mortality risk of the host. We classify this breakdown into three phases of

increasing toxicant stress, and demonstrate the range of conditions under

which toxicant exposure causes failure at the within-host level. These phases

are determined by the relationship between the immunity status, overall cel-

lular health and the level of toxicant exposure. We discuss the implications

of our model in the context of individual honey bee health. Our model pro-

vides an assessment of how pesticide stress and infection interact to cause

the synergistic breakdown of the within-host dynamics of individual honey

bees.

Keywords: stress, immunity, infection, synergistic, within-host dynamics,

honey bees
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1. Introduction1

During their lifetime, organisms are exposed to a wide range of chemical,2

physical and biological stressors. Exposure to environmental (e.g. anthro-3

pogenic, climatic) and natural stress (e.g. pathogens, parasites and pre-4

dation) reduces individual fitness [1]. Recently, there has been increasing5

interest in multiple stress approaches, examining the potential for stressors6

to interact synergistically, defined as the combined effects of stress having7

a greater impact than expected [2]. Understanding the mechanisms behind8

these synergistic interactions is important for quantifying the true impacts9

of individual anthropogenic stress on organisms [3].10

Pesticides are an important class of anthropogenic toxicant stress, with11

the use of pesticides continuing to increase globally [4, 5, 6]. Pesticides are12

seen as crucially important to crop productivity, preserving around one-fifth13

of total crop yield contributing to food security [7]. Concerns about the14

detrimental impacts of these pesticides [8, 9] have in the past forced policy15

makers to restrict the application of some insecticides [10]. Non-target insects16

frequently encounter these insecticides [5], with concentrations able to build17

up throughout food sources and within various life-stages of the organism18

[11, 12, 13, 14, 15, 16, 17].19

Toxicants such as pesticides can cause lethality [18, 19, 20], but more often20

have other sub-lethal effects such as impairments on foraging [21, 22, 23, 24],21

feeding [25], learning [26, 27], memory [28, 27] and fecundity [29, 30, 31].22

Exposure during early life can have both lethal and sub-lethal effects later23

3
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appearing during adulthood [32, 33]. These environmental contaminants24

can interact synergistically in combination with other natural stressors. For25

example, combinations of toxicant exposure with parasite infections can in-26

crease individual mortality [34, 35], increase the initial pathogen load [36, 37]27

and increase virulence [38]. Synergistic toxicant-pathogen interactions have28

been observed in many types of organisms such as insects, snails, water fleas,29

frogs, salamanders, fish and mussels (see review by Holmstrup et al., 2010).30

In addition to toxicants causing direct lethality, they can also cause indirect31

damage to individual immune defence. Individual organisms defend them-32

selves against various infections via a suite of immune responses, and these33

can be damaged or inhibited through toxicant exposure [39]. For example,34

pesticides have been shown to reduce the total hemocyte abundance in in-35

sects [40, 41], the nodulation initiation [40, 42], the encapsulation response36

[43, 41] and antiviral defences [44].37

Of particular recent concern are the widespread losses to global wild and38

managed honey bee populations [6, 45, 46]. The Western honey bee (Apis39

mellifera L.) is widely recognised as the most important commercial insect40

pollinator [47, 48, 49, 50], contributing to global food security and biodi-41

versity [51, 52]. While a single cause for these widespread colony losses has42

yet to be identified, there is agreement that it may have its origins within43

multiple stressors interacting with each other [53, 54, 55, 56]. Possible candi-44

dates include neonicotinoid pesticides [12, 13, 57, 27], mites [58, 59], viruses45

[60, 61, 62] and microsporidia infections [63, 64].46

4
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In this study, we examine the general mechanism by which immunotox-47

icants interact with infection to reduce host health. This observed synergy48

between multiple stressors is currently poorly understood from an immuno-49

logical perspective [65]. We focus our study on the general ecotoxicological50

applications of the model, in the case of any immunotoxicant interacting51

with any parasite infection. We do this by formulating a system of nonlin-52

ear ordinary differential equations (ODEs) to investigate the consequences of53

immunosuppression by a toxicant and the effect this has on within-host infec-54

tion. We first consider a toxicant-free environment to examine the conditions55

under which the infection can spread. We then consider the interaction be-56

tween the infection and both lethal and sub-lethal exposure to toxicants and57

examine the outcome on within-host dynamics. We also consider the case of58

aggressive direct lethality of toxicants on the production of new tissue cells.59

2. The Model60

The immune response of any individual relies upon the interdependent61

defence of physical, humoral and cellular responses, denoted in our model62

by immune function Z. Nowak and May [66] proposed a general model to63

describe the interaction between a cellular immune response and a replicat-64

ing virus, in the setting of self-regulating cytotoxic T lymphocytes (CTLs)65

targeting infected cells. The model they present is simple but captures the66

fundamental biological processes governing the immune response to foreign67

antigens, and following this framework we denote within-host cell density as68

5
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X. We denote the total parasite/pathogen density as Y . The total number69

of cells within the model represents a general susceptible subset of animal70

tissue cells. As a motivating example, our model can be thought of describ-71

ing the midgut epithelial cells of the honey bee X under a Nosema ceranae72

infection Y [67] with associated immune response Z, although we also pro-73

pose that our model can be thought of describing any interaction between74

any immunotoxicant and associated parasite or pathogen in a general host.75

Toxicants can be lethally toxic to individuals at high enough exposure [18,76

19, 20]. In addition various functions associated with the immune response77

are damaged by toxicants [39, 40, 41, 42, 43, 68, 69, 70, 44]. We model78

both the direct lethality (denoted by parameter r) and indirect sub-lethal79

immunotoxicity (denoted by parameter h) effects of toxicant exposure Q.80

For simplicity, we assume fast dynamics of virus replication compared to the81

replication of other immune or within-host cells resulting in the formulation82

of the model (Figure 1) as a 3-compartmental set of nonlinear ODEs;83

dX

dt
= λ− βY X − dX − rQ (1a)84

dY

dt
= βY X − aY − pY Z (1b)85

dZ

dt
= c− bZ − hQ (1c)86

87

with c − hQ > 0 and λ − rQ > 0. When Z = 0 (the immune response is88

depleted), we remove equation (1c) from system (1) and the system becomes89

6
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the two dimensional system of equations (1a) and (1b) without the immune90

response term −pY Z;91

dX

dt
= λ− βY X − dX − rQ (1a)92

dY

dt
= βY X − aY (1b)93

94

We assume that within-host cells are produced at rate λ, and die at per-95

capita rate d. Parasites are created at rate β via a linear mass action, and96

are removed at per-capita rate a. The immune response Z is activated upon97

encountering parasites Y and the removal of parasites occurs at rate p. Al-98

though in reality, functions involved in immunity are not activated on the99

instance of meeting the parasite, but there is a complicated intermediary100

chain between processes which eventually result in the removal of parasites101

[71]. For simplicity, we assume that this complicated process can be sum-102

marised by our function pY Z. We assume that the immune dynamics Z are103

decoupled from those of within-host and parasite density. This represents104

the simplest possible assumption and various extensions to this assumption105

are possible. Immunity is therefore produced at rate c, and is removed at106

per-capita rate b.107

Within our model we infer the mortality risk of the host through the status108

of the within-host cells X, so that individual mortality risk is high when the109

number of cells X is small. This condition enables us to think about the110

mortality risk of an individual analogous to a highly infected within-host111

7
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tissue (e.g. parasite infection within the gut of a honey bee).112

Our system of equations (1) were analysed using standard stability meth-113

ods from dynamical systems theory and solved numerically with Wolfram114

Mathematica version number 10.0.2.0, using parameters taken from Table115

2. We performed a full parameter dependence analysis which demonstrated116

the same two universal behaviours of the model which enabled us to choose117

arbitrary parameter sets.118

3. Results119

In the following section we consider the baseline case of parasite infection120

in a toxicant-free environment before analysing our within-host system under121

the addition of a toxicant. We then consider the absence of direct lethal122

effects of toxicants before presenting the unique case of an aggressive toxicant.123

3.1. Toxicant-free model124

Initially we examine system (1) under the condition of the absence of tox-125

icant exposure (denoted by subscript A). Two possible outcomes are possible.126

First the infection is removed entirely by the immune system, in which case127

the total within-host cells and total immunity each reach a constant level at128

the disease free equilibrium (DFE):129

(XDFE
A , Y DFE

A , ZDFE
A ) =

⇣λ

d
, 0,

c

b

⌘

(2a)130

8
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where λ
d
and c

b
represent the ratio of total production to total removal of131

both within-host cells and immunity in the absence of toxicant respectively.132

Secondly the model predicts that an individual can become infected with133

parasites (Y > 0) under the following endemic equilibrium (EE):134

(XEE
A , Y EE

A , ZEE
A ) =

⇣ab+ cp

βb
, −

d

β
+

bλ

ab+ cp
,

c

b

⌘

(2b)135

This shows that it is possible for an individual honey bee to sustain a partial136

parasite infection without the addition of any toxicant in our model. The137

expression ab+cp

βb
= a

β
+ cp

βb
represents the reduction in within-host cells.138

3.2. Toxicant-Parasite model139

Next we consider system (1) under the condition of an infection and140

toxicant exposure (denoted by subscript B). In this case the model predicts141

two possible outcomes. First, the parasite infection is removed either by142

immune suppression or by the direct effects of the toxicant on the production143

of within-host cells represented by the DFE:144

(XDFE
B , Y DFE

B , ZDFE
B ) =

⇣λ− rQ

d
, 0,

c− hQ

b

⌘

(2c)145

so that the addition of any toxicant reduces the total within-host cells by146

rQ

d
and reduces the immune function by hQ

b
. Secondly the model predicts an147

9
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infected individual under toxicant exposure represented by the EE:148

(XEE
B , Y EE

B , ZEE
B ) =

⇣ab+ cp− hpQ

βb
,
−abd− cdp+ dhpQ− bQrβ + βbλ

βab+ cpβ − hpQβ
,
c− hQ

b

⌘

(2d)149

In this case, the parasite density grows rapidly as a result of the toxicant150

suppressing the immune system. The introduction of the toxicant reduces151

both within-host cells and immunity in both an infection-free and infected152

individual, but an initial parasite infection is required for an infection to153

grow.154

The effect of toxicant exposure on the net change of within-host cells,155

parasite density and immunity within the individual is summarised in Table156

1.157

Next we assume that the indirect (sub-lethal) effects of toxicant exposure158

on immunosuppression are more prominent than the direct (lethal) deple-159

tion of within-host cells. With an initial infection Y > 0 we define this as160

occurring when the immune status of an individual is destroyed before the161

infection is removed or when162

Z = 0 before Y = 0 (3)163

164

We summarise the behaviour of the model under this condition (Figure 2)165

into 3 distinct phases which describe the mechanism underlying the interac-166

tion between toxicant exposure and infection at the within-host level of the167

10
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organism, and the parameter dependence of infection and immunity at equi-168

librium. Note that the total number of cells within an individual organism is169

not constant. This is because both parasite and within-host cells are removed170

by either the toxicant exposure or infection and new cells are produced.171

Phase I 0 ≤ Q < c
h
= Q∗

0172

The model predicts that the initial state of an immune response is able to173

counter any infection. However, as the toxicant load is increased, the immune174

system is gradually depleted. Through a weakened immune suppression, this175

enables the parasite density to increase.176

Phase II Q∗

0 =
c
h
≤ Q < βλ−ad

rβ
= Q∗

1177

The second phase begins at the point of maximum infection and where the178

immune system has been completely inhibited. The increase in toxicant stress179

gradually depletes the parasite density while the within-host cells remain180

constant.181

Phase III Q∗

1 =
βλ−ad

rβ
≤ Q182

In phase three, the immune system has been destroyed and the parasite183

infection is no longer present leaving only a small fraction of within-host cells.184

Finally, the lethality of the toxicant causes the mortality of the individual185

honey bee and production of new cells ceases.186

Thus we have calculated the conditions under which the within-host dy-187

namics change according to the level of toxicant exposure. By understanding188

11
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the relationship between the parameters in the model and toxicant stress, we189

can make some biological interpretations. We predict that the ratio of the190

production of immunity to the amount of immunotoxicity (Q∗

0 = c
h
) deter-191

mines the point at which the infection load is at a maximum. The expression192

c
h
can be thought of as an indicator of immune status, and the point at which193

the toxicant stress becomes equal (Q = Q∗

0) represents the complete inhibi-194

tion of the immune system. The expression Q∗

1 =
βλ−ad

rβ
= λ

r
−

ad
rβ

represents195

the point at which the ratio of cell production to lethal toxicant mortality196

(indicator of within-host cell status) compares to the ratio of the loss of cells197

to the toxicant cell depletion multiplied by the transmission of the infection.198

Therefore this condition represents the status of within-host dynamics and199

can be thought of as an indicator of health. When Q = Q∗

1, the infection has200

been removed but the overall health status is very low, from which we infer201

a higher mortality risk of the host. Therefore we have conditions describing202

how toxicant exposure relates to that of the immune status Q∗

0 and overall203

health Q∗

1 of the organism.204

Our model predicts that a small amount of toxicant can cause the out-205

break of an otherwise controlled infection. A healthy immune response can206

suppress the parasite infection to a very low level (Figure 3.a), but a small207

amount of toxicant can cause the status of both infection-free and infected208

individuals to decline rapidly (Figure 3.b).209

12
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3.3. Absence of toxicant lethality210

In this case, we consider the absence of a direct lethal toxicant effect,211

therefore assuming that toxicant exposure only impairs the immune system212

and does not cause direct mortality. This changes the mechanism by which213

organisms become infected under increasing toxicant exposure. As before214

the immune system is inhibited leaving the organism vulnerable to attack by215

parasites. However after reaching a maximum infected threshold, the health216

status of the individual remains constant regardless of the amount of toxicant217

exposure (Figure 4.a). The individual remains highly infected (Figure 4.b)218

and an increasing exposure to the toxicant no longer causes further damage219

to organism health status.220

3.4. Aggressive direct mortality221

It is worth noting that condition (3) is necessary to explore the interac-222

tion between toxicant immunosuppression and the immune system. If this223

were not the case, for example if the parameter r becomes large we would see224

a situation where the toxicant acts too aggressively upon the host and causes225

the parasite infection to be killed off (similar to phase II under the original226

assumption) and following this the within-host cells are destroyed. The im-227

mune system remains intact as the direct effect of the toxicant on production228

of within-host cells is greater than the immune effect. We again see three229

distinct phases as we increase the toxicant from low levels to high (Figure230

5a). However now the toxicant exposure is more prominent and reduces both231
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parasite and within-host cells, stopping the infection from spreading quickly232

(Figure 5b). In this situation we also see a somewhat contradictory phase 3233

in which the host has neither parasite or within-host cells but a small amount234

of immunity. This result demonstrates the necessity of our original condition.235

4. Discussion236

We have shown that interactions between general anthropogenic stress237

in the form of an immunotoxicant and a parasite can promote within-host238

infection and reduce health status. The immune response of the host can239

be divided into three phases of increasing toxicant load; phase I, II and240

III (Figure 2). In the first phase, sub-lethal doses of the toxicant damage241

the immune system. This results in suppression of the immune system and242

hence the individual organism becomes highly infected. In the second phase,243

intermediate exposure to the toxicant reduces the total density of parasites.244

In the third phase, the extremely high exposure to the toxicant leads to the245

loss of within-host cells and eventual mortality of the host.246

Through disentangling the individual effects of both lethal and sub-lethal247

toxicant exposure, we were able to establish the role of each within the break-248

down of within-host dynamics. Indirect (sub-lethal) suppression of the im-249

mune system causes rapid proliferation of parasites within the host (Figure250

3), while direct (lethal) mortality cause both parasites and within-host cells251

to die. However without the direct effect of the toxicant on the production252

of new cells, the host remains highly infective (Figure 4). We also predict253
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that an extremely small toxicant exposure can cause the proliferation of a254

previously manageable infection.255

The findings we present in this study shed new light on the poorly256

understood mechanism by which toxicants seem to interact synergistically257

with infection to increase mortality risk [65]. In the context of the recent258

losses to honey bees populations [6, 45, 46], the synergistic immunotoxicant-259

infection interaction studied here is one example of the recent hypothesis that260

widespread honey bee losses may be multi-factorial [53, 54, 55, 56]. Synergis-261

tic pesticide-infection interactions have been shown to increase mortality risk262

within honey bees [34, 35]; for example, Nosema ceranae infections and thi-263

acloprid, a neonicotinoid pesticide act synergistically to increase individual264

mortality [37]. The findings we present in this paper propose one explanation265

of how synergy between these toxicants and infection occur at the within-266

host level. We show that these sub-lethal effects of anthropogenic stress are267

potentially more damaging to individual health, aggravating parasitic stress.268

This is in direct agreement to the positive correlation between low level (field269

condition) neonicotinoid treatment and increases in parasite and viral in-270

festations in bees [72, 73]. Infections within individual honey bees can be271

significantly increased by different levels of low or high sub-lethal pesticides272

[36]. Indeed, honey bees with undetectable levels of neonicotinoid imidaclo-273

prid which are reared in sub-lethal conditions still have increased infection274

levels [36]. This suggests that even extremely small sub-lethal exposure to275

pesticide can result in outbreaks of infection. We show that increasing the276
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pesticide exposure by a small amount (Q > 0) can result in a transition from277

a manageable parasite density level to a highly infected individual.278

Our results rely upon condition (3) which ensures that the immune re-279

sponse is destroyed before the within-host cells. This condition is crucial280

to ensuring reasonable behaviour of the model, and it should be noted that281

the reverse assumption predicts the presence of immunity even after both282

infected and within-host cells are dead (Figure 5a). We highlight this limi-283

tation of our theoretical work but argue that condition (3) is valid since the284

direct lethality of toxicants only occur at high doses [18] and various immuno-285

suppressive effects occur from toxicants [39], thus suggesting that toxicants286

have a greater impact on suppressing the immune system.287

The framework provided in this study focuses on the failure of the immune288

system of an individual organism. However individuals interact within popu-289

lations causing infection to spread to other susceptible individuals, and these290

populations have associated interdependent immune defences at both the291

within-host and between-host level. For example, social immunity involves292

many behavioural and population-level mechanisms such as social fever, a293

mechanism by which individuals increase the temperature of the surround-294

ing environment in order to kill parasites [74], guarding, where patrolling295

guards prevent infected individuals from interacting with healthy individuals296

[75], hygienic cleaning behavioural traits, by which the population remove297

diseased or dead individuals [76] and storing antimicrobial food [77]. Hence298

the main limitation of our framework is that we may have only considered299
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one half of both interdependent within and between-host immunities. Cou-300

pling population immunity models in the context of an epidemic alongside301

our individual immunity framework could further explain the synergistic in-302

teractions between toxicants and infection at both the individual and popula-303

tion level. Further theoretical work incorporating these multi-level dynamics304

could address the gap in understanding honey bee sudden collapse as syn-305

ergistic stressors in similar ways to other models of colony collapse disorder306

[78, 79, 80].307

This work highlights the need for further studies which focus on syn-308

ergistic interactions between various stressors at the within-host level. Our309

theoretical study presents a starting position to think about these synergistic310

interactions at the within-host level in the context of the immune system of311

an individual organism. While our model has an inherently simple structure,312

the addition of the toxicant function can lead to complicated dynamics that313

are consistent with empirical observations. This framework can stimulate314

further empirical and theoretical studies which focus on the interaction be-315

tween toxicant exposure, infection and the immune system at both the social316

group and individual level.317
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8. Figures and Tables328

Within-
host cells

Parasite 
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Immunity

Individual organism

Toxicant
Exposure

Infection

Suppression

Figure 1: The modelling framework we use to model the interaction between toxicant
exposure and parasite infection in an individual. Block arrows represent suppression. We
model toxicant exposure as a suppressive effect on immunity and within-host cells.
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Figure 2: The mechanism of parasite infection under increasing toxicant exposure. This
shows the parameter dependence of immunity, parasite density and within-host cells at
equilibrium within the dynamics of our model. In (a) the total densities of immune function
(blue), parasite load (red) and within-host cells (black) change as an individual is subject
to higher toxicant loads. In (b) the total % parasite infection (black) changes as the
toxicant load is increased. Parameters as in Table 2.
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Figure 3: The convergence of the total density of within-host cells and parasites under
no toxicant exposure (a) Q = 0, and small amounts of toxicant exposure (b) Q = 0.5.
Black dots show the stable endemic equilibrium, white dots show the unstable disease-free
equilibria and lines show the convergence from initial conditions. Parameters as in Table 2
and we assume an initial immune response (Z = 10) and an initial amount of within-host
cells (X > 0), and either zero or positive parasite density (Y ≥ 0).
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Figure 4: The mechanism of infection under increasing toxicant exposure, under only the
immunosuppression of the toxicant effect. In (a), the total density of immune function
(blue), parasite load (red) and within-host cells (black) change as an individual is subject
to higher toxicant loads. In (b), the total % parasite infection (black) changes as the
toxicant load is increased. Parameters as in Table 2.
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Figure 5: The mechanism of parasite infection under increasing toxicant exposure with
aggressive direct mortality. In (a), the total density of immune function (blue), parasite
load (red) and within-host cells (black) change as an individual honey bee is subject
to higher toxicant loads. In (b), the total % parasite infection (black) changes as the
toxicant load is increased. Parameters taken from Table 2, but with a reduced indirect
effect h = 0.08.
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No parasite infection Initial parasite infection

Within-host cells X reduced by rQ

d
reduced by hpQ

bβ

Parasites Y no change increased by bQ(hpλ−abr−cpr)
(ab+cp)(ab+p(c−hQ))

Immunity Z reduced by rQ

d
reduced by hQ

b

Table 1: The net change of immunity, within-host cells and parasites after the introduction
of toxicant, compared to the no-toxicant model, for both initial and no parasite infection
load.
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Parameter Symbol Value
production of within-host cells λ 0.1

rate of parasite infection β 0.01
death of within-host cells d 0.01

direct lethal effect of toxicant r 0.1
toxicant exposure Q [0, 1.5]

death rate of parasites a 0.01
immune suppression p 0.009

production of immunity c 0.1
removal of immunity b 0.02

indirect sub-lethal effect of toxicant h 0.3

Table 2: The parameters used in the analysis of the model.
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