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 30 



Climate warming has caused the seasonal timing of many components of ecological 31 

food chains to advance. In the context of trophic interactions the match-mismatch 32 

hypothesis (MMH) postulates that differential shifts can lead to phenological 33 

asynchrony with negative impacts for consumers. However, at present there has been 34 

no consistent analysis of the links between temperature change, phenological 35 

asynchrony, and individual-to-population level impacts across taxa, trophic levels and 36 

biomes at a global scale. Here, we propose five criteria that all need to be met to 37 

demonstrate that temperature-mediated trophic asynchrony poses a growing risk to 38 

consumers. We conduct a literature review of 109 papers studying 129 taxa, and find 39 

that all five criteria are assessed for only two taxa, with the majority of taxa only 40 

having one or two criteria assessed. Crucially, nearly every study was conducted in 41 

Europe or North America, and most studies were on terrestrial secondary consumers. 42 

We thus lack a robust evidence base from which to draw general conclusions about 43 

the risk that climate-mediated trophic asynchrony may pose to populations 44 

worldwide. 45 

 46 

The shifting seasonal timing of key life history events, such as the budburst of trees, 47 

emergence of insects or the migration and breeding times of vertebrates, is one of the three 48 

universal ecological responses to climate warming1,2 alongside range shifts and reductions in 49 

organismal body size3,4. Such shifts in phenology have provided some of the earliest and 50 

strongest evidence that rising temperatures have left a discernible imprint on the planet’s 51 

ecosystems5–8. For many consumer species, phenological events are timed to coincide with 52 

peak abundance of a predictable food resource. However, the strength and direction of the 53 

phenological response to temperature frequently differs among species occupying different 54 

trophic levels, leading to asynchrony between resource and consumer (box 1). The 55 

consequences of such asynchrony were first studied in the early 1900s in the context of 56 

trophic interactions between fish larvae and their zooplankton resource. This generated the 57 



classic match-mismatch hypothesis9. Fish larvae were found to spawn at a relatively fixed 58 

date, but zooplankton phenology was more variable across years, causing annual variation 59 

in asynchrony between consumer and resource. The degree of asynchrony (referred to as 60 

mismatch by Cushing) was proposed to account for annual fluctuations in fish recruitment to 61 

the population9. In recent years, the hypothesis that changing temperatures might increase 62 

the frequency of costly trophic asynchrony between consumers and their resources has 63 

been increasingly discussed10–13. The impact of asynchronous phenological interactions on 64 

the fates of consumer species was identified as a key uncertainty in the fifth assessment 65 

report of the IPCC14. 66 

Phenological asynchrony and mismatch are often used interchangeably in the 67 

ecological literature, but the meaning of the term “mismatch” is more ambiguous, as it is in 68 

some cases used to imply only dissimilar responses of adjacent trophic levels13, and in other 69 

cases implying negative impacts on the consumer15. In this paper we refer to “trophic 70 

asynchrony” when the consumer demand does not coincide with the phenology of the 71 

resource, and to the match-mismatch hypothesis (MMH) when asynchrony has negative 72 

impacts on fitness or populations (box 1). We note that the MMH is normally conceptualised 73 

from a unidirectional, bottom-up perspective (i.e., asynchrony leading to detrimental effects 74 

on consumers), rather than potential top-down effects upon prey and resources16. 75 

Asynchrony has been detected in many study systems7,17,18, but to demonstrate 76 

negative consequences of asynchrony on the consumer (i.e., the MMH), several conditions 77 

need to be met. For trophic asynchrony to be identified as detrimental, the consumer must 78 

depend on a short, seasonally-pulsed or ephemeral resource19–25, and it should be 79 

established whether asynchrony might be an adaptive baseline state26–28. Moreover, there 80 

should be negative effects of asynchrony on consumer fitness29–34. Ultimately, asynchrony 81 

becomes of conservation concern when it affects mean demographic parameters and leads 82 

to population declines13,35–38. Although components of the MMH and consequences for 83 

population trends can be identified, these are based on very few and specific study systems. 84 



We therefore lack a general overview of how often trophic asynchrony leads to population 85 

declines. 86 

 87 

 88 

Five criteria for demonstrating risks of temperature-mediated asynchrony 89 

Here, based on ideas that have been widely discussed in the literature and which we outline 90 

above, we propose five criteria that must all be met for temperature-mediated phenological 91 

asynchrony to be both present, and causing population declines (Table 1): (1)  the consumer 92 

is highly reliant on a seasonally ephemeral resource; (2) the degree of trophic asynchrony 93 

between consumer and resource phenology is increasing over the years (evidenced by time 94 

series); (3) increasing trophic asynchrony is due to differing temperature responses of 95 

consumer and resource; (4) trophic asynchrony impacts negatively on consumer fitness, and 96 

(5) asynchrony impacts negatively on population growth37. In Table 1 we identify some of the 97 

methods that can be used to test each of these criteria. In the next section we summarise 98 

the existing biological evidence for these criteria, with a particular focus on general insights 99 

that have emerged from multi-species studies and formal meta-analyses on questions that 100 

Box 1: Glossary of terms widely used in the study of trophic asynchrony 

Phenology: the study of cyclically recurring biological events, such as the seasonal 
timing of tree leafing, insect hatching, or animal migration and reproduction. In this 
work, we also use it to refer to the events themselves, as has become the norm in the 
literature. 

Trophic level: the position that an organism occupies in the food chain. Primary 
consumers are herbivores (e.g., winter moth, caribou), and secondary consumers are 
omnivores or carnivores (e.g., great tit, herring) 

Phenological sensitivity/response: the interannual variation in phenology that relates 
to interannual variation in a biotic or abiotic cue, for example an advance in breeding in 
response to temperature. 

Phenological/trophic asynchrony: when the seasonal peak in consumer demand for 
a resource does not coincide with the seasonal peak in availability of that resource. 

The match-mismatch hypothesis (MMH): poses that trophic asynchrony has 
negative consequences for consumer fitness or population size. This is also sometimes 
referred to as trophic mistiming. 



are pertinent to the study of the MMH. The five criteria can be seen as a best-practice 101 

framework, but we realize that each study system poses unique challenges for studying 102 

these criteria. We do not intend for their application to oversimplify the complex study of 103 

phenology, nor do we claim that they cover everything that phenological studies need to 104 

focus on. 105 

 106 

Evidence for phenological asynchrony 107 

Large-scale comparative analyses of phenological responses and formal meta-analyses 108 

provide ample evidence that on average spring timings are advancing at mid-high latitudes, 109 

and that species vary in their response to temperature8,17,39. In two large multi-species 110 

analyses based on phenological data from the UK, the phenology of secondary consumers 111 

advanced less than primary producers and consumers over the years (criterion 2)17 and 112 

secondary consumers have a lower phenological sensitivity to temperature (criterion 3)7. For 113 

marine taxa, the magnitude of phenological advance varied among trophic groups, with 114 

phytoplankton, zooplankton and bony fish all more responsive than seabirds40,41. However, 115 

while large-scale multi-species and multi-population studies provide valuable insights into 116 

general trends and patterns of inter- and intra-specific variation in phenological responses, 117 

they do not estimate in situ responses for specific trophic interactions, nor do they reveal 118 

anything about fitness or population consequences. Of those studies that focus on trophic 119 

interactions known to be important to the consumer for a short period (criterion 1) most focus 120 

on a single interaction. Such studies have reported increasing asynchrony over the years 121 

(criterion 2), for example in great tits, Parus major, and winter moth, Operophtera 122 

brumata5,42. However, a recent analysis of the phenological time series underpinning 27 123 

species interactions (including but not limited to trophic interactions) found that whilst the 124 

degree of asynchrony has changed over the years, the number of cases where asynchrony 125 

had increased was roughly balanced by the number of cases where asynchrony had 126 

decreased18. The same study also found that whilst phenology was responding to 127 



temperature in the ecological systems considered, it was not possible to attribute temporal 128 

trends in asynchrony to long-term increases in temperature (criterion 3). 129 

 130 

Potential consequences of trophic asynchrony 131 

The most prominent evidence for the MMH comes from intensively-studied wild systems, 132 

such as that of the reliance of great tits on winter moth caterpillars to feed their young. For 133 

these birds, asynchrony between the timing of peak nestling demand and peak caterpillar 134 

biomass has negative consequences for individual fitness and annual mean fitness30,31. 135 

Meta-analyses of selection estimates in the wild report consistent selection pressures for 136 

earlier phenology43,44, but directional selection has not become stronger over time44. 137 

However, meta-analyses addressing selection on phenology have considered only absolute 138 

timing, rather than the timing of a consumer relative to its resource10, so it is unclear from 139 

these studies whether selection on consumers is being driven by asynchrony with resources. 140 

 Trophic asynchrony becomes a matter of conservation concern if it impacts 141 

negatively on population size (criterion 5)37. Two long-term studies of great tits found no 142 

evidence of an effect of asynchrony on population size31,45, whereas a study of several 143 

populations of pied flycatchers Ficedula hypoleuca in the Netherlands reported stronger 144 

population declines where caterpillar phenology was earlier36. The only multi-species studies 145 

on this theme that we are aware of are for birds. One of these studies found that migrant 146 

passerines breeding in European forests had declined more than resident and marsh 147 

inhabiting species, which the authors attributed to the MMH46. The other study found that, 148 

across 21 UK bird species, population declines were more pronounced for species that had 149 

advanced their breeding phenology least and in species whose annual productivity was most 150 

reduced by asynchrony with general insect and plant phenology.47 However, support for the 151 

MMH was weak and not reflected by declines in breeding success of those species. 152 

 153 



Table 1. Criteria of evidence that climate change induced trophic asynchrony is increasing and 154 

deleterious for the consumer (the MMH), with a consideration of the data and methods that can be 155 

used. 156 

Criterion Evidence required Data and Methods  

1. An ephemeral 
resource 
contributes a large 
proportion of the 
consumer’s diet 

A large proportion of the 
diet is typically composed 
of a species or food type 
that shows a pulsed 
seasonal distribution 

A variety of methods for quantifying diet 
composition exist, including direct observation of 
feeding, gut content dissection, 
faecal/regurgitate dissection, metabarcoding 
and stable isotope analysis. Requires that 
relevant aspects (e.g., biomass, abundance) of 
the favoured resource are measured over time 
within at least one season and analysis reveals 
a pulsed intra-year relationship.  
 

2. Asynchrony 
between 
consumer and 
resource 
phenology is 
increasing over 
time 

Analysis of time-series of 
consumer and resource 
phenology, with a test of 
whether trends in 
timing  differ and whether 
this leads to an increase or 
decrease in asynchrony 

Requires a time series that covers a period of 
temperature change. A large number of 
phenological time series exist, as recorded by 
researchers, citizens, herbaria, etc. Statistical 
analysis of increasing asynchrony is easily 
achieved by including an interaction between 
year and species. Inference of whether 
asynchrony is increasing or decreasing requires 
inspection of predictions based on estimated 
elevations and slopes of the modelled 
relationships for each species18. 
 

3. Variation in 
asynchrony is 
driven by 
interannual 
variation in 
temperature 

Identification of the time 
period(s) over which 
consumer and resource is 
sensitive to temperature. 
Evidence that differential 
temperature sensitivity is 
the driver 

A variety of methods exist for identifying the time 
period over which phenology of each species 
responds to temperature48–51. Confidence in 
attribution can be increased by experiments26 or 
by including year as a term in the model41, 
thereby de-trending the phenology data52. 
Estimating temporal trends in temperature 
variables is also worthwhile, as differing trends 
may generate asynchrony53,54. 

4. Asynchrony 
impacts negatively 
on consumer 
fitness 

A suitable measure of 
consumer fitness 
decreases with increasing 
asynchrony 

Can be assessed within years (relative fitness) 
or among years (mean fitness) or both30,31. 
Depending on how asynchrony varies across 
individuals or years, the relationship between 
fitness and asynchrony may be a linear decline 
or a humped relationship. If the former, care 
may need to be taken to establish causation55. 
Ideally, models should take into account both 
asynchrony with peak resource and 
phenological distribution of the resource56,57. 
Studies of impacts on relative fitness are 
informative regarding selection and 
opportunities for adaptation, whereas studies on 
mean fitness may be informative regarding 
demographic rates13 



5. Asynchrony 
impacts negatively 
on consumer 
population size, 
density, or growth 
 

Negative effects of 
asynchrony on fitness (4) 
that have a negative effect 
on population size/growth, 
as assessed over multiple 
years 

Requires long-term data on asynchrony and 
population size or density. The impact of 
asynchrony on demographic rates can be 
incorporated into a population model58 or the 
causal pathways between asynchrony and 
population growth can be assessed in a 
structural equation model59. It is important to 
rule out a causal effect of other variables (e.g., 
land-use, resource availability, sea ice, range 
shifts) that could cause populations to change 
over time24. Such confounding effects can 
partially be accounted for by including year as a 
term to detrend the analysis41,52. An alternative 
approach involves modelling a population’s 
ability to persist on the basis of demographic 
and quantitative genetic parameters45,60. 

 157 

 158 

Literature survey 159 

We conducted a broad survey (n=109) of published work on the match-mismatch hypothesis 160 

(MMH) across terrestrial, marine and freshwater systems with the aim of: (i) examining the 161 

evidence for temperature-mediated trophic asynchrony and its impacts and (ii) identifying 162 

gaps in the evidence base, thereby allowing us to (iii) make recommendations for priority 163 

areas for future work. To this end, we extracted data from published, peer-reviewed original 164 

research in which a trophic interaction was studied in relation to any of the five criteria we 165 

proposed as vital to the MMH (Table 1). Only original studies, where the specific interaction 166 

between consumer and resource could clearly be identified were included (see 167 

Supplementary Information for methodological details, and Supplementary Table 1 for the 168 

papers identified as relevant by the data extractors). 169 

 170 

Taxonomic and geographical bias in the data 171 

The search identified 772 papers, of which the full text was found for 760. Of these, 571 172 

were not relevant (e.g., no trophic interactions were reported, or none of the five criteria were 173 

extractable), and 80 had no extractable data, resulting in a total of 109 papers that had 174 



relevant data on 129 consumer taxa (Extended Data Fig. 2). All but six of the 109 trophic 175 

interaction studies were in Europe or North America (Fig. 1). The majority of trophic 176 

interactions were terrestrial (81.5% of the data), with marine (14%) and freshwater 177 

interactions (4.5%) being scarcer. For most interactions the consumer was a secondary 178 

consumer (58%), with studies of primary (36.5%) or higher than secondary (5.5%) 179 

consumers less common. Birds made up the majority of the consumer taxa studied (53%), 180 

while 29.5% of taxa were insects, 8% were fish, 5% were mammals and 4% were 181 

crustaceans. 182 

 183 

Testing the five criteria 184 

The most tested criterion was criterion 1 (97% of interactions, n=125/129) - relating to 185 

dependence on a seasonally pulsed resource (Fig. 2, top panels). However, rather than 186 

conducting direct tests on the seasonal distribution of resources, 74% (n=92/125) of these 187 

included only a statement based on a priori knowledge of the natural history of the system 188 

that the resource was both ephemeral and important to the consumer.  189 

 Of the study systems that were tested for dependence on a seasonally pulsed 190 

resource (i.e., where the resource was ephemeral and the consumer was a specialist), 42% 191 

(n=15/36) showed such dependence. Excluding the cases where criterion 1 was not 192 

explicitly tested, criterion 2 was the most frequently tested (68% of interactions, n=88/129), 193 

relating to whether phenological asynchrony was increasing over time (Fig. 2, top panels). 194 

The remaining criteria were all tested substantially less frequently, with criterion 5 195 

(population consequences) being tested least often (8% of interactions, n=10/129). 196 

Surprisingly few studies report data for criterion 3 (Fig. 2, top panels), which relates 197 

temperature to asynchrony (29% of interactions, n=37/129), and this was almost never 198 

reported for marine and freshwater taxa. The distributions of criteria tested were broadly 199 



similar across consumer levels and biomes, with the exception of primary consumers for 200 

which criteria 3 and 4 appear slightly more common. 201 

Our analysis could identify only two out of 129 consumer taxa for which all five of our 202 

criteria have been tested at least once: both of these are forest-breeding passerine birds 203 

studied in Europe - the great tit and the pied flycatcher. In a further 13 taxa, four out of five 204 

criteria were assessed. In the remaining 114 taxa, three or fewer criteria were studied, with 205 

the majority (58%, n=75/129) of consumer taxa having only two of the five criteria known 206 

(Fig. 2, bottom panels). Breaking this same analysis down to the per study level, no single 207 

study explicitly tested all five criteria (Extended Data Fig. 3). This is generally due to a 208 

tendency for studies to focus on either phenology slopes (criteria 2 & 3), or the 209 

consequences of asynchrony (criteria 4 & 5). Only a handful of studies detail temporal 210 

slopes, temperature slopes, and consequences of asynchrony in one study61–63. 211 

 212 

Phenology slopes over time and temperature 213 

Consumer and resource responses appear to be positively correlated across studies, with 214 

consumers showing a slight tendency to advance their phenology by less than their resource 215 

(Fig. 3). In 61% (n=58/95) of the cases, the phenology slope over time was greater for the 216 

resource than for the consumer (Fig 3a,b). For the phenological response to temperature, 217 

the consumer slope was greater than the resource slope in 59% (n=13/22) of cases (Fig 218 

3c,d). The degree to which these patterns differ across biomes and trophic levels could not 219 

be tested with this dataset, since the number of slope estimates is too low for non-terrestrial 220 

and non-secondary consumers. Based on visual inspection, it appears that especially 221 

terrestrial secondary consumers tend to be slower-advancing than their resource. However, 222 

more data on underrepresented groups would be required to reach robust conclusions about 223 

these patterns. 224 

 225 



Fitness and demographic consequences 226 

Fitness consequences in relation to trophic asynchrony (criterion 4) are studied in 36% 227 

(47/129) of the consumers (Fig. 2, top panels). Consequences of asynchrony for offspring 228 

(n=44) are studied over three times as often as consequences for adults (n=14, Fig. 4), 229 

though it is possible that this reflects a research bias to study fitness components that are 230 

more sensitive to asynchrony. In 28% of consumer taxa (n=13/47), no negative effect of 231 

asynchrony on fitness was reported (Fig. 4). The least studied consequence of trophic 232 

asynchrony is its effects on population demography (criterion 5, Fig. 2, 4). In half of these 233 

interactions (n=5/10), no effect of asynchrony was reported. 234 

 235 

Discussion 236 

Our literature survey on the ecological impacts of temperature-mediated trophic asynchrony 237 

reveals that the full causal chain from temperature change, to temperature-driven shifts in 238 

seasonal timing, consumer-resource synchrony, and individual-to-population level impact 239 

has rarely been studied. Only two out of 129 taxa were studied for all criteria, and for the 240 

majority of study systems, only one or two out of five criteria were met. The available studies 241 

were strongly biased toward terrestrial secondary consumers (especially birds) in the 242 

Northern Hemisphere (largely Europe and North America). Notably, the effects of climate 243 

warming on trophic asynchrony in aquatic systems and in the Southern Hemisphere are 244 

understudied64, although this could be reflective of the small amount of temperate land mass 245 

in the Southern hemisphere. Tropical studies are also under-represented, but this may partly 246 

indicate a reduced importance of temperature as a phenological cue in tropical ecosystems8. 247 

Crucially, demographic consequences of trophic asynchrony are the least studied of the five 248 

criteria, despite this knowledge being the most important to conservation.  249 

 250 

Bias in the Match-Mismatch Hypothesis evidence base across biomes 251 



Terrestrial systems were by far the most represented of the three environments that we 252 

considered, presumably by virtue of the comparative ease of collecting data on both 253 

phenology and fitness in these systems. This ease of data collection is evident in the great 254 

contribution that citizen science data collectors have made to the study of terrestrial 255 

phenology47,65–68, which is rare for aquatic systems. Monitoring phenology of many aquatic 256 

organisms is hampered by their wide ranges and underwater habitats69, and compounded by 257 

the logistic and financial challenges encountered during offshore research. As a result, 258 

relatively few multi-decadal phenological time series have been collected at sufficient 259 

resolution to capture seasonal changes70,71. Moreover, separate sampling programmes are 260 

often needed for consumer and resource (e.g., piscivorous birds and their prey)72, and even 261 

if resources can be quantified, many aquatic organisms are generalist feeders, further 262 

adding to the difficulties in quantifying the MMH. Citizen scientists can, however, collect 263 

valuable data on the terrestrial stages of aquatic organisms (e.g., dragonflies), or aquatic 264 

seasonal events that can be observed from shore (e.g., amphibian spawning, floating algal 265 

blooms). Furthermore, with ongoing technological innovation in data collection 266 

methodologies, it may become possible to widen the aquatic evidence base for some taxa. 267 

For example, radar can be used to quantify aquatic-terrestrial subsidies based on insect 268 

emergence, providing detailed measures of the timing and size of resource pulses73, and 269 

satellite-based observation tools are providing a wide-scale perspective on phytoplankton 270 

phenology changes74. It would therefore be valuable to consider how diverse data sources, 271 

and lines of evidence, can be fruitfully combined to advance our knowledge of the 272 

importance of the MMH in aquatic systems. 273 

Despite their overrepresentation in MMH research, even in terrestrial systems there 274 

are biases and gaps in the evidence-base that extend beyond the aforementioned 275 

geographic biases (Fig 1). Of the terrestrial studies, temperate forest taxa and birds in 276 

particular predominate, which is likely due to the fact that seasonality increases with latitude. 277 

Temperate forests experience a pronounced seasonal temperature-mediated pulse in 278 



resources46, and they present particularly suitable study systems to study individual fitness in 279 

the wild (e.g., cavity nesting birds). In aquatic systems, individual marking of philopatric 280 

seabirds and pinnipeds permits some components of fitness to be monitored75, but this is 281 

much harder for underwater organisms76. Likewise, for many widely-distributed groups such 282 

as fish, invertebrates, and plankton, individuals cannot be sampled repeatedly, and 283 

populations can rarely be sampled to the extent that demographic implications of asynchrony 284 

can be assessed. On the other hand, invertebrates are more amenable to experimental 285 

study32, and numerous national surveys of population sizes exist77,78 that could be used to 286 

infer demographic consequences of trophic asynchrony. Another key research gap in 287 

aquatic systems involves the specific role of cross system consumer-resource interactions in 288 

mediating trophic asynchrony. For example, some freshwater consumers feed upon 289 

terrestrial resources, which represents a substantial source of nutrients79. The delivery of at 290 

least some of this material is strongly seasonal. Leaf fall, for example, is triggered by 291 

photoperiod in conjunction with drought and temperature80. Aquatic phenology research 292 

would greatly benefit from increased consideration of the synchrony between freshwater 293 

consumers and terrestrial resources. 294 

 295 

Further challenges in studying the MMH 296 

We recognise that studying these five criteria and improving the evidence base regarding the 297 

risks posed by the MMH will not be straightforward and we have already discussed how 298 

aquatic environments present particular challenges, but other complexities remain. While 299 

criteria 2 and 3 are perhaps the easiest to satisfy, even here challenges exist in attributing a 300 

change in phenology/asynchrony to temperature, as sensitivity estimates can be obscured 301 

by non-climate drivers or compensatory mechanisms62,81. For example, changing nutrient 302 

availability and light conditions can influence the seasonal timing of phytoplankton 303 

blooms82,83, but would not be expected to affect consumer organisms in the same way. In 304 

this article we have simplified the interaction between resource and consumer to a single 305 



metric, the asynchrony between the peak demand of consumer and availability of the 306 

resource. However, as the MMH predicts that consumer fitness relates to resource 307 

availability during a particular window9, consumers might in addition to asynchrony be 308 

sensitive to the height and width of the resource11,37, either of which could be sensitive to 309 

temperature and exacerbate or ameliorate effects on fitness. Although the potential for 310 

resource abundance to influence fitness is widely acknowledged, it is unusual for studies on 311 

the MMH in relation to fitness (criterion 4) or population size (criterion 5) to include its 312 

effect56,57. We realize that especially criterion 4 may be hard to satisfy for study systems 313 

where individuals cannot be studied, which should not discourage people from working on 314 

such systems. Whilst fulfilling all the other criteria would allow one to infer whether the 315 

mismatch is causing population declines, there are clear advantages of studying individuals 316 

within populations. Apart from the fact that such data helps demonstrate causative effects of 317 

asynchrony on fitness, it can tell us whether seasonal timing will be under directional 318 

selection. 319 

Where the resource is in fact a guild (caterpillars, phytoplankton) rather than a 320 

species, temperature-mediated shifts in the aggregate phenology may arise from a variety of 321 

processes, from similar plastic responses of different species, to changes in the relative 322 

abundance of early- and late-blooming constituent species, even when these species 323 

independently might show no or weak phenological shifts84. While the effect of asynchrony 324 

on the consumer may not be sensitive to these two scenarios, if we want to project 325 

phenological changes into the future we need to understand the processes that underpin 326 

community phenological responses. An obvious solution to this problem is to improve the 327 

species level resolution of sampling85, but this can be costly and impractical in the short 328 

term, and might require new sampling approaches such as eDNA86. 329 

 330 

Is trophic asynchrony of conservation concern? 331 



This review reveals a lack of robust evidence for the MMH, and even the two best studied 332 

taxa in terrestrial systems present a mixed message. In great tits, matching with the 333 

caterpillar peak has fitness impacts at both the individual and population level30,31, but trophic 334 

asynchrony currently poses no threat to their population persistence31,45. Pied flycatchers 335 

also perform worse when poorly matched with the caterpillar peak22,87, but, in contrast to 336 

great tits, declines in asynchronous flycatcher populations have been recorded in the 337 

Netherlands36. Nevertheless, those pied flycatcher populations have been increasing again 338 

since 200288. Interestingly, pied flycatchers breed about two weeks later than tits89, the 339 

average nest is rarely matched with the caterpillar peak90, and a long-term study in the 340 

Netherlands found no correlation between annual mean asynchrony with the caterpillar peak 341 

and the strength of the seasonal decline in the number of recruits91. Moreover, pied 342 

flycatchers are more generalist than tits in the nestling diet92, so it remains uncertain to what 343 

extent these flycatcher populations will be negatively affected by trophic asynchrony 344 

compared to specialists. 345 

It would nevertheless be premature to conclude from this that a relative shortage of 346 

evidence for demographic consequences of trophic asynchrony constitutes evidence of 347 

absence of an effect. Even in species for which negative population consequences are not 348 

yet apparent, such as great tits, it is possible that continued increases in temperature will be 349 

problematic. Application of an integral projection model to a UK population of great tits 350 

suggested that under a high emission scenario, more rapid responses of the prey species 351 

(the winter moth caterpillar) coupled with limits to plasticity in great tit hatch date being 352 

reached, lead to an acceleration in directional selection. An increase in evolution of hatch 353 

date timing was to an insufficient degree to prevent negative consequences of trophic 354 

asynchrony, and the population in that scenario is projected to have an increased risk of 355 

extinction93. Such demographic approaches should be greatly expanded upon, and provide a 356 

unique way to understand which life stages will likely matter from the perspective of 357 

pathways leading to shifts in population growth rate and density58.  358 



 359 

Research Priorities 360 

Based on our five criteria and our review of the literature we identify six priorities for future 361 

work to properly test the match-mismatch hypothesis and its impacts. 362 

1. From cause to effect - focusing on population consequences: There is an urgent 363 

need for studies that consider the full causal chain, from climate driver to seasonal 364 

timing, synchrony, and individual-to-population level impact. In particular, we need 365 

many more tests of the impact of asynchrony on population change (criterion 5), 366 

across taxa and habitat types. This most important criterion from the perspective of 367 

conservation and policy13,37 and yet has received the least attention. Furthermore, 368 

given that the population impacts of trophic asynchrony at one location may be 369 

buffered by matching at another location90, we strongly advocate expanding the 370 

spatial scale of current research to include multi-population studies. This will allow 371 

the consequences of phenological shifts to be interpreted in the context of other 372 

universal climate warming responses such as range shifts. 373 

2. Balancing the evidence - data collection and synthesis for aquatic systems: 374 

Despite the marine origin of the MMH, current monitoring and research has so far led 375 

to a limited understanding of the MMH in marine and freshwater systems, compared 376 

to terrestrial habitats. It is imperative for funders to continue to support time series, 377 

since with each passing year the statistical power of these to reveal patterns 378 

improves. We further recommend for underused historic records, including museum 379 

collections and naturalist observations, to be coupled with new work on these 380 

systems to create well documented long time series within a matter of years. 381 

However, we must also ask how additional monitoring approaches (e.g., eDNA, 382 

radar) might be usefully combined with “traditional” monitoring approaches, to 383 

expand the species representation, monitoring of individual states and fitness 384 



consequences, and spatial coverage of aquatic ecosystem studies, and support a 385 

broader understanding of changes in phenological asynchrony (criterion 2) and the 386 

role of temperature as a driver (criterion 3) in these systems. 387 

3. Environmental drivers of phenology - beyond temperature: Here, we have 388 

addressed phenological asynchrony in relation to temperature (criterion 3), the best-389 

studied driver. However, the environmental drivers of phenology vary geographically. 390 

For instance, at lower latitudes seasonally pulsed precipitation is a more important 391 

driver of phenology8, and at higher latitudes the timing of snow melt is a key 392 

mechanism94–99.  In order to gain a global perspective on the risks posed by climate-393 

mediated phenological asynchrony poses there is an urgent need to apply our 394 

framework to alternative environmental drivers of phenology. 395 

4. Assessing the risks - global predictions and species traits: We need more 396 

studies on trophic asynchrony and its drivers at different latitudes and many more to 397 

be conducted outside of Europe and North America (see Fig. 1). As data on the MMH 398 

accumulate, a fruitful approach would be to conduct comparative analyses to identify 399 

the taxonomic groups, trophic levels, environments and regions where fitness or 400 

population impacts of phenological asynchrony (criterion 4 and 5) are most likely. 401 

Based on first principles we may expect temperature-mediated asynchrony to be 402 

more frequent and deleterious when the consumers are endotherms rather than 403 

ectotherms8, income rather than capital breeders24,37, and at higher latitude regions 404 

experiencing the most seasonal climates and the most rapid climate change8. 405 

However, empirical validation of these predictions is lacking. 406 

5. Observing interactions - enhancing the role of citizen science: Mass 407 

participation citizen science has resulted in millions of phenological records that 408 

underpin many of the studies quantifying phenological shifts7,17,65,100 and can even be 409 

used to project weather records into the past101. A strength of these schemes is their 410 

spatial as well as temporal coverage. In some instances it is possible to identify the 411 

phenology of consumer species and their resources from existing datasets102, but this 412 



requires the assumption that co-occurring species are actually interacting. While 413 

using data amassed over larger spatial scales (e.g., via citizen science or remote 414 

sensing) is attractive as a means to examining geographic variation in temporal 415 

trends in asynchrony (criterion 2) and temperature sensitivity (criterion 3) or fitness 416 

consequences (criteria 4&5), care is required in matching data at a resolution that is 417 

pertinent to the trophic interaction103,104. Moreover, we are not aware of any study 418 

combining citizen science-derived datasets to study the impacts of asynchrony of 419 

specific trophic interactions on population change (criterion 5). Therefore an 420 

opportunity exists for development or extensions of citizen science schemes to 421 

collect data on the phenology of species interactions across trophic levels and on the 422 

fitness and/or population sizes of the consumer. 423 

6. Clarifying the concept - “asynchrony” or “mismatch”: There exists a degree of 424 

terminological inconsistency in relation to the MMH, which may confuse attempts at 425 

achieving a common understanding of the potential importance of this phenomenon. 426 

Many studies that claim to address “mismatch” identify the conditions that could lead 427 

to greater asynchrony, but stop short of explicitly testing whether asynchrony leads to 428 

any negative consequences for the consumer. Where no evidence for negative 429 

repercussions is presented we encourage authors to use the term “asynchrony”, 430 

rather than “mismatch”, which implies a negative consequence. 431 

 432 

Concluding remarks 433 

Temperature-mediated trophic asynchrony and its consequences are widely discussed in 434 

global change research and have been intensively studied over the past two decades. In this 435 

study we have presented five criteria that together provide a causal chain to explicitly 436 

demonstrate the risk that temperature-mediated asynchrony poses to populations, which we 437 

hope will strengthen future work.  In an extensive review of the literature we found that no 438 

single study and only two study systems have tested all five criteria, with a clear deficit of 439 



studies considering the impact of asynchrony on population size, which is the most important 440 

criterion from a conservation perspective37. This means that at present we cannot state from 441 

the literature that temperature-mediated trophic asynchrony will have a widespread negative 442 

impact on consumer population size or growth. We identify six research priorities, which 443 

need to be tackled to get a comprehensive understanding of the frequency and magnitude of 444 

trophic asynchrony and its impacts on consumers. A more consistent approach to the study 445 

of the match-mismatch hypothesis and its population consequences at the global scale will 446 

allow us to better target conservation efforts and provide much needed evidence for possible 447 

consequences of one of the most intriguing impacts of climate change on global biota: 448 

phenological change. 449 

 450 

Figure legends 451 

Figure 1. Locations of studies on phenological asynchrony identified by our analysis, 452 

subdivided by biome (light blue = freshwater, dark blue = marine, orange = terrestrial) and 453 

consumer trophic level (triangles = primary, squares = secondary, circles = >secondary). 454 

There is a clear geographical bias of studies, with a considerable overrepresentation of 455 

Europe and North America. 456 

 457 

Figure 2. Individual criteria tested across taxa (a,b), and the total number of criteria tested 458 

per taxon (c,d). The most tested criteria (a,b) were 1 “ephemeral resource” and 2 459 

“phenological change over the years”. The total number of criteria tested (c,d) was two out of 460 

five for most taxa, and all five criteria were tested for only two out of 129 taxa (c,d). The left 461 

panels (a, c) are divided by trophic level, and the right panels by biome (b, d). 462 

 463 

Figure 3. Consumer versus resource slopes in relation to year and temperature. Symbol 464 

shapes represent consumer trophic level (triangles = primary, squares = secondary, circles = 465 

>secondary), colour represents biome (light blue = freshwater, dark blue = marine, orange = 466 

terrestrial) and larger symbols are from longer time series (average 21 years, range 6 to 119 467 

years). The solid diagonal line represents an equal rate of change by consumer and 468 

resource. Where the resource slope < 0, points above the line represent systems where 469 

resource phenology is advancing by more than that of the consumer, whereas points below 470 

the line represent systems where consumer phenology is advancing more rapidly than 471 

resource phenology. Where resource slope > 0, points below the line represent systems 472 

where resource phenology is delaying by more than that of the consumer, whereas points 473 

above the line represent systems where consumer phenology is delaying more rapidly than 474 

resource phenology. 475 

 476 



Figure 4. Number of taxa in which consequences of trophic asynchrony were studied, 477 

divided into those where the effect reported was negative or neutral (statistically non-478 

significant, no positive effect of trophic asynchrony was ever reported for this taxon). Results 479 

are clearly biased toward juvenile rather than adult life stages. 480 

 481 

Data availability 482 

All data files related to this review are available at the Open Science Framework: 483 

https://osf.io/c8xzd/. 484 

 485 

Code availability 486 

All R code to generate the results in this paper can be combined with the data files, and are 487 

available at the Open Science Framework: https://osf.io/c8xzd/. 488 
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